Magnetic Nanostructures F. J. Himpsel, Dept. of Physics, UW-Madison

28
Magnetic Nanostructures F. J. Himpsel, Dept. of Physics, UW-Madison Limits of Data Storage Magnetoelectronics One-Dimensional Structures on Silicon SSSC Meeting, Irvine, Oct. 4, 2001

description

Magnetic Nanostructures F. J. Himpsel, Dept. of Physics, UW-Madison. Limits of Data Storage Magnetoelectronics One-Dimensional Structures on Silicon. SSSC Meeting, Irvine, Oct. 4, 2001. All of the information ... accumulated in all the books - PowerPoint PPT Presentation

Transcript of Magnetic Nanostructures F. J. Himpsel, Dept. of Physics, UW-Madison

Page 1: Magnetic  Nanostructures F. J. Himpsel, Dept. of Physics, UW-Madison

Magnetic Nanostructures

F. J. Himpsel, Dept. of Physics, UW-Madison

• Limits of Data Storage

• Magnetoelectronics

• One-Dimensional Structures on Silicon

SSSC Meeting, Irvine, Oct. 4, 2001

Page 2: Magnetic  Nanostructures F. J. Himpsel, Dept. of Physics, UW-Madison

All of the information ... accumulated in all the books

in the world can be written … in a cube of material

1/200 inch wide.

Use 125 atoms to store one bit.

Richard Feynman

Caltech, December 29th, 1959

Page 3: Magnetic  Nanostructures F. J. Himpsel, Dept. of Physics, UW-Madison

In pursuit of the ultimate storage medium

1 Atom per Bit

Page 4: Magnetic  Nanostructures F. J. Himpsel, Dept. of Physics, UW-Madison

Writing a Zero

Before

After

Page 5: Magnetic  Nanostructures F. J. Himpsel, Dept. of Physics, UW-Madison

Filling all Sites

Natural Occupancy:

50%

After Si Evaporation:

100%

Page 6: Magnetic  Nanostructures F. J. Himpsel, Dept. of Physics, UW-Madison

Smaller Bits Less Energy Stored Slower Readout

Use Highly-Parallel Readout

Array of Scanning Probes Array of Shift Registers

( Millipede, IBM Zrich ) ( nm m )

Page 7: Magnetic  Nanostructures F. J. Himpsel, Dept. of Physics, UW-Madison
Page 8: Magnetic  Nanostructures F. J. Himpsel, Dept. of Physics, UW-Madison

50 nm 10 nm particle

Magnetic Storage Media

600nm

17 Gbits/inch2 commercial

Hundreds of particles per bit

Single particle per bit !

Magnetic ForceMicroscopeImage (IBM)

Page 9: Magnetic  Nanostructures F. J. Himpsel, Dept. of Physics, UW-Madison

Perfect Magnetic Particles

Sun, Murray , Weller, Folks, Moser,

Science 287, 1989 (2000)

FePt

Page 10: Magnetic  Nanostructures F. J. Himpsel, Dept. of Physics, UW-Madison

Giant Magnetoresistance:

Spin-Polarized Tunneling:

Magnetoelectronics

Spin Currents instead of

Charge Currents

Page 11: Magnetic  Nanostructures F. J. Himpsel, Dept. of Physics, UW-Madison

Filtering mechanisms

• Interface: Spin-dependent Reflectivity Quantum Well States

• Bulk: Spin-dependent Mean Free Path Magnetic Doping

Parallel Spin Filters Resistance Low

Opposing Spin Filters Resistance High

GMR and Spin - Dependent Scattering

Page 12: Magnetic  Nanostructures F. J. Himpsel, Dept. of Physics, UW-Madison

Minority spins discrete,Majority spins continuous

Spin-polarized Quantum Well States

Page 13: Magnetic  Nanostructures F. J. Himpsel, Dept. of Physics, UW-Madison

High Resolution Photoemission

States near the Fermi level

determine magneto-transport

( 3.5 kT = 90 meV )

-10

-8

-6

-4

-2

0

2

4

XK

Ni

En

erg

y R

ela

tiv

e t

o E

F [

eV

]

0.7 0.9 1.1

k|| along [011] [Å-1 ]

Page 14: Magnetic  Nanostructures F. J. Himpsel, Dept. of Physics, UW-Madison

Magnetic Doping

Magnetic Impurity Selects Spin Carrier

Fe doped

Page 15: Magnetic  Nanostructures F. J. Himpsel, Dept. of Physics, UW-Madison

Why Silicon ? Couple Nano- to MicroelectronicsUtilize Silicon Technology

Storage Media: 1 Particle (Atom) per BitAtomically Precise Tracks

Step Arrays as Templates: 2 - 80 nm

1 Kink in 20 000 Atoms

Emulate Lithography: CaF2 Masks Selective Deposition

Atomic Wires: Exotic Electrons in 1D

One-Dimensional Structures on Silicon

Page 16: Magnetic  Nanostructures F. J. Himpsel, Dept. of Physics, UW-Madison

Si(111) 77

Control the step spacing

in units of

2.3 nm = 7 atom rows

Step Step

x - Derivative of the STM Topography

“Illumination from the Left Casting Shadows”

Page 17: Magnetic  Nanostructures F. J. Himpsel, Dept. of Physics, UW-Madison

Stepped Silicon

Template

1 Kink in

20 000 Atoms

15 nm

Page 18: Magnetic  Nanostructures F. J. Himpsel, Dept. of Physics, UW-Madison

Si(557) Regular Step Spacing

5.73 nm

Page 19: Magnetic  Nanostructures F. J. Himpsel, Dept. of Physics, UW-Madison

77 Unit + Triple Step

Si(557)

= 17 Atomic Rows

Page 20: Magnetic  Nanostructures F. J. Himpsel, Dept. of Physics, UW-Madison

Stepped Silicon Templates

80 nm15 nm6 nm

triple single bunched

Tobacco Mosaic Virus

Page 21: Magnetic  Nanostructures F. J. Himpsel, Dept. of Physics, UW-Madison

CaF2 Mask Selective Adsorption

DPP Molecule

Page 22: Magnetic  Nanostructures F. J. Himpsel, Dept. of Physics, UW-Madison

Selective Deposition

via Photolysis of Ferrocene

Troughs converted to Fe wires

Page 23: Magnetic  Nanostructures F. J. Himpsel, Dept. of Physics, UW-Madison

Clean Si(557)

+ Gold

Decoration of Steps Atomic Wires2 nm6 nm

Page 24: Magnetic  Nanostructures F. J. Himpsel, Dept. of Physics, UW-Madison

Si(557) - Au

Page 25: Magnetic  Nanostructures F. J. Himpsel, Dept. of Physics, UW-Madison

Hole Holon + Spinon

EF

Photoelectron

Spin - Charge Separation

in a One-Dimensional Metal

Zacher, Arrigoni, Hanke, and Schrieffer, PRB 57, 6379 (1998)

Spinon

Holon

EF =

Crossing at EF

Page 26: Magnetic  Nanostructures F. J. Himpsel, Dept. of Physics, UW-Madison

Si(557)-Au

• Splitting persists at EF

• Electron count is even

Not spin charge separation

EFermi

Two degenerate orbitals ?

Bonding

Antibonding

E2E1

Page 27: Magnetic  Nanostructures F. J. Himpsel, Dept. of Physics, UW-Madison

Tailoring the Electronic Structure

Electron count even,

two bands, metallic

Electron count odd,

one band, “gap”

stepped flat

Page 28: Magnetic  Nanostructures F. J. Himpsel, Dept. of Physics, UW-Madison

Si(111) - Au

http://uw.physics.wisc.edu/~himpsel