Mactaquac Aquatic Ecosystem Study Report Series 2016-044

27
Mactaquac Aquatic Ecosystem Study Report Series 2016-044 PRELIMINARY CHARACTERIZATION OF PLANKTON COMMUNITIES IN THE MACTAQUAC HEADPOND AND DOWNSTREAM SAINT JOHN RIVER Huy Nguyen, Allen Curry, Caitlin Tarr, Samantha Pettey, Mouhamed Ndong March 29, 2017

Transcript of Mactaquac Aquatic Ecosystem Study Report Series 2016-044

Page 1: Mactaquac Aquatic Ecosystem Study Report Series 2016-044

MactaquacAquaticEcosystemStudyReportSeries2016-044

PRELIMINARYCHARACTERIZATIONOFPLANKTONCOMMUNITIESINTHEMACTAQUACHEADPONDANDDOWNSTREAMSAINTJOHNRIVER

HuyNguyen,AllenCurry,CaitlinTarr,SamanthaPettey,MouhamedNdong

March29,2017

Page 2: Mactaquac Aquatic Ecosystem Study Report Series 2016-044

MAES Report Series 2016-044

TABLEOFCONTENTS

EXECUTIVESUMMARY....................................................................................................................................3

1. Introduction.................................................................................................................................................1

2. Methodology................................................................................................................................................2

1.1. Fieldwork...............................................................................................................................................2 1.2. LaboratoryANALYSES.......................................................................................................................5 1.3. Statisticalanalysisandbio-indexcalculations........................................................................6 1.3.1. Variationamongwaterlayers:...........................................................................................6 1.3.2. Variationbetweenheadpondandriverhabitats:.....................................................6 1.3.3. Planktonandwaterconditions:.........................................................................................6 1.3.4. Summary......................................................................................................................................6

3. Results............................................................................................................................................................7

3.1. Waterconditions..................................................................................................................................7 3.1.1. Depth.............................................................................................................................................7 3.1.2. Temperature..............................................................................................................................8 3.1.3. Conductivity...............................................................................................................................8 3.1.4. DissolvedOxygen.....................................................................................................................9 3.1.5. pH..................................................................................................................................................10 3.1.6. Turbidity....................................................................................................................................11 3.1.7. Salinity........................................................................................................................................12

3.2. Phytoplankton.....................................................................................................................................12 3.2.1. Biodiversity...............................................................................................................................12 3.2.2. Variationofphytoplankton................................................................................................14

3.3. Zooplankton.........................................................................................................................................18 3.3.1. Biodiversity...............................................................................................................................18 3.3.2. Variationofzooplankton....................................................................................................18

4. DISCUSSION...............................................................................................................................................19

5. ACKNOWLEDGEMENTS........................................................................................................................21

6. References..................................................................................................................................................22

Correctcitationforthispublication:NguyenH.,CurryA.,TarrC.,PetteyS.,andNdongM.,2016.PreliminarycharacterizationofplanktoncommunitiesintheMactaquacHeadpondanddownstreamSaintJohnRiver.MactaquacAquaticEcosystemStudyReportSeries2016-044.CanadianRiversInstitute,UniversityofNewBrunswick.

Page 3: Mactaquac Aquatic Ecosystem Study Report Series 2016-044

MAES Report Series 2016-044

EXECUTIVESUMMARY

ThisreportprovidesageneraloverviewofthediversityandspatialvariationtheplanktoncommunitiesandtheirassociationswiththeenvironmentalparametersintheMactaquacHeadPond(HP)anddownstreamSaintJohnRiver(RIV)tothecityofFrederictonmeasuredfromJunetoOctoberin2015and2016.MostofthewaterqualityconditionsoftheHPandRIVsitesaresimilarinboththeHPstratificationandnon-stratificationperiods.Thedifferenceswhenobserved(DO,conductivityandtemperature)aremostprobablyrelatedtothetwodifferenthabitats,e.g.,differencesinwaterdepthandflowthatwouldaffectthephysico-chemicalprocesses.Therewereanestimated341phytoplanktonand73zooplanktonspeciesobserved.In2016,theaveragenumberofphytoplanktoncellsintheHPhabitatis1.98E+09±3.63E+09cells/m3andthatinRIVhabitatis4.08E+08±2.76E+08cells/m3(p>0.05).TheH’indexofdiversityforphytoplanktonrangedfrom0.17to2.78,inwhichtheaveragevaluesfortheHPandRIVsitesare1.5±0.5and2.0±0.4,respectively(p<0.05).Duringthenon-stratificationtimeintheHP,aseriesofstatisticaltestsshowthatthemixingofwatercolumnscanleadtothemixtureofthephytoplanktoncommunitiesinbothabundanceandtaxarichness(p’s>0.05).Similarly,duringHPstratification,thedifferenceinwaterqualityconditionsamonglayerswasnotenoughtocausesignificantvariationofthephytoplanktoncommunitiesinhabitingeachlayerintermsofthetaxarichnessandnumberofcells(p>0.05).Zooplanktonanalyseswillbecompleteinspring,2017.Thenon-significantresultsofthestatisticaltests(p>0.05)supportthehypothesisthatinthemainriveraftertheMD,theriverplanktoncommunityaremostlysupplementedbythosefromtheMH.However,ANOSIManalysisshowedthatthevariationoftheplanktonassemblagesbetweentheHPandRIVissignificantlydifferentwitheitherofthevariationswithineachhabitat(p<0.05).BasedonDCAandRDAanalysis,wefoundthesignificantimportanceofthetemperature,conductivity,andDOforthephytoplanktoncommunitystructure(p<0.05).Thezooplanktonassemblagehadastrongassociationwithtemperature,conductivity,andpH(p<0.05).

Page 4: Mactaquac Aquatic Ecosystem Study Report Series 2016-044

MAES Report Series 2016-044

1|P a g e

1. INTRODUCTIONFreshwaterplanktonaresmallorganismsatthebaseofaquaticfoodwebswheretheyplayanessentialrolefortheecologicalfunctionsofreservoirandriverecosystems(Likens2010;Wetzel2001).Planktonbiologyandecologyarewellstudiedforlakes,rivers,andlake-riverinteractions(e.g.,Jones2010;Likens2010;Wetzel2001).Phytoplankton,oralgae,arehighlydiverseinfreshwaterbodies,displayingeffectiveresponsemechanismstoenvironmentalchangesthroughtheutilizationofvariousadaptivestrategies.Asaphotoautotrophicorganism,algaecapturelighttoconvertinorganicelementsintoorganiccompoundsandthusrepresentthebasisofmostallaquaticfoodwebs;theyalsoproduceoxygen(Krienitz2009).Conversely,excessivealgalbloomsorextremeproductionofalgaecannegativelyaffectfishandmacroinvertebratescreatingpoisonousorbioactivesubstancescausingdeathordisease,oralteringhabitat,e.g.,changesinwaterchemistryandwaterclarityaffectingphotosyntheticallyactiveradiation(PAR)andultraviolet(UV)penetration.Othermajorchallengesofalgalbloomsincludetoxicitytoanimalsincludinghumansandthusaffectingrecreationalactivitiessuchasfishing,boating,swimming.Bloomscanalsothreatenwatersupplies,increasingthecostofwatertreatmentandmanagement(Burkholder2009).Zooplanktoncomprisefourmaingroups:Protozoa,Rotifera,Copepoda,andCladocera.Theycanbeherbivores,carnivores,oromnivores,inhabitingmultipletrophiclevelsinlacustrineecosystems(Sterner2009).Zooplanktonfunctionasacrucialintermediatetrophicstageintheenergyflowfromprimaryproducerstotopconsumerssuchasfishandlargeraquaticanimals(Sterner2009).Ithasbeendemonstratedthatachangeinzooplanktoncompositionand/orabundancecaninfluencetrophicstructureinlakeecosystems,includingaffectingnitrogenandphosphorous(Andersen&Hessen1991;Downing&McCauley1992;Williamson&Reid2010).Planktonarewellstudiedinstandingwaterssuchaslakesandreservoirs.Thedynamicflowingwatersofriversarelesssuitedtopelagicplanktonproductionandspeciescomposition,andabundanceistypicallyrelatedtobenthicproductionandoccurrencesofeitherstandingwater,e.g.,inlets,orslowflowconditions(Basuetal.2000;C.Reynolds2000;Wetzel2001).StudiesofplanktoninlargeriversystemsarefewintheAtlanticCanadaregion(Locke&Klassen2010).OnlythestudiesofAubéetal.(2005);Duerden(1973);andWattandDuerden(1974)existandfocusonplanktonofimpoundedwaterbodiesintheregion.TheSaintJohnRiver(SJR),thelongestriverintheAtlanticCanadaat~650kmlong,hascontributedconsiderablytothedevelopmentofagriculture,forestry,transportation,andelectricityintheregion(Cunjak&Newbury2005).Theriverhasfivemajorhydropowerdams,thelargestistheMactaquacHydroelectricFacilityandDam(MD)builtinlate1960s(Cunjak&Newbury2005;Watt1973).ThestudyofplanktonintheSJRconsistsofabriefdescriptionofdiversity,biomass,seasonalpatterns,andrelationshipswithsomeenvironmentalparametersinassociationwiththewater-mixingperiodfortheMDreservoirintheearly1970s(Watt1972,1973;Watt&Duerden1974).TherehasyettobeassessmentsofthetemporalandspatialplanktondistributionsinSJR,e.g.,the

Page 5: Mactaquac Aquatic Ecosystem Study Report Series 2016-044

MAES Report Series 2016-044

2|P a g e

seasonalverticaldistributionsassociatedwithstratificationandmixing,oranypossibleeffectsoftheMDondownstreamplanktoncommunities.ThisreportisapartoftheMAESprojectandaimstocharacterizeplanktoncommunitiesoftheMactaquacHeadPondanddownstreamSJRfromtheMDtotheCityofFredericton.ItisthefirstcomprehensiveresearchontheSJRplanktoncommunitiessincethe1970s.Thisreportcomprisesthefollowing:

1. Descriptionsoftheplanktoncommunities:biodiversity,andspatialvariationsinHPanddownstreamSJR.

2. Therelationshipbetweentheplanktoncommunitiesandenvironmentalparameters.2. METHODOLOGY1.1. FIELDWORKFrom2014to2016,atotalof17siteswereinvestigatedfortoassessplanktonabundanceanddiversityandthephysico-chemicalcharacteristicsofthereservoir(N=13,HPhabitat)andriver(N=4,RIVhabitat)(Figure1andTable1).MoredetailsaboutthefeaturesofcollectingsitescouldbeassessedviatheMAESwebpagesinCanadianRiversInstitutewebsite(http://canadarivers-gis.maps.arcgis.com/home/index.html).

Figure1.ThemapshowingthecollectionsitesinthestudiedareaoftheMactaquacHeadPond(HP)andSaintJohnRiver(RIV)from2014-16.

Page 6: Mactaquac Aquatic Ecosystem Study Report Series 2016-044

MAES Report Series 2016-044

3|P a g e

Table1.CharacteristicsofthestudysitesintheMactaquacHeadPond(HP)andSaintJohnRiver(RIV).

No.Site Coordinates Limnologysurvey PlanktonsurveyNewnames

Othernames Latitude Longitude 2014 2015 2016 2014 2015 2016

1. HP1 HP30-C 46.00012 -66.9173 x x --- x x ---2. HP30-L 46.0016 -66.9152 x x --- --- --- ---3. HP30-R 45.99953 -66.9185 x x --- --- --- ---4. HP2 HP1 45.97403 -66.88643 --- --- x --- --- x5. HP3 HP35-C 45.99953 -66.91852 --- x --- --- x ---6. HP35-L 45.96067 -66.87749 --- x --- --- --- ---7. HP35-R 45.95911 -66.88314 --- x --- --- --- ---8. HP4 HP40-L 45.94762 -66.8739 x x --- --- --- ---9. HP40-C 45.94717 -66.8739 x x --- x x x10. HP40-R 45.94644 -66.8711 x x --- --- --- ---11. HP2 45.94891 -66.87474 --- x --- --- x ---12. HP5 HP50-R 45.92163 -66.8933 x --- --- --- --- ---13. HP50-C 45.91996 -66.8904 x --- --- --- --- ---14. HP50-L 45.91889 -66.8879 x --- --- --- --- ---15. HP3 45.91681 -66.89414 --- --- x --- --- x16. HP6 HP20-L 45.87516 -66.8995 x --- --- --- --- ---17. HP20-C 45.87588 -66.8992 x --- --- --- --- ---18. HP20-R 45.87644 -66.8986 x --- --- --- --- ---19. HP7 HP60-R 45.87978 -66.9179 x x --- --- --- ---20. HP60-C 45.88094 -66.9211 x x --- --- x ---21. HP60-L 45.88185 -66.9247 x x --- --- --- ---22. HP8 Longs-C 45.86466 -66.9132 x x --- --- x ---23. HP9 HP4 45.88589 -66.97754 --- --- x --- --- x24. HP10 HP70-C 45.90372 -67.0154 x x --- x x ---25. HP70-R 45.90101 -67.0166 x --- --- --- --- ---26. HP70-L 45.90701 -67.0127 x --- --- --- --- ---27. HP11 HP10-C 45.94509 -67.1053 x x --- --- x ---28. HP10-R 45.94331 -67.1076 x x --- --- --- ---29. HP10-L 45.94793 -67.1022 x x --- --- --- ---30. HP12 HP80-L 45.98351 -67.1967 x x --- --- --- ---

Page 7: Mactaquac Aquatic Ecosystem Study Report Series 2016-044

MAES Report Series 2016-044

4|P a g e

No.Site Coordinates Limnologysurvey PlanktonsurveyNewnames

Othernames Latitude Longitude 2014 2015 2016 2014 2015 2016

31. HP80-C 45.98052 -67.1975 x x --- x x ---32. HP80-R 45.97913 -67.1998 x x --- --- --- ---33. HP13 Lotic-R 45.97913 -67.1998 x --- --- --- --- ---34. Lotic-C 45.95523 -67.2883 x x --- --- --- ---35. Lotic-L 45.95695 -67.2881 x --- --- --- --- ---36. RIV1 --- 45.9611 -66.83986 --- x x --- x x37. RIV2 --- 45.98984 -66.80491 --- --- x --- --- x38. RIV3 RIV2 45.98984 -66.80491 --- x x --- x x39. RIV4 --- 45.96766 -66.66050 --- x x --- x xNotes:C-center;L-left;R-right;x-conductingsurvey

WedeterminedthethermalstratificationperiodintheHPbeginsinJulyandlastsuntilSeptember(2014and2015results).ThestrongeststratificationoccurredfromHP3toHP12(Figure1).Preliminaryanalysesindicatedthattheplanktoncommunitieswere>65%similarintermoftaxarichnessandabundanceinboththeHPorRIVhabitats.Weintensifiedsamplingtofewersitesin2016:4sitesintheHPand4sitesintheRIV-HP2,HP4,HP5,HP9,RIV1,RIV2,RIV3,andRIV4(Table2).Table2.Fieldsamplingprotocolfor2016

Site

Stratificationperiod Non-stratificationperiodReservoir Downstream Reservoir Downstream

HP2,HP3,HP5,HP9 RIV1,RIV2,RIV3,RIV4 HP2,HP3,HP5,HP9 RIV1,RIV2,RIV3,RIV4

MonthJuly June

August NovemberMethod Sample3water

layersbySchindler-Patalastrap:Epilimnion,Metalimnion,Hypolimnion.

Sample2layersbySchindler-Patalastrap:Surface,Bottom.

Samplebyverticaltowedmethod:Towplanktonnetfrombottomtothesurfaceataconsistentrate.

Samplebyverticaltowedmethod:Towplanktonnetfrombottomtothesurfaceataconsistentrate.

Environmentalparameters

-T0C,pH,turbidity,Depth,Conductivity,Salinity,DO,Secchidepth,T-N,T-P.

-T0C,pH,turbidity,Depth,Conductivity,Salinity,DO,andSecchidepth,T-N,T-P.

-T0C,pH,turbidity,Depth,Conductivity,Salinity,DO,Secchidepth,T-N,T-P.

-T0C,pH,turbidity,Depth,Conductivity,Salinity,DO,andSecchidepth,T-N,T-P.

-Chlorophyll-a,Phycocyanin

-Chlorophyll-a,Phycocyanin

-Chlorophyll-a,Phycocyanin

-Chlorophyll-a,Phycocyanin

Page 8: Mactaquac Aquatic Ecosystem Study Report Series 2016-044

MAES Report Series 2016-044

5|P a g e

DepthandotherenvironmentalparametersweremeasuredusingaYSI6600V2SondecoupledwithvariousprobesconnectedtoaYSI650handheldunitwhichdisplaysprofiledata(Chateauvert2015),includingTemperature(0C),pH,turbidity(NTU),Depth(m),Conductivity(µS/cm),Salinity(ppt),DissolvedOxygen(mg/L).Secchidiskdepthisalsorecordedateverysite(1cm).Ateachsite,watersampleswerealsocollectedandsentforanalysesofTotalDissolvedPhosphorus(TDP),SolubleReactivePhosphorus(SRP),Nitrite+Nitrate,Ammonia(NH3),andTotalDissolvedNitrogen(TDN)(BiogeochemicalAnalyticalServiceLaboratory,UniversityofAlberta,http://www.biology.ualberta.ca/basl).Pigmentconcentrations,Chlorophyll-aandPhycocyaninweremeasureddirectlyinthefieldusingtheAMISCIENCE®HandheldFluorometer(http://www.amiscience.com).Inaddition,thepigmentsweredeterminedinvitrobythefluorescencemethodinthelaboratory(Arar&Collins1997).Planktonsamplesarecollectedfromeitherindividualwaterlayersduringthestratificationperiodorbyasingleverticaltowtocreateaconsolidatedverticalsampleinnon-stratificationtime.Duringstratification,eachlayer(epi-,meta-,andhypolimnion)wassampledusingthreeSchindler-Patalasplanktontrapsamplesthatwerecombinedintoasinglesample.Thevolumecaptureofthetrapis12LwithNitex®filternetand35µmmeshsize.ThelayerwasidentifiedusingtheYSISondeandthetargetedsamplepositionwasthemiddleofthethermallayer.Inthenon-stratifiedperiod,anintegratedwatercolumnsamplewascollectedusingaconicalplanktonnetwith35µmmesh.Thenetwasdeployedabout1mabovethesubstrateandretrievedataconsistentrateof~15cm/s(Chateauvert2015;Keen2013).Anadditionalweightcanbeaddedtothetrapandplanktonnettoensurethevertical-towedprocessindeeperwaters(typically>10m)orintheriverlocationswherethevelocitycancausesomeeffectsonthetowingprocess.Thetowedsamplevolume,V,wascalculatedas:V=π*r2.*d,wherer=radiusofthenetrim,d=depththatthenetwaspulled.Planktonsampleswerestoredinpre-labelledplasticjars(125or500mL)preservedinfullLugol’ssolutionwithafinalconcentration1%.

1.2. LABORATORYANALYSESInthefirsttwoyears(2014and2015),planktonsampleswereidentifiedtothespecieslevelorotherhighertaxonomicformsandnumeratedbyEcoAnalysts,Inc.,USA.The2016sampleswereidentifiedandquantifiedinhouseatCRI@UNB,DepartmentofBiology,Fredericton.Theplanktonsamplesareidentifiedtothespeciesorgenuslevelbasedonvariouskeydocuments(e.g.,Baker2012;Bellinger&Sigee2010,2015;Brandlovaetal.1972;Chengalath1971;Haney;Lerback2013;Nuttall1971;Prescott1964,1980;Serediak&Huynh2011;Smith1978;Suárez-Morales&Reid1998;Suthers&Rissik2009;Thorp&Covich2001;Wehr&Sheath2003;Witty2004).Thezooplanktondensity(individuals/m3)isenumeratedbyapplyingthechamber-basedcountingmethod(APHA2005;Stemberger1979).Thequantificationofphytoplanktonabundance(numberofnaturalunits/m3andnumberofcells/m3)isachievedbytheUtermohl

Page 9: Mactaquac Aquatic Ecosystem Study Report Series 2016-044

MAES Report Series 2016-044

6|P a g e

method(AWWA2010;Utermöhl1958;Weber1973).Theplanktoncountingerrorislessthan20%(AWWA2010;Harrisetal.2000).

1.3. STATISTICALANALYSISANDBIO-INDEXCALCULATIONSCharacterizationsofplanktoncommunitiesweredescribedas:Taxarichness=numberofspecies;Shannon-WeaverIndex(H’)=biodiversityindex;andPielou(J’)=evennessindex(Krebs1989).Theseindexesarecalculatedfortheindividuals/m3forzooplanktonandthecells/m3forphytoplankton.Theuncertaintaxaofplanktonwereexcludedinthestatisticalanalysisandindexcalculations.

1.3.1. Variationamongwaterlayers:

Weusedtwo-wayANOVAstotestthehypothesisthatthereisdifferenceinplanktoncommunitiesamongthreewaterlayersintheHP(epi-,meta-,andhypo-limnion)andbetweenthesurfaceandbottomlayersinRIVhabitat(duringthestratificationperiod).WhentheANOVAassumptionsarestronglyviolated,weusethenon-parametrictests,includingthetwo-wayANOVAequivalentScheirer-Ray-HareTestwiththeBonferronicorrection;one-wayANOVAequivalentKruskal-WallisorMann-Whitney-Wilcoxontests(Dytham2011).

1.3.2. Variationbetweenheadpondandriverhabitats:

Weusedasetofone-wayANOVAstoassessthepotentialeffectoftheheadpondplanktoncommunityontherivercommunitybycomparingthetwosites,onedirectlyupstreamoftheMactaquacDam(HP4)andonedownstreamSJR(RIV1)intermofthetaxarichnessandabundance(Figure1).Propernon-parametrictesteswillbeperformedincasetheANOVAassumptionsareviolated.Additionally,theANOSIM(AnalysisofSimilarity)wasappliedtodetectthedifferencebetweenthetwohabitatplanktonassemblages.

1.3.3. Planktonandwaterconditions:

RelatingplanktoncommunitiestothewaterqualityconditionswasconductedusingacombinationofDCA(DetrendedCorrespondenceAnalysis)andRDA(RedundancyAnalysis)basedonspeciesscoresforcenteringandsymmetryscaling(Quinn&Keough2002).ToavoidmodeloverfittinginRDAanalysis,weappliedtherulethatthenumberofenvironmentalvariableswasreducedto½thenumbersofthespeciesorcollectingsites,dependentonwhichissmaller.EnvironmentalvariablesweretestedbyPearsonCorrelationAnalysissuchthatcorrelationswithr>0.60resultedinoneofthetwovariablesbeingremoved(Draper&Smith1998).Furthermore,afterRDAperformance,onlyvariableswithVIF(VarianceInflationFactor)<10wereretainedintheanalysis(Tuetal.2005).

1.3.4. Summary

Theplanktonabundance(cells/m3forphytoplanktonandindividuals/m3forzooplankton),andenvironmentalparameters(exceptpH)weretransformedpriorbytheformulaoflog10(X+1)to

Page 10: Mactaquac Aquatic Ecosystem Study Report Series 2016-044

MAES Report Series 2016-044

7|P a g e

reducetheeffectsofextremevaluesandtheunitdifferencesofenvironmentalvariables.InANOSIManalysis,theplanktonabundancedataisrankedbytheBray-Curtissimilarityprocess.ThesignificanceofRDAmodelandANOSIMwasachievedbyusingperpermutationtestswith999trials.Weseta=0.05.Statisticalanalysesandindicesforphytoplanktoncalculationsarebasedonthe2016data.WeexcludedatacollectedinJuneforRDAanalysisbecausewelackedconductivityandturbiditymeasures.Zooplanktonanalyseswon’tbecompleteuntilspring2017.Intheanalysesofthisreport,dataof6sitescollectedinOctoberandNovember,2015areincluded(HP1,HP3,HP10,RIV1,RIV3,andRIV4).ThesoftwareofRprogramv.3.3.2coupledwithvariouspackages,Primer™v.6,Microsoft®Excel™v.2010wereusedfortheanalyses.Wereportaverages±1standarddeviation.3. RESULTS3.1. WATERCONDITIONS

3.1.1. Depth

Duringthestratificationtime,thedepthoftheupperMDhabitat(HP)hadahighrangefrom13.8m(HP1)to39.4m(HP5),whereas,therangeoftheRIVhabitatisfrom2.2m(RIV3)to4.7m(RIV4).Innon-stratificationtime,thedepthintheHPhabitatvariesfrom13.7m(HP1)to38.0m(HP5)andintheRIVhabitatisabout4.4m(RIV2)to7.1m(RIV1).Table3providesmoredetails.Table3.Depth(m)variationinthecollectingsitesbetweenthestratificationandnon-

stratificationtime.Site Stratificationtime Non-StratificationtimeHP1 13.8 13.7HP2 19.7 19.1HP3 27.1 ---HP4 37.5 35.1HP5 39.4 38.0HP6 24.5 ---HP7 37.9 ---HP8 26.1 ---HP9 35.3 34.5HP10 33.8 29.1HP11 29.3 ---HP12 23.0 ---HP13 27.0 ---RIV1 3.4 7.1RIV2 3.4 4.4

Page 11: Mactaquac Aquatic Ecosystem Study Report Series 2016-044

MAES Report Series 2016-044

8|P a g e

Site Stratificationtime Non-StratificationtimeRIV3 2.2 6.8RIV4 4.7 5.7

3.1.2. Temperature

Theaveragetemperatureintheheadpondsites=19.9±1.2oCduringthestratificationperiodand12.8±3.1oCduringthenon-stratificationperiod(Table4).Temperaturefortheriversitesaveraged21.0±0.4oCand12.6±1.0oCinstratificationandnon-stratificationperiods,respectively.Table4.Watercolumntemperature(0C)amongthecollectingsitesduringstratificationandnon-

stratificationperiodsintheMactaquacHeadPond(HP)andSJR(RIV)–seealsoFigure1.

Stratificationtime Non-StratificationtimeSite Min(0C) Max(0C) Average(0C) Min(0C) Max(0C) Average(0C)HP1 15.3 24.6 19.7 10.3 11.1 11.0HP2 15.1 25.2 20.9 15.4 17.2 15.6HP3 8.8 21.8 19.4 --- --- ---HP4 10.5 24.1 18.2 9.4 16.9 12.9HP5 10.6 24.3 18.9 11.4 17.6 14.9HP6 15.2 24.4 20.2 --- --- ---HP7 11.2 23.3 19.6 --- --- ---HP8 17.0 24.5 20.8 --- --- ---HP9 11.0 24.7 17.4 12.0 18.1 14.9HP10 14.8 22.1 20.2 6.6 9.3 7.6HP11 12.6 22.6 20.6 --- --- ---HP12 15.4 23.2 21.4 --- --- ---HP13 17.0 23.9 21.0 --- --- ---RIV1 20.4 22.8 21.2 12.3 15.9 13.7RIV2 20.0 22.7 21.2 10.3 18.2 11.3RIV3 19.8 24.0 21.1 11.3 15.1 12.5RIV4 19.0 23.2 20.5 10.3 15.3 12.9

3.1.3. Conductivity

Theaverageconductivityfortheheadpondisaveraged133.4±32.1µS/cmduringthestratificationperiodand113.2±18.9µS/cmduringthenon-stratificationperiod.Intheriverhabitats,theaverage=123.6±38.9µS/cmand108.5±19.5µS/cmforthestratificationandnon-stratificationperiods,respectively(Table5).

Page 12: Mactaquac Aquatic Ecosystem Study Report Series 2016-044

MAES Report Series 2016-044

9|P a g e

Table5.Conductivity(µS/cm)variationamongthecollectingsitesduringstratificationandnon-stratificationperiodsintheMactaquacHeadPond(HP)andSJR(RIV)–seealsoFigure1.

Stratificationtime Non-Stratificationtime

Site Min(µS/cm) Max(µS/cm) Average(µS/cm)Min

(µS/cm)Max

(µS/cm) Average(µS/cm)HP1 52.0 89.0 73.4 75.2 80.1 79.0HP2 83.8 349.6 210.3 69.6 114.5 112.1HP3 95.1 123.1 116.6 --- --- ---HP4 92.0 423.6 157.4 75.5 130.1 119.3HP5 92.3 334.8 149.3 79.0 117.8 111.7HP6 96.0 125.0 109.1 --- --- ---HP7 99.4 139.0 120.9 --- --- ---HP8 110.0 140.0 125.0 --- --- ---HP9 93.2 232.8 160.6 92.1 124.5 121.2HP10 109.0 138.0 128.2 130.2 139.0 135.7HP11 105.6 138.0 123.3 --- --- ---HP12 112.9 142.0 128.0 --- --- ---HP13 111.2 145.0 132.5 --- --- ---RIV1 113.7 368.0 181.5 70.8 127.9 120.3RIV2 96.2 104.6 97.8 56.0 83.0 79.4RIV3 106.9 109.8 107.9 71.8 128.3 117.8RIV4 105.9 109.3 107.2 70.6 126.4 116.5

3.1.4. DissolvedOxygen

TheDissolvedOxygen(DO)measurementsofthecollectingsitesintwoseasonsareprovidedinthetable6.IntheHPsites,theDOaveragesofthestratificationandnon-stratificationtimeare6.4±0.6mg/Land8.5±1.4mg/L.ThesevaluesintheRIVsitesare8.5±0.5mg/L(stratificationperiod)and9.5±0.5mg/L(non-stratificationperiod).

Page 13: Mactaquac Aquatic Ecosystem Study Report Series 2016-044

MAES Report Series 2016-044

10|P a g e

Table6.DO(mg/L)variationamongthecollectingsitesduringstratificationandnon-stratificationperiodsintheMactaquacHeadPond(HP)andSJR(RIV)–seealsoFigure1.

Stratificationtime Non-Stratificationtime

SiteMin

(mg/L)Max

(mg/L)Average(mg/L)

Min(mg/L)

Max(mg/L)

Average(mg/L)

HP1 0.7 9.7 5.4 9.0 10.2 9.3HP2 5.4 9.5 7.5 7.6 10.3 8.2HP3 1.6 8.5 6.8 --- --- ---HP4 3.5 9.8 7.1 3.5 9.8 8.3HP5 3.4 9.5 7.0 2.8 10.6 6.8HP6 2.6 10.0 5.9 --- --- ---HP7 2.2 9.6 6.2 --- --- ---HP8 2.7 9.6 6.3 --- --- ---HP9 5.8 8.8 7.1 2.7 12.1 7.7HP10 0.2 8.8 5.8 10.0 11.3 10.8HP11 0.2 8.4 5.9 --- --- ---HP12 0.3 8.5 6.1 --- --- ---HP13 0.2 9.4 6.1 --- --- ---RIV1 7.8 8.9 8.5 8.5 11.2 9.0RIV2 6.7 8.5 8.1 9.0 10.1 10.0RIV3 8.9 9.4 9.1 8.7 11.4 9.3RIV4 7.6 8.4 8.1 9.7 11.0 9.9

3.1.5. pH

ThevariationofpHamongthecollectingsitesareshowninthetable7.Duringthestratificationtime,theaveragevaluesofHPandRIVhabitatsare7.2±0.2and7.2±0.2.Incontrast,thosevaluesinnon-stratificationtimeare6.9±0.2and6.8±0.9.Table7.pHvariationamongthecollectingsitesduringstratificationandnon-stratification

periodsintheMactaquacHeadPond(HP)andSJR(RIV)–seealsoFigure1. Stratificationtime Non-Stratificationtime Site Min Max Average Min Max AverageHP1 6.0 8.1 7.0 6.8 7.3 7.1HP2 6.7 7.9 7.1 6.6 8.3 6.7HP3 6.2 7.9 7.2 --- --- ---HP4 6.2 8.3 7.1 6.2 8.2 7.0HP5 6.2 8.1 7.2 6.2 8.6 6.8HP6 6.7 8.4 7.4 --- --- ---HP7 6.4 8.4 7.2 --- --- ---HP8 6.6 8.4 7.3 --- --- ---

Page 14: Mactaquac Aquatic Ecosystem Study Report Series 2016-044

MAES Report Series 2016-044

11|P a g e

Stratificationtime Non-Stratificationtime Site Min Max Average Min Max AverageHP9 6.2 7.4 6.7 6.2 7.9 6.7HP10 6.8 7.9 7.4 6.9 7.3 6.9HP11 6.2 8.0 7.2 --- --- ---HP12 6.0 8.6 7.2 --- --- ---HP13 6.4 8.3 7.4 --- --- ---RIV1 7.1 8.0 7.4 6.1 8.8 7.7RIV2 7.1 7.6 7.3 5.1 7.5 5.5RIV3 7.1 7.4 7.2 6.8 7.9 7.0RIV4 6.1 7.8 6.9 6.3 7.6 6.9

3.1.6. Turbidity

Inthestudiedarea,theaverageoftheturbidity(Turbid)oftheHPsitesis1.3±0.5pptinthestratificationmonths,whereasthevalueofRIVsitesis1.1±0.4ppt.Inthenon-stratificationmonths,thosevaluesoftheHPandRIVsitesare0.9±0.4and1.3±0.3ppt,respectively.Table8providesmoredetailsabouttherecordedturbidityparameter.Table8.Turbidity(ppt)variationamongthecollectingsitesduringstratificationandnon-

stratificationperiodsintheMactaquacHeadPond(HP)andSJR(RIV)–seealsoFigure1.

Stratificationtime Non-StratificationtimeSite Min(ppt) Max(ppt) Average(ppt) Min(ppt) Max(ppt) Average(ppt)HP1 0.3 4.7 1.5 1.3 2.1 1.5HP2 0.0 2.2 0.7 0.5 1.3 0.8HP3 0.4 31.1 0.9 --- --- ---HP4 0.0 4.5 0.8 0.0 1.7 0.8HP5 0.0 3.4 1.2 0.2 1.7 0.6HP6 0.9 15.4 1.7 --- --- ---HP7 0.3 7.5 1.4 --- --- ---HP8 0.4 5.5 1.6 --- --- ---HP9 0.0 1.3 0.4 0.1 1.7 0.6HP10 1.4 4.5 1.9 0.7 1.7 1.1HP11 0.4 3.6 1.4 --- --- ---HP12 0.9 4.5 1.7 --- --- ---HP13 0.9 6.5 1.8 --- --- ---RIV1 0.3 1.0 0.5 0.2 1.4 0.9RIV2 0.9 2.0 1.6 1.4 2.0 1.7RIV3 0.1 2.5 1.2 0.2 2.0 1.4RIV4 0.2 3.0 1.0 0.2 9.2 1.2

Page 15: Mactaquac Aquatic Ecosystem Study Report Series 2016-044

MAES Report Series 2016-044

12|P a g e

3.1.7. Salinity

Thesalinity(Sal)wasmeasuredatsomecollectingsitesfrom2014to2016anddisplayedinthetable9.Ofwhich,theaveragevalueofHPhabitatinstratificationperiodis0.09±0.01pptandinnon-stratificationperiodis0.05±0.01ppt.TheaverageoftheRIVsitesis0.06±0.01pptrecordedinthestratificationmonthsand0.05±0.01pptinnon-stratificationmonths.Table9.Salinity(ppt)variationamongthecollectingsitesduringstratificationandnon-stratificationperiodsintheMactaquacHeadPond(HP)andSJR(RIV)–seealsoFigure1. Stratificationtime Non-StratificationtimeSite Min(ppt) Max(ppt) Average(ppt) Min(ppt) Max(ppt) Average(ppt)HP10 ---- --- --- 0.06 0.07 0.06HP9 0.04 0.11 0.08 0.05 0.06 0.06HP5 0.04 0.16 0.08 0.05 0.06 0.05HP4 0.04 0.20 0.11 0.05 0.06 0.06HP2 0.04 0.17 0.10 0.05 0.05 0.05HP1 --- --- --- 0.03 0.04 0.04RIV1 0.05 0.18 0.09 0.05 0.06 0.06RIV2 0.04 0.05 0.05 0.04 0.04 0.04RIV3 0.05 0.05 0.05 0.05 0.06 0.06RIV4 0.05 0.05 0.05 0.05 0.06 0.06

3.2. PHYTOPLANKTON

3.2.1. Biodiversity

Thetotalnumberofphytoplanktonspeciesrecordedwas341,including152Chlorophyta,62Bacillariophyta,82Cyanophyta,17Chrysophyta,14Cryptophyta,6Euglenophyta,4Rhodophyta,and4Dinophyta.Intheheadpond,therewere13(HP8)to185(HP4)species;thenumberofspeciesintheriverrangedfrom140(RIV2)to171(RIV4).In2016,weobserved288phytoplanktonspecies,ofwhichthevariationoftaxarichness,numberofcells,andH’andJindexeswasshownintheFigure2,3and4,andTable10.

Page 16: Mactaquac Aquatic Ecosystem Study Report Series 2016-044

MAES Report Series 2016-044

13|P a g e

Figure2.Variationofthespeciesnumberamongthecollectingsitesin2016.

Figure3.Thenumberofcells/m3estimatedamongthecollectingsitesof2016–alldata(leftpanel)andafterremovingtheoutliersatHP2.

Page 17: Mactaquac Aquatic Ecosystem Study Report Series 2016-044

MAES Report Series 2016-044

14|P a g e

Figure4.ThevariationsoftheH’andJ’indicesofdiversityamongthecollectingsitesin2016.Table10.Thetestingresults,usingOne-wayANOVAorKruskal-Wallistest,forthedifferenceofthetaxarichness,numberofcells,JandH’indexesbetweenHPandRIVhabitatsbasedonthe2016samples. Stratificationtime Non-stratificationtimeTaxarichness H=0.03,1d.f.,p>0.05 F1,14=4.64,p<0.05Numberofcells H=1.90,1d.f.,p>0.05 H=0.04,1d.f.,p>0.05Jindex H=8.56,1d.f.,p<0.05 H=3.19,1d.f.,p>0.05H’index H=6.45,1d.f.,p<0.05 H=4.42,1d.f.,p<0.05

3.2.2. Variationofphytoplankton

DifferentamongEpi-.Meta-,andhypo-limnion:NointeractionsweredetectedintheScheirer-Ray-HareTestbetweenthewaterlayersandsitesintermsofthetaxarichnessornumberofcells.Thetestalsorevealednosignificantdifferencesinthetaxarichnessorthenumberofcellsamongthewaterlayer.However,asignificantvariationwasrecordedintermofthenumberofcellsamongtheHPsites(Table11).

Page 18: Mactaquac Aquatic Ecosystem Study Report Series 2016-044

MAES Report Series 2016-044

15|P a g e

Table11.TheresultsoftheScheirer-Ray-HareTestforthedifferenceofthewaterlayers(Epi:Epilimnion,Meta:Metalimnion,Hypo:Hypolimnion)intheHPhabitatsbasedonsamplesfrom2016.

Scheirer-Ray-HareTestTaxarichness Layer:H=0.43,1d.f.,p>0.05 Site:H=0.31,1d.f.,p>0.05 Interaction:H=0.05,1d.f.,p>0.05Numberofcells Layer:H=2.53,1d.f.,p>0.05 Site:H=8.81,1d.f.,p<0.05 Interaction:H=0.03,1d.f.,p>0.05

PhytoplanktonvariationamongtheHPsites:EventheaboveScheirer-Ray-HareTestshowedthesignificantdifferenceamongsitesinthestratificationtime(Table11),furtherMann-Whitney-WilcoxonTestswiththeBonferronicorrection(αlevel=0.05/6=0.008)revealednosignificantvariationsamongtheHPsitesinstratificationtime.Similarly,duringnon-stratification,nosignificantdifferencesweredetected.Table12showsthemoredetailaboutthesetests.Table12.Theresultsofone-wayANOVAsandMann-Whitney-WilcoxontestswiththeBonferronicorrection(αlevel=0.008)forthedifferenceamongtheHPsites.

Stratificationtime Non-stratificationtime

Taxarichness F3,28=0.211,p>0.05 F3,4=0.14,p>0.05Numberofcells HP2-HP4:W=35,p>0.008 F3,4=0.64,p>0.05 HP2-HP5:W=27,p>0.008 HP2-HP9:W=34,p>0.008 HP4-HP5:W=18,p>0.008 HP4-HP9:W=32,p>0.008 HP5-HP9:W=32,p>0.008

Differentbetweensurfaceandbottomlayersinriverhabitats:BasedontheScheirer-Ray-HareTest,nosignificantinteractionsordifferenceswereobservedbetweensurfaceandbottomsamplesofthephytoplanktonintheriverlocations(Table13).

Page 19: Mactaquac Aquatic Ecosystem Study Report Series 2016-044

MAES Report Series 2016-044

16|P a g e

Table13.TheresultsoftheScheirer-Ray-HareTestforthedifferencebetweensurfaceandbottomintheriverhabitatssampledin2016.

Scheirer-Ray-HareTestTaxarichness Layer:H=0.10,1d.f.,p>0.05 Site:H=1.17,1d.f.,p>0.05 Interaction:H=0.00,1d.f.,p>0.05Numberofcells Layer:H=0.01,1d.f.,p>0.05 Site:H=1.17,1d.f.,p>0.05 Interaction:H=0.06,1d.f.,p>0.05

VariationalongtheRIV:NosignificantdifferenceswerefoundamongtheRIVsitesintermsofthetaxarichnessandthenumberofcellsfromtheaboveScheirer-Ray-HareTest(Table13).Thesameresultswererecordedduringthenon-stratificationtimeandshownintable14.Table14.One-wayANOVAresultsoftestingthevariationalongtheSJR.

Non-stratificationtimeTaxarichness F3,4=0.49,p=0.78Numberofcells F3,4=1.08,p=0.45

Influenceofthedamonriverplankton:Wefoundnosignificantdifferencesbetweenthetwosites,HP4andRIV1,inbothofstratificationandnon-stratificationperiodsintermsofthetaxarichnessandthenumberofcells.Table15providesmoredetails.However,regardingtothewholehabitatvariation,theresultfromANOSIManalysis(p<0.05)indicatedthattherewasasignificantdifferencebetweenHPandRIVphytoplanktonassemblages.Table15.TheresultsoftheOne-wayANOVAstestingthedifferencebetweentwosites,HP4andRIV1,in2016.

Stratificationtime Non-stratificationtimeTaxarichness F1,6=0.08,p>0.05 F1,2=0.18,p>0.05Numberofcells F1,6=4,24,p>0.05 F1,2=0.84,p>0.05

InDCAanalysis,asthevalueofthefirstaxislengthis<2(DCA1=1.84),weapplyRDAforthenextanalysis.WeremovetheenvironmentalparametersofDepth,SalandpHasthesearehighlycorrelatedwithotherparameters(r>0.6),theremainingparametersfortheRDAanalysisincludeTemp,Cond,DO,andTurbid.ThefirstthreeRDAaxescanexplain≈89.40%ofconstrainedvariancewhereasonly15.08%ofunconstrainedvarianceisexplainedbythesefirst

Page 20: Mactaquac Aquatic Ecosystem Study Report Series 2016-044

MAES Report Series 2016-044

17|P a g e

threeaxes.TheANOVAtestshows3significantresultsforTemp(F1,43=1.71,p<0.05),Cond(F1,43=2.47,p<0.05),andDO(F1,43=1.80,p<0.05)butTurbid(F1,43=1.42,p<0.05).TheRDAplotisillustratedinFigure5.

Figure5.PlotfortheRDAanalysisbetweenthephytoplanktoncommunitiesandfourselected

environmentalparameters(Cond=Conductivity,Temp=Temperature,DO=DissolvedOxygenandTurbid=Turbidity).

Page 21: Mactaquac Aquatic Ecosystem Study Report Series 2016-044

MAES Report Series 2016-044

18|P a g e

3.3. ZOOPLANKTON

3.3.1. Biodiversity

Thetotalspeciesnumberofzooplanktonrecordedinthestudiedarea=73,including2phyla,e.g.,Rotifera,43species(59%)andArthropoda,30species(41%).Thespeciesnumbersvaryfrom15(HP13)to46(HP4)intheHPsitesandfrom12(RIV3)to18(RIV1)intheRIVsites.

3.3.2. Variationofzooplankton

NosignificantresultsoftheANOSIMwerefoundforthezooplanktonassemblagesamongthelayers,e.g.,inHP:R=-0.38,p>0.05;inRIV:R=-0.19,p>0.05.Bycontrast,wefoundasignificantdifferencebetweenHPandRIVhabitatswithR=0.59,p<0.05.Figure6.PlotfortheRDAanalysisbetweenthezooplanktoncommunitiesandselected

environmentalparameters(Cond:Conductivity,Turbid:Turbidity,Temp:Temperature).

Page 22: Mactaquac Aquatic Ecosystem Study Report Series 2016-044

MAES Report Series 2016-044

19|P a g e

ThevaluesofthefirstDCAlengthis2.09,weapplyRDAforthefurthermultivariateanalysis.CorrelationanalysisshowedhighcorrelationsbetweenConductivityandSalinity(r>0.6);otherhighcorrelationswereDOwithbothTemperatureandTurbidity(r>0.6).Consequently,weremovebothDOandSal.ThefirstthreeRDAaxescanexplain94.30%ofconstrainedvarianceand56.25%unconstrainedvariance.ThetestofsignificanceshowsthatTemp(F1,12=3.32,p<0.05),Cond(F1,12=9.89,p<0.05)andpH(F1,12=4.23,p<0.05)contributesignificantlytotheexplanationofthezooplanktonvarianceintheRDAaxesbutDepthandTurbid(p>0.05).Figure6illustratestheRDAplotforthezooplankton.4. DISCUSSIONHeadPondandRiverEnvironments:Averagetemperaturesintheheadpondtendtobelowerthaninriversiteswhichreflectsthedeeperwater,layering/isolation,andinsolationeffectsintheheadpond.TheDOlevelsintheriverarehigherandmoreverticallystablethanthoseintheheadpond.Thisreflectsthemixing(flowingandshallowerwatercolumn).Theremainingparameterswereaswouldbeexpectedforreservoirandriverenvironments(e.g.,Watt1973;Watt&Duerden1974;Wetzel2001).Biodiversity:ThePlanktonCommunitiesThenumberofphytoplanktonspecies,about314species,washigherthanreportedintheearly1970s,i.e.,only128phytoplankton(Watt1973,1974).Amongthephytoplankton,weobservedanumberofcyanobacteriasomespecieswhichhavebeenlinkedtoharmfulblooms(Paerletal.2001).Forexample,thereisanapparentoutlierwiththenumberofthecellsrecordedatheadpondsiteHP2,theareawherewasrecordedanalgalbloomingaboutfiveyearsago(J.O’Keefe,NBEnvironment,pers.comm.),whichappearstobeapossiblebloomingofAphanocapsaholsatica.Thisspeciesfavorstothehabitatofshort,nutrientrichcolumns(Reynoldsetal.2002).Thenumberofthezooplanktonspeciesfoundinourstudyishigherthanreportedinthe1970s(Watt&Duerden1974)withasignificantsupplementofRotifers,whichwasexcludedinthe1970sresearch.Weobserved73speciesincomparisonto53speciesrevealedinthewholeSJRreportin1970s,ofwhichmorethan18speciescommonlyfoundinthestudiedarea.Wehaveyettocompletethefullzooplanktontaxonomyandabundanceanalyses,butalreadythenumberofspeciesandabundanceappearstohaveincreasedovertime.EffectsofStratificationInbothheadpondandriverhabitats,fullmixingofthewatercolumnwassuggestedbecausetheplanktondistributionisverticallyhomogenous.Similarly,duringthestratificationperiod,thethermaldifferenceofamongwaterlayerswasnotenoughtocausesignificantdifferencesofthephytoplanktoncommunitiesintermsofthetaxarichnessandnumberofcells.Wemightexpecta

Page 23: Mactaquac Aquatic Ecosystem Study Report Series 2016-044

MAES Report Series 2016-044

20|P a g e

significantdifferenceinzooplanktoncommunitiesinstratificationtimeintheHPwhenwatercolumnswerestronglycategorized.PlanktondistributionpatternsalongRIVandHPhabitatsInbothhabitats,thewatercolumnsarenotstatic;therearecontinuousmovementsofwaterwithinthetwohabitatsatmostofthesites,evenintheHP.Consequently,nosignificantdifferenceswerefoundintermsofthetaxarichnessandnumberofphytoplanktoncells.Zooplankton,ontheotherhand,mighthaveadifferentdistributionpatternandtheresultwillberevealedafterthecompletionoflaboratorywork.Theeffectofthereservoirontheriver:Thenon-significantresultsoftheANOVAtests(p>0.05)supportthehypothesisthatriverplanktoncommunityaremostlysupplementedbytheMactaquacGeneratingStation,atleastinthemainriverandwithin20kmofthedam.Nevertheless,theplanktoncommunitiesdependonthedistancefromthedamandphysicalconditionsofthelittoralzonesandbackwaters,e.g.,watervelocity,depth,andmacrophyteoccurrence(e.g.,Walks&Cyr2004).Normally,largeplanktonassemblagesoccurinimpoundmentswithlowerconcentrationsinlow-flowmarginsofrunningwaters,likeriversandstreams(e.g.,Rojoetal.1994).Onceintheriver,theriverineplanktonrelyonotherphysicalfactors,e.g.,watervelocityandwaterturbidityinfluencingUVpermeation.Additionally,Jones(2010)foundaspatialrelationshipbetweenthedistanceofaplanktoncommunityfromthereservoirandthereservoirsinfluenceonthatpopulation,i.e.communitiesfurtherdownstreamofareservoirarelessinfluencedthanthoseproximaltothereservoir.Additionally,theSJRisprovidedbyaplanktonsupplementtotheSJRfromtheKeswickRiver.Consequently,adifferentplanktonassemblageoftheRIVhabitattothatintheHPhabitatisestablishedpossiblyresultingfromthevariationofthephysiochemicalconditionsalongtheriverreachwestudied,fromtheMDtothecityofFredericton,coupledwiththeplanktoncontributionoftheKeswickRiver.Essentialenvironmentalparameters:Physiochemicalparametersplayanessentialroleincontrollingtheplanktondynamicsinfreshwaters(Wetzel2001).Inthestudiedarea,wefoundthesignificantimportanceoftheTemp,Cond,andDOwiththephytoplanktonpattern.However,theseparameterscontributeasmallpercentagetovarianceofthephytoplankton,suggestingthatotherfactorsmightplayanmoreimportantrole.WemightexpectmoresignificantresultswhenNitrogenandPhosphoruscomponentsareincludedintheRDAanalysisasinthefreshwater,phosphorusisthelimitinggrowthfactorandnitrogenistheessentialpartofthephytoplanktondynamicsandproductivity(Raven&Maberly2009;C.S.Reynolds2009).InvestigationsbyWatt(1972,1973)revealedsignificantcorrelationsbetweenphosphorousconcentrationandthemaximumphytoplanktonpopulationdensityaswellasthe%biomassofDinobryonsertulariaandD.bavaricumintheMH.Moreover,changesofthephytoplanktonalsoreplyonthedynamicsofzooplankton(Sterner

Page 24: Mactaquac Aquatic Ecosystem Study Report Series 2016-044

MAES Report Series 2016-044

21|P a g e

2009),wewilladdspeciesnumberandabundanceofzooplanktonastwoadditionalfactorsinfurtheranalysis.TheRDAanalysisrevealsthatthezooplanktonassemblagehasastrongassociationwithTemp,CondandpH.However,theresultmightbechangedasthisistheprimaryanalysisbasedononefieldworksampling.FurtherRDAwillbeappliedtothefulldatasetfrom2016fieldwork.Aszooplanktonfeedmostlyonthephytoplankton,anecologicalfactor,wecanseethosefactorsofthenumberofthephytoplanktonnaturalunitsorcells,andchlorophyll-a(Sterner2009),possiblyplayaroleonthedistributionpatternsofthezooplanktoncommunities.Additionally,depthmightalsohaveasignificantimpactonthemigrationabilityofthezooplanktonandcontributetothedistributionpatterns.Ongoinglaboratoryanalyses:Assomelaboratoryworkandanalysisareongoingandwillbecompletelaterin2017.o biovolumeestimationforphytoplankton.o taxonomyandnumerationofzooplanktonsamplescollectedin2016.o measurethepigmentconcentrations,i.e.,Chlorophyll-aandPhycocyanin.o determinethetrophicstatusofHPandSJRbasedonphytoplanktonbioindicatorsand

concentrationsofthenitrogenandphosphoruscomponents.o performfullstatisticalanalysisforzooplanktonrerunstatisticalanalysisforphytoplankton

inassociationwiththeecologicalfactors.5. ACKNOWLEDGEMENTSTheauthorswouldliketorecognizethefundingforthisprojectthatisreceivedfromNBPowerandNSERC’sCollaborativeResearchandDevelopmentprogramme(CRDPJ:462708-13).WealsothankTheorenEllis,JaimeLeavitt,StevePetetin,andCraigWallfortheirfieldandlaboratoryassistance.WeexpressourspecialthankstoPaulHamilton,PhycologicalCurator,CanadianMuseumofNaturalHistoryandProfessorDavidGarbary,SaintFrancisXavierUniversityfortheirhelpinverifyingalgaetaxonomyandintensivetrainingcourses.

Page 25: Mactaquac Aquatic Ecosystem Study Report Series 2016-044

MAES Report Series 2016-044

22|P a g e

6. REFERENCES

Andersen,Tom,&Hessen,DagO.(1991).Carbon,nitrogen,andphosphoruscontentoffreshwaterzooplankton.LimnologyandOceanography,36(4),807-814.

APHA.(2005).Standardmethodsfortheexaminationofwaterandwastewater.AmericanPublicHealthAssociation(APHA):Washington,DC,USA.

Arar,E.J.,&Collins,G.B.(1997).Method445.0InVitroDeterminationofChlorophyllaandPheophytinainMarineandFreshwaterAlgaebyFluorescence.Washington,DC:U.S.EnvironmentalProtectionAgency.

Aubé,CIsabelle,Locke,Andrea,&Klassen,GregJ.(2005).ZooplanktoncommunitiesofadammedestuaryintheBayofFundy,Canada.Hydrobiologia,548(1),127-139.

AWWA.(2010).Manual57-AlgaeSourcetoTreatment.Denver,Colorado,USA:AWWA(AmericanWaterWorksAssociation).

Baker,A.L.etal.(2012).Phycokey:AnimagebasedkeytoAlgae(PSProtista),Cyanobacteria,andotheraquaticobjects.2015,fromhttp://cfb.unh.edu/phycokey/phycokey.htm

Basu,BenK,Kalff,J,&Pinel-Alloul,B.(2000).TheinfluenceofmacrophytebedsonplanktoncommunitiesandtheirexportfromfluviallakesintheStLawrenceRiver.FreshwaterBiology,45(4),373-382.

Bellinger,EdwardG.,&Sigee,DavidC.(2010).FreshwaterAlgae:IdentificationandUseasBioindicators:Wiley-Blackwell.

Bellinger,EdwardG.,&Sigee,DavidC.(2015).FreshwaterAlgae:Identification,EnumerationandUseasBioindicators:Wiley-Blackwell.

Brandlova,J,Brandl,Z,&Fernando,CH.(1972).TheCladoceraofOntariowithremarksonsomespeciesanddistribution.CanadianJournalofZoology,50(11),1373-1403.

Burkholder,J.M.(2009).Harmfulalgalblooms.InG.E.Likens(Ed.),PlanktonofInlandWaters:AcademicPress.

Chateauvert,A.(2015).Methodpaper:SamplingPhysicalLimnologyandPlanktonintheMactaquacHeadPondMactaquacAquaticEcosystemStudyReportSeries2015-007(pp.5):CanadianRiversInstitute,UniversityofNewBrunswick.

Chengalath,R.(1971).TheplanktonicrotiferaofOntariowithkeystogeneraandspecies.Waterloo,Ontario:UniversityofWaterloo.

Cunjak,RichardA.,&Newbury,RobertW.(2005).AtlanticcoastriversofCanada.InA.C.Benke&C.E.Cushing(Eds.),RiversofNorthAmerica:ElsevierAcademicPress.

Downing,JohnA,&McCauley,Edward.(1992).Thenitrogen:phosphorusrelationshipinlakes.LimnologyandOceanography,37(5),936-945.

Draper,NormanRichard,&Smith,Harry.(1998).Appliedregressionanalysis(Vol.3):WileyNewYork.

Duerden,FrankC.(1973).ZooplanktonoftheSaintJohnRiverheadponds:areportpreparedfortheSaintJohnRiverBasinBoard.Frederiction:TheSaintJohnRiverBasinBoard.

Dytham,Calvin.(2011).Choosingandusingstatistics:abiologist'sguide:JohnWiley&Sons.Haney,J.F.etal.).An-Image-basedKeytotheZooplanktonofNorthAmerica,version5.0.

Retrieved12Nov2015,fromhttp://cfb.unh.edu/cfbkey/html/index.htmlHarris,Roger,Wiebe,Peter,Lenz,Jurgen,Skjoldal,Hein-Rune,&Huntley,Mark.(2000).ICES

zooplanktonmethodologymanual:Academicpress.

Page 26: Mactaquac Aquatic Ecosystem Study Report Series 2016-044

MAES Report Series 2016-044

23|P a g e

Jones,NicholasE.(2010).Incorporatinglakeswithintheriverdiscontinuum:longitudinalchangesinecologicalcharacteristicsinstream-lakenetworks.CanadianJournalofFisheriesandAquaticSciences,67(8),1350-1362.

Keen,Eric.(2013).Apracticaldesigner’sguidetomesozooplanktonnets.RetrievedMarch23,2016,fromhttp://acsweb.ucsd.edu/∼ekeen/resources/Choosing-a-Net.pdf

Krebs,CharlesJ.(1989).Ecologicalmethodology:Harper&RowNewYork.Krienitz,L.(2009).Algae(includingcyanobacteria):planktonicandattached.InG.E.Likens(Ed.),

Planktonofinlandwaters:AcademicPress.Lerback,Jory.(2013).OstracodaTaxonomicIndetificationGuide.NationalParkService,Denver,

Colorado:Geoscientists-In-the-Parksdocument-GUMO.Likens,GeneE.(2010).Planktonofinlandwaters:AcademicPress.Locke,Andrea,&Klassen,GregJ.(2010).Zooplankton(Rotifera,Cladoreca,Copepoda)ofthe

AtlanticMaritimeEcozone.InD.F.MacAlpine&I.M.Smith(Eds.),AssessmentofSpeciesDiversityintheAtlanticMaritimeEcozone(pp.333-369).Ottawa,Canada:NRCResearchPress.

Nuttall,PeterM.(1971).AguidetotheidentificationofthefreshwaterostracodaofOntariowithaprovisionalkeytothespecies.Waterloo,Ontario:UniversityofWaterloo.

Paerl,HansW,Fulton,RollandS,Moisander,PiaH,&Dyble,Julianne.(2001).Harmfulfreshwateralgalblooms,withanemphasisoncyanobacteria.TheScientificWorldJournal,1,76-113.

Prescott,G.W.(1964).Howtoknowthefresh-wateralgae;anillustratedkeyforidentifyingthemorecommonfresh-wateralgaetogenus,withhundredsofspeciesnamedandpicturedandwithnumerousaidsfortheirstudy.Dubuque,Iowa:BrownCo.

Prescott,G.W.(1980).Howtoknowthefreshwateralgae.Dubuque,Iowa:Wm.C.BrownCompanyPublishers.

Quinn,GerryP,&Keough,MichaelJ.(2002).Experimentaldesignanddataanalysisforbiologists:CambridgeUniversityPress.

Raven,J.A.,&Maberly,S.C.(2009).Phytoplanktonnutritionandrelatedmixotrophy.InG.E.Likens(Ed.),Planktonofinlandwaters:AcademicPress.

Reynolds,Huszar,Vera,Kruk,Carla,Naselli-Flores,Luigi,&Melo,Sergio.(2002).Towardsafunctionalclassificationofthefreshwaterphytoplankton.Journalofplanktonresearch,24(5),417-428.

Reynolds,C.S.(2009).PhytoplanktonPopulationDynamicsinNaturalEnvironments.InG.E.Likens(Ed.),Planktonofinlandwaters:AcademicPress.

Reynolds,CS.(2000).Hydroecologyofriverplankton:theroleofvariabilityinchannelflow.HydrologicalProcesses,14(16-17),3119-3132.

Rojo,Carmen,Cobelas,MAlvarez,&Arauzo,Mercedes.(1994).Anelementary,structuralanalysisofriverphytoplankton.Hydrobiologia,289(1-3),43-55.

Serediak,N.,&Huynh,M.(2011).AlgaeIdentification:Labguide:AgricultureandAgri-FoodCanada.

Smith,Kristin.(1978).AguidetothefreshwatercalanoidandcyclopoidcopepodcrustaceaofOntario.Waterloo,Ontario:UniversityofOntario.

Stemberger,RichardS.(1979).AguidetoRotifersoftheLaurentianGreatLakes.Ohio:UnitedStatesEnvironmentalProtectionAgency.

Sterner,R.W.(2009).Roleofzooplanktoninaquaticecosystems.InG.E.Likens(Ed.),PlanktonofInlandwaters:AcademicPress.

Suárez-Morales,E,&Reid,JW.(1998).Anupdatedlistofthefree-livingfreshwatercopepods(Crustacea)ofMexico.TheSouthwesternNaturalist,256-265.

Page 27: Mactaquac Aquatic Ecosystem Study Report Series 2016-044

MAES Report Series 2016-044

24|P a g e

Suthers,IainM.,&Rissik,David.(2009).Plankton:Aguidetotheirecologyandmonitoringforwaterquality.Australia:CSIROPublishing.

Thorp,JamesP.,&Covich,AlanP.(2001).EcologyandClassificationofNorthAmericanFreshwaterInvertebrates:AcademicPress.

Tu,Yu-Kang,Kellett,Margaret,Clerehugh,Val,&Gilthorpe,MarkS.(2005).Problemsofcorrelationsbetweenexplanatoryvariablesinmultipleregressionanalysesinthedentalliterature.Britishdentaljournal,199(7),457-461.

Utermöhl,H.(1958).ZurVervollkommnungderquantitativenPhytoplankton-Methodik.InternationalenVereinigungderTheoretischenundAngewandtenLimnologie,9,1-38.

Walks,DJ,&Cyr,H.(2004).Movementofplanktonthroughlake-streamsystems.FreshwaterBiology,49(6),745-759.

Watt,W.D.(1972).SummerHeadpondEcologyintheSaintJohnRiverBasin.NovaScotia:SaintJohnRiverBasinBoard.

Watt,W.D.(1973).AquaticEcologyofTheSaintJohnRiver(Vol.I).NovaScotia:TheSaintJohnRiverBasinBoard.

Watt,W.D.(1974).PhytoplanktonoftheSaintJohnRiverheadponds:areportpreparedfortheSaintJohnRiverBasinBoard.Fredericton:TheSaintJohnRiverBasinBoard.

Watt,W.D.,&Duerden,FrankC.(1974).AquaticecologyoftheSaintJohnRiver(Vol.II).NovaScotia:SaintJohnRiverBasinBoard.

Weber,C.I.(1973).Biologicalfieldandlaboratorymethodsformeasuringthequalityofsurfacewatersandeffluents.Ohio:NationalEnvironmentalResearchCenter.

Wehr,JohnD.,&Sheath,RobertG.(2003).FreshwaterAlgaeofNorthAmericaEcologyandClassification:AcademicPress.

Wetzel,RobertG.(2001).Limnology:lakeandriverecosystems:GulfProfessionalPublishing.Williamson,C.E.,&Reid,J.W.(2010).Copepoda.InG.E.Likens(Ed.),Planktonofinlandwaters:

Academicpress.Witty,LynneM.(2004).Practicalguidetoidentifyingfreshwatercrustaceanzooplankton:

CooperativeFreshwaterEcology.