Maa-57.2040 Kaukokartoituksen yleiskurssi General Remote Sensing Image enhancement II

53
Maa-57.2040 Kaukokartoituksen yleiskurssi General Remote Sensing Image enhancement II Autumn 2007 Markus Törmä [email protected]

description

Maa-57.2040 Kaukokartoituksen yleiskurssi General Remote Sensing Image enhancement II. Autumn 2007 Markus Törmä [email protected]. Image indexes. Idea is to combine different channels from multispectral image so that desired feature is enhanced ratio, difference or combination of these - PowerPoint PPT Presentation

Transcript of Maa-57.2040 Kaukokartoituksen yleiskurssi General Remote Sensing Image enhancement II

Page 1: Maa-57.2040  Kaukokartoituksen yleiskurssi General Remote Sensing Image enhancement II

Maa-57.2040 Kaukokartoituksen yleiskurssi

General Remote Sensing

Image enhancement II

Autumn 2007

Markus Törmä

[email protected]

Page 2: Maa-57.2040  Kaukokartoituksen yleiskurssi General Remote Sensing Image enhancement II

Image indexes

• Idea is to combine different channels from multispectral image so that desired feature is enhanced– ratio, difference or combination of these– larger value, feature is more present

• It is useful to know spectral characteristics of different material when developing index

• Vegetation indexes most important group

Page 3: Maa-57.2040  Kaukokartoituksen yleiskurssi General Remote Sensing Image enhancement II

Spectra taken from ASTER Spectral Library

Page 4: Maa-57.2040  Kaukokartoituksen yleiskurssi General Remote Sensing Image enhancement II

Vegetation index

• Vegetation index is a number that is– generated by some combination of remote

sensing bands and – may have some relationship to the amount

of vegetation in a given image pixel

• Vegetation indices are generally based on empirical evidence and not basic biology, chemistry or physics

• A FAQ on Vegetation in Remote Sensing http://hyperdaac.webthing.com/html/rsvegfaq.txt

Page 5: Maa-57.2040  Kaukokartoituksen yleiskurssi General Remote Sensing Image enhancement II

Basic assumptions made by the vegetation indices

• Some algebraic combination of remotely-sensed spectral bands can tell you something useful about vegetation

– There is fairly good empirical evidence that they can

• All bare soil in an image will form a line in spectral space– This line is considered to be the line of zero vegetation

• Isovegetation lines: lines of equal vegetation1. All isovegetation lines converge at a single point

– Measure the slope of the line between the point of convergence and the red-NIR point of the pixel

– E.g. NDVI, SAVI, and RVI

2. All isovegetation lines remain parallel to soil line

– Measure the perpendicular distance from the soil line to the red-NIR point of the pixel

– E.g. PVI, WDVI, and DVI

Page 6: Maa-57.2040  Kaukokartoituksen yleiskurssi General Remote Sensing Image enhancement II

RVI (ratio vegetation index)• RVI = NIR / PUN• values: 0 - inf

Page 7: Maa-57.2040  Kaukokartoituksen yleiskurssi General Remote Sensing Image enhancement II

NDVI: Normalized Difference Vegetation Index

• NDVI = (NIR-PUN)/(NIR+PUN)

• values: -1 - +1• most used and

well-known• water: low

(negative) values• forest 0.5-0.8• open land 0.5-0.6

Page 8: Maa-57.2040  Kaukokartoituksen yleiskurssi General Remote Sensing Image enhancement II

NDVI

• April 19• Clouds: grey• Areas with

chlorophyll: white• Snow in Lapland: dark

grey• Water: black

Page 9: Maa-57.2040  Kaukokartoituksen yleiskurssi General Remote Sensing Image enhancement II

NDVI

Page 10: Maa-57.2040  Kaukokartoituksen yleiskurssi General Remote Sensing Image enhancement II

IPVI: Infrared Percentage Vegetation Index:

• IPVI = NIR/(NIR+PUN)

• values: 0 - +1

Page 11: Maa-57.2040  Kaukokartoituksen yleiskurssi General Remote Sensing Image enhancement II

Some more

• Difference Vegetation Index (DVI):

DVI = NIR - PUN

values: -max(PUN) - max(NIR)

• Transformed Vegetation Index (TVI):

TVI = ((NIR-PUN)/(NIR+PUN)+0.5)0.5 x

100

Page 12: Maa-57.2040  Kaukokartoituksen yleiskurssi General Remote Sensing Image enhancement II

Soil line

• Line in spectral space– describes the variation

of bare soil in the image

• Line can be found by locating two or more patches of bare soil in the image having different reflectivities and finding the best fit line in spectral space

Page 13: Maa-57.2040  Kaukokartoituksen yleiskurssi General Remote Sensing Image enhancement II

Vegetation index• Some vegetation indices use information about soil line• Perpendicular Vegetation Index

PVI = sin(a)NIR-cos(a)red

– a is the angle between the soil line and the NIR axis

• Weighted Difference Vegetation Index

WDVI = NIR-g*red

– g is the slope of the soil line

Page 14: Maa-57.2040  Kaukokartoituksen yleiskurssi General Remote Sensing Image enhancement II

Vegetation index

• Some vegetation indices try to minimize soil noise– All of the vegetation indices assume that there is a single soil

line

– However, it is often the case that there are soils with different red-NIR slopes in a single image

– Changes in soil moisture change index value

– Problem of soil noise is most acute when vegetation cover is low

• Soil Adjusted Vegetation Index

SAVI = (( NIR-red )/(NIR+red+L))(1+L)– L is a correction factor which ranges from 0 (high vegetation

cover) to 1 (low cover)

Page 15: Maa-57.2040  Kaukokartoituksen yleiskurssi General Remote Sensing Image enhancement II

Normalized Difference Moisture Index• NDMI = ( NIR - MIR ) / ( NIR + MIR )

– E.g. ( ETM4 - ETM5 ) / ( ETM4 + ETM5 )

Page 16: Maa-57.2040  Kaukokartoituksen yleiskurssi General Remote Sensing Image enhancement II

Normalized Difference Snow Index• NDSI = ( GREEN – MIR ) / GREEN + MIR )

– E.g. ( ETM2 – ETM5 ) / ( ETM2 + ETM5 )

Page 17: Maa-57.2040  Kaukokartoituksen yleiskurssi General Remote Sensing Image enhancement II

Spectral Indices Disadvantages

• Not physically-based– Empirical Relations– Correlation not Causality– NDVI vs. Tourism in Italy

• Only small amount of spectral information used– Rarely simple relationship between variable

and index

Page 18: Maa-57.2040  Kaukokartoituksen yleiskurssi General Remote Sensing Image enhancement II

Difference in vegetation indexes:difference in vegetation

• Compute vegetation indexes for images taken at different times– Simple way to characterize changes in

vegetation

Page 19: Maa-57.2040  Kaukokartoituksen yleiskurssi General Remote Sensing Image enhancement II
Page 20: Maa-57.2040  Kaukokartoituksen yleiskurssi General Remote Sensing Image enhancement II
Page 21: Maa-57.2040  Kaukokartoituksen yleiskurssi General Remote Sensing Image enhancement II
Page 22: Maa-57.2040  Kaukokartoituksen yleiskurssi General Remote Sensing Image enhancement II

Tasseled cap transform

• Linear transform for multispectral images

• Multispectral image is tarnsformed to images describing some scene property– brightness– greenness– moisture – haze

• Originally developed for Landsat MSS, then TM, ETM and other instruments

Page 23: Maa-57.2040  Kaukokartoituksen yleiskurssi General Remote Sensing Image enhancement II

Tasseled cap transform

• Kauth and Thomas noticed that growing cycle of crop– started from bare soil– then to green vegetation

and – then to crop maturation

with crops turning yellow

http://www.cnr.berkeley.edu/~gong/textbook/chapter6/html/sect65.htm

Page 24: Maa-57.2040  Kaukokartoituksen yleiskurssi General Remote Sensing Image enhancement II

Tasseled cap transform

• They developed linear transformation to characterize that

• Landsat MSS: – Redness (soil)– Greenness

(vegetation)– Yellowness– Noise

http://www.cnr.berkeley.edu/~gong/textbook/chapter6/html/sect65.htm

Page 25: Maa-57.2040  Kaukokartoituksen yleiskurssi General Remote Sensing Image enhancement II

Tasseled Cap (Landsat-7 ETM)

• ETM-image should be converted to radiances• Brightness = 0.3561 * Ch1 + 0.3972 * Ch2 + 0.3904 *

Ch3 + 0.6966 * Ch4 + 0.2286 * Ch5 + 0.1595 * Ch7

- Corresponds to soil reflectance

• Greenness = -0.3344 * Ch1 - 0.3544 * Ch2 - 0.4556 * Ch3 + 0.6966 * Ch4 - 0.0242 * Ch5 - 0.2630 * Ch7

- Amount of vegetation

• Moisture= 0.2626 * Ch1 + 0.2141 * Ch2 + 0.0926 * Ch3 + 0.0656 * Ch4 - 0.7629 * Ch5 - 0.5388 * Ch7

- Soil and vegetation moisture

Page 26: Maa-57.2040  Kaukokartoituksen yleiskurssi General Remote Sensing Image enhancement II

Brightness

Page 27: Maa-57.2040  Kaukokartoituksen yleiskurssi General Remote Sensing Image enhancement II

Greenness

Page 28: Maa-57.2040  Kaukokartoituksen yleiskurssi General Remote Sensing Image enhancement II

Moisture

Page 29: Maa-57.2040  Kaukokartoituksen yleiskurssi General Remote Sensing Image enhancement II

R: brightnessG: greennessB: moisture

Page 30: Maa-57.2040  Kaukokartoituksen yleiskurssi General Remote Sensing Image enhancement II

Karhunen -Löwe transform

• Aim is to decrease number of channels and preserve information

• Idea: remove correlations between channels– same information in different channels

• E.g.: TM-image, 6 channels transformed image, 3 channels

Page 31: Maa-57.2040  Kaukokartoituksen yleiskurssi General Remote Sensing Image enhancement II

Karhunen -Löwe transform

• y = A * x

• x original pixels

• y transformed pixels

• A transformation matrix

• Transformation matrix compresses information to less number of channels than originally

Page 32: Maa-57.2040  Kaukokartoituksen yleiskurssi General Remote Sensing Image enhancement II

Karhunen-Löwe muunnos

• Different transformation matrices:– Principal component analysis / transformation:

variance of data is maximized– Canonical correlation: maximize class

separability

• Based on turning of coordinate system according to largest variance

Page 33: Maa-57.2040  Kaukokartoituksen yleiskurssi General Remote Sensing Image enhancement II

Principal Component Analysis

• PCA: Principal Component Analysis

• Mean vector of data

• Covariance matrix of data– describes the variance of data according to

different coordinate axis

• Hypothesis:– large variance much information

Page 34: Maa-57.2040  Kaukokartoituksen yleiskurssi General Remote Sensing Image enhancement II

Principal Component Analysis

Channel 2

Channel 1

1. PC

Page 35: Maa-57.2040  Kaukokartoituksen yleiskurssi General Remote Sensing Image enhancement II

Principal Component Analysis

• Landsat ETM:6 channel, 6-dimensional space

• Usually 3 first principal component as computed

Page 36: Maa-57.2040  Kaukokartoituksen yleiskurssi General Remote Sensing Image enhancement II

PCA example 1• Porvoo: Landsat ETM 743 and PCA 123• Principal component images have been computed from all

ETM-channels

Page 37: Maa-57.2040  Kaukokartoituksen yleiskurssi General Remote Sensing Image enhancement II

PCA example 1• Landsat ETM 743 and PCA 1

Page 38: Maa-57.2040  Kaukokartoituksen yleiskurssi General Remote Sensing Image enhancement II

PCA example 1• Landsat ETM 743 and PCA 2

Page 39: Maa-57.2040  Kaukokartoituksen yleiskurssi General Remote Sensing Image enhancement II

PCA example 1• Landsat ETM 743 and PCA 3

Page 40: Maa-57.2040  Kaukokartoituksen yleiskurssi General Remote Sensing Image enhancement II

PCA example 1• Landsat ETM 743 and PCA 4

Page 41: Maa-57.2040  Kaukokartoituksen yleiskurssi General Remote Sensing Image enhancement II

PCA example 1• Landsat ETM 743 and PCA 5

Page 42: Maa-57.2040  Kaukokartoituksen yleiskurssi General Remote Sensing Image enhancement II

PCA example 1• Landsat ETM 743 and PCA 6

Page 43: Maa-57.2040  Kaukokartoituksen yleiskurssi General Remote Sensing Image enhancement II

PCA example

• Proportion of variances of different principal component images 1. 73 %

2. 19 %

3. 3 %

4. 0.7 %

5. 0.3 %

6. 0.2 %

• Three first: about 99% information

Page 44: Maa-57.2040  Kaukokartoituksen yleiskurssi General Remote Sensing Image enhancement II
Page 45: Maa-57.2040  Kaukokartoituksen yleiskurssi General Remote Sensing Image enhancement II

Decorrelation strecth

• Image enhancement method

1. Make PCA-images

2. PCA-images are scaled (streched) so that their variance is equal to variance of first PCA-image

3. Make inverse PCA, i.e. return to original image-space

Page 46: Maa-57.2040  Kaukokartoituksen yleiskurssi General Remote Sensing Image enhancement II
Page 47: Maa-57.2040  Kaukokartoituksen yleiskurssi General Remote Sensing Image enhancement II

Data fusion: Spatial resolution enhancement

• Generally:– Good spatial resolution bad spectral or radiometric

resolution

– Bad spatial resolution good spectral or radiometric resolution

• For example: – Spot-5 PAN: 5m, 0.48 - 0.71 µm

– Spot-5 XS: 10m, Green: 0.50 – 0.59 µm, red: 0.61 – 0.68 µm, NIR: 0.78 – 0.89 µm, 20m, SWIR: 1.58 – 1.75 µm

Page 48: Maa-57.2040  Kaukokartoituksen yleiskurssi General Remote Sensing Image enhancement II

Spatial resolution enhancement• Sköldvik Landsat ETM 342 and PAN

Page 49: Maa-57.2040  Kaukokartoituksen yleiskurssi General Remote Sensing Image enhancement II

Spatial resolution enhancement• Sköldvik Landsat ETM 342 and PAN- ja XS-average image

Page 50: Maa-57.2040  Kaukokartoituksen yleiskurssi General Remote Sensing Image enhancement II

Spatial resolution enhancement• Sköldvik Landsat ETM 342 and data fusion by principal

component method

Page 51: Maa-57.2040  Kaukokartoituksen yleiskurssi General Remote Sensing Image enhancement II

Examples of processing chains

Finnish IMAGE2000 for Corine 2000 Land Cover Classification

NAPS/AKO at Finnish Environment Institute

Page 52: Maa-57.2040  Kaukokartoituksen yleiskurssi General Remote Sensing Image enhancement II

Processing of Finnish IMAGE2000

• 36 Landsat ETM-images

•Orthocorrection by Metria Sweden

•25 m pixel size

•Average RMSE error of test points 12.9 m

• Cloud and shadow masking by visual interpretation

• Atmospheric correction using VTT-SMAC

• Topographic correction in Northern Finland

• Mosaicking according to vegetation zones

Page 53: Maa-57.2040  Kaukokartoituksen yleiskurssi General Remote Sensing Image enhancement II

Production line for EO data (MODIS, NOAA AVHRR)

Algorithm & Cloud masking End-product

Data delivery-WWW

-Map user interface

-numerical data

Product calculation & data delivery (SYKE)

water protectionwatershed researchclimate change research

forest industry

tourism

citizens

hydropower industry

runoff forecasts

End users

Dat

a

Image processing:

1. Unpacking

2. Radiometric calibration and atmospheric correction

3. Geometric correction

Data in usable form for the algorithms

Automated processing system (SYKE)

EO-data distributer (FMI, K-Sat, …) D

ata

FTP-box Archieving