M. Reinelt, K. Schmid, K. Krieger SEWG High-Z Ljubljana 01.10.2009 Max-Planck-Institut für...

28
M. Reinelt, K. Schmid, K. Krieger WG High-Z Ljubljana 01.10.200 Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany Extended grid DIVIMP erosion deposition modelling

Transcript of M. Reinelt, K. Schmid, K. Krieger SEWG High-Z Ljubljana 01.10.2009 Max-Planck-Institut für...

Page 1: M. Reinelt, K. Schmid, K. Krieger SEWG High-Z Ljubljana 01.10.2009 Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

M. Reinelt, K. Schmid, K. Krieger

SEWG High-Z Ljubljana 01.10.2009

Max-Planck-Institut für PlasmaphysikEURATOM Association, Garching b. München, Germany

Extended grid DIVIMP erosion deposition modelling

Page 2: M. Reinelt, K. Schmid, K. Krieger SEWG High-Z Ljubljana 01.10.2009 Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

Outline

Question:Steady state surface composition of the ITER first wall ?

Our conceptual approach & strategy

Standard and extended grids for DIVIMP

Modeling of material mixing Modeling of plasma impurity generation Modeling of chemical phase formations

"Work in progress"

Question:Steady state surface composition of the ITER first wall ?

Our conceptual approach & strategy

Standard and extended grids for DIVIMP

Modeling of material mixing Modeling of plasma impurity generation Modeling of chemical phase formations

"Work in progress"

Page 3: M. Reinelt, K. Schmid, K. Krieger SEWG High-Z Ljubljana 01.10.2009 Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

Motivation

What are the steady state surface concentrations of the ITER first wall ?

Initial surface composition

Initial surface composition

Plasma impurityconcentration

Plasma impurityconcentration

Erosion by hydrogen

Bulk material

Bulk material

Temperature

Re-deposition

Erosion by impuritiesand self sputtering

Deposition

Plasma transport

Sublimation Diffusion

Phase formations

Layer growth

Dynamic surface composition

Dynamic surface composition

Steady state surface:Total flux balance

Steady state surface:Total flux balance

Page 4: M. Reinelt, K. Schmid, K. Krieger SEWG High-Z Ljubljana 01.10.2009 Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

Simplifications

Assumption 1: Plasma transport is instantaneous

Erosion by hydrogen

Re-deposition

Erosion by impuritiesand self sputtering

Deposition

INSTANTPlasma transport

Sublimation

Dynamic surface composition

Dynamic surface composition

Bulk material

Bulk material

Temperature

Diffusion

Phase formations

Layer growth

Page 5: M. Reinelt, K. Schmid, K. Krieger SEWG High-Z Ljubljana 01.10.2009 Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

Simplifications

Erosion by hydrogen Temperature

Re-deposition

Erosion by impuritiesand self sputtering

Deposition

INSTANTPlasma transport

Sublimation Diffusion

Phase formations

Layer growth

CONSTANTbulk composition

Dynamic surface composition

Dynamic surface composition

Assumption 1: Plasma transport is instantaneousAssumption 2: Bulk composition is constant

All processes depend primarily on the concentrations in the near surface region.

All processes depend primarily on the concentrations in the near surface region.

Page 6: M. Reinelt, K. Schmid, K. Krieger SEWG High-Z Ljubljana 01.10.2009 Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

Conceptual approach

DIVIMPDIVIMP

Plasma transport ofimpurities

Expected results:

* Steady state wall concentrations & erosion fluxes* Plasma impurity concentrations

Benchmark results with JET experiments Extrapolate to ITER

ERODEPDIF:Flux balances

ERODEPDIF:Flux balances

Background plasma

OEDGE(OSM)

OEDGE(OSM)

SOLPS(B2+Eirene)

SOLPS(B2+Eirene)

CARRE,recent codes

CARRE,recent codes

Grid

• Diffusion• Sublimation• Chemical phase formation

Impurity generation

SDTrimSDTrim

Materials properties

Materials properties

Page 7: M. Reinelt, K. Schmid, K. Krieger SEWG High-Z Ljubljana 01.10.2009 Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

Conceptual approach

DIVIMPDIVIMP

Plasma transport ofimpurities

ERODEPDIF:Flux balances

ERODEPDIF:Flux balances

Background plasma

OEDGE(OSM)

OEDGE(OSM)

SOLPS(B2+Eirene)

SOLPS(B2+Eirene)

CARRE,recent codes

CARRE,recent codes

Grid

• Diffusion• Sublimation• Chemical phase formation

Impurity generation

SDTrimSDTrim

Materials properties

Materials properties

Page 8: M. Reinelt, K. Schmid, K. Krieger SEWG High-Z Ljubljana 01.10.2009 Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

Conceptual approach

DIVIMPDIVIMP

Plasma transport ofimpurities

ERODEPDIF:Flux balances

ERODEPDIF:Flux balances

Background plasma

OEDGE(OSM)

OEDGE(OSM)

SOLPS(B2+Eirene)

SOLPS(B2+Eirene)

CARRE,recent codes

CARRE,recent codes

Grid

• Diffusion• Sublimation• Chemical phase formation

Impurity generation

SDTrimSDTrim

Materials properties

Materials properties

Page 9: M. Reinelt, K. Schmid, K. Krieger SEWG High-Z Ljubljana 01.10.2009 Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

Extended grid (EG)

JET SG(Standard grid)

JET SG(Standard grid)

JET EG [1](Extended grid)

JET EG [1](Extended grid)

[1] By S. Lisgo

Page 10: M. Reinelt, K. Schmid, K. Krieger SEWG High-Z Ljubljana 01.10.2009 Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

Extended grid (EG)

... to be filled with plasma

Page 11: M. Reinelt, K. Schmid, K. Krieger SEWG High-Z Ljubljana 01.10.2009 Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

Conceptual approach

DIVIMPDIVIMP

Plasma transport ofimpurities

ERODEPDIF:Flux balances

ERODEPDIF:Flux balances

Background plasma

OEDGE(OSM)

OEDGE(OSM)

SOLPS(B2+Eirene)

SOLPS(B2+Eirene)

CARRE,recent codes

CARRE,recent codes

Grid

• Diffusion• Sublimation• Chemical phase formation

Impurity generation

SDTrimSDTrim

Materials properties

Materials properties

Material mixing model

Page 12: M. Reinelt, K. Schmid, K. Krieger SEWG High-Z Ljubljana 01.10.2009 Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

Material mixing

Plasma

Each tile receives a flux due to erosion & re-deposition from other tilesPlasma transport is characterized by a re-deposition matrix:

i on tile up ends that j tilefrom melement offlux eroded ofFraction , mjir

Flux of material m on tile i:

n

j

mji

Dj

mj

mjm

i rYxN

tt

1,

Result: Set of n coupled differential / algebraic equationsResult: Set of n coupled differential / algebraic equations

Concept: The first wall is divided into n tilesConcept: The first wall is divided into n tiles

Page 13: M. Reinelt, K. Schmid, K. Krieger SEWG High-Z Ljubljana 01.10.2009 Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

Mixed material formation

Plasma

BulkReactionzone

Backgroundplasma

Concept: Each tile is composed of a thin reaction zone and a bulk materialConcept: Each tile is composed of a thin reaction zone and a bulk material

Allows layer growth and erosion, sublimation and simplified chemistry. No diffusion!Allows layer growth and erosion, sublimation and simplified chemistry. No diffusion!

* Constant thickness Collision cascades:

< 50 nm* Variable composition

* Constant source / sink

* Constant composition

Page 14: M. Reinelt, K. Schmid, K. Krieger SEWG High-Z Ljubljana 01.10.2009 Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

Mixed material formation

Bulk

For n-tiles and k-chemical phases: kn coupled differential equationsFirst tests with Mathematica: Works for >1000 coupled equations

For n-tiles and k-chemical phases: kn coupled differential equationsFirst tests with Mathematica: Works for >1000 coupled equations

dσX / dt =

Plasma

+Influx (by re-deposition matrix)

– Erosion flux (by hydrogen and impurities)

– Flux of sublimation (from vapor pressure of the chemical phase)

± Balancing flux (with bulk material)

k Chemical phases or elements [X] [Y] [Z] ...

Chemical reactions

+Flux of formation reactions (X is Product)

– Flux of dissociation reactions (X is Reactant)

Concept: Each tile is composed of a thin reaction zone and a bulk materialConcept: Each tile is composed of a thin reaction zone and a bulk material

Page 15: M. Reinelt, K. Schmid, K. Krieger SEWG High-Z Ljubljana 01.10.2009 Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

Prove-Of-Principle (w/o chemical reactions)

10 20 30 40 50 60 70

10

20

30

40

50

60

70

Destination bin

So

urc

e b

in

1.00E-4

6.31E-4

3.98E-3

2.51E-2

1.58E-1

1.00E0

Flux fraction (LOG scale)

BeTotal

Numerical solution for 69 tiles, re-deposition matrix and C wall + Be evaporationNumerical solution for 69 tiles, re-deposition matrix and C wall + Be evaporation

Initial Be coverage Re-deposition of Be

Page 16: M. Reinelt, K. Schmid, K. Krieger SEWG High-Z Ljubljana 01.10.2009 Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

Prove-Of-Principle (w/o chemical reactions)

10 20 30 40 50 60 70

10

20

30

40

50

60

70

Destination bin

So

urc

e b

in

1.00E-4

6.31E-4

3.98E-3

2.51E-2

1.58E-1

1.00E0

Flux fraction (LOG scale)

BeTotal

Numerical solution for 69 tiles, re-deposition matrix and C wall + Be evaporationNumerical solution for 69 tiles, re-deposition matrix and C wall + Be evaporation

Initial Be coverage Re-deposition of BeBe is covered by C

Page 17: M. Reinelt, K. Schmid, K. Krieger SEWG High-Z Ljubljana 01.10.2009 Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

Prove-Of-Principle (w/o chemical reactions)

Numerical solution for 69 tiles, re-deposition matrix and C wall + Be evaporationNumerical solution for 69 tiles, re-deposition matrix and C wall + Be evaporation

[Be

/ Ǻ2 ]

Time [s]

Tiles with Be at surface

Tiles with C at surface

All Be is covered by C

Page 18: M. Reinelt, K. Schmid, K. Krieger SEWG High-Z Ljubljana 01.10.2009 Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

Conceptual approach

DIVIMPDIVIMP

Plasma transport ofimpurities

ERODEPDIF:Flux balances

ERODEPDIF:Flux balances

Background plasma

OEDGE(OSM)

OEDGE(OSM)

SOLPS(B2+Eirene)

SOLPS(B2+Eirene)

CARRE,recent codes

CARRE,recent codes

Grid

• Diffusion• Sublimation• Chemical phase formation

Impurity generation

SDTrimSDTrim

Materials properties

Materials properties

Model of surface chemistry

Page 19: M. Reinelt, K. Schmid, K. Krieger SEWG High-Z Ljubljana 01.10.2009 Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

ITER first wall

HeHe BeBeWW

CC

OO

HH

NNElementsElements

Page 20: M. Reinelt, K. Schmid, K. Krieger SEWG High-Z Ljubljana 01.10.2009 Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

ITER first wall

HeHe

Nitrides:WNBe3N2

Nitrides:WNBe3N2

Hydrides:BeH2

CXHY

OH2

Hydrides:BeH2

CXHY

OH2

Carbides:WC, W2CBe2C

Carbides:WC, W2CBe2C

Beryllides:Be2W, Be12W

Beryllides:Be2W, Be12W

Oxides:WO3

BeOCO2

Oxides:WO3

BeOCO2

BeBeWW

CC

OO

HH

NNElementsElements

Binary phasesBinary phases

Page 21: M. Reinelt, K. Schmid, K. Krieger SEWG High-Z Ljubljana 01.10.2009 Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

ITER first wall

HeHe

Nitrides:WNBe3N2

Nitrides:WNBe3N2

Hydrides:BeH2

CXHY

OH2

Hydrides:BeH2

CXHY

OH2

Carbides:WC, W2CBe2C

Carbides:WC, W2CBe2C

Beryllides:Be2W, Be12W

Beryllides:Be2W, Be12W

Oxides:WO3

BeOCO2

Oxides:WO3

BeOCO2

BeBeWW

CC

OO

HH

NN

Tungstates:BeWO3, BeWO4

Hydroxides:Be(OH)2, W(OH)X

Tungstates:BeWO3, BeWO4

Hydroxides:Be(OH)2, W(OH)X

ElementsElements

Binary phasesBinary phases

Ternary phasesTernary phases

Page 22: M. Reinelt, K. Schmid, K. Krieger SEWG High-Z Ljubljana 01.10.2009 Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

Simplified description of ITERs first wall chemistry

Be W C Be2C W2C WC Be2W Be12WBegas BeO Oads

WO3 WO3,gas

Chemical phases

Chemical phases

2 Be + C → Be2CBe2C → 2 Be + CW + C → WCWC → W + C2 W + C → W2CW2C → 2 W + CW + 2 Be → Be2WBe2W → W + 2 BeW2C → WC + WWC + W → W2CBe + O → BeOBeO → Be + OW + 3 O → WO3

WO3 → W + 3 O

Sublimation:Be → Begas

WO3 → WO3,gas

O-Adsorption:O2,gas → Oads

Oads → O2,gas

Elementary reactions

Elementary reactions

sm

smk

kT

EkCW

4

2 11

121

1 withexp][][

ssmk

kT

EkCW 1

22

221

2 withexp][2

Equations for reaction fluxesEquations for reaction fluxes

...][

212

dt

CWd...22

][21

dt

Wd

Reaction balancesReaction balances

Change of areal density of chemical phase = + all formation reaction fluxes – all dissociation reaction fluxes

Couple to plasma transport code Couple to plasma transport code

Page 23: M. Reinelt, K. Schmid, K. Krieger SEWG High-Z Ljubljana 01.10.2009 Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

Benchmarking example: W/Be/O

XPS

XPS experimental data• 2.1 nm Be on • W (Substrate,pc)• 10-10 mbar O2

Layered system

XPS experimental data• 2.1 nm Be on • W (Substrate,pc)• 10-10 mbar O2

Layered system

Model

Model of coupled reaction equations

Elementary processes:• O adsorption• Be and W oxidation• BeO and WO3 dissociation• Be and WO3 sublimation• Be2W formation and dissociation

Not included: Depth profiles (Homogeneous distributed phases)

Model of coupled reaction equations

Elementary processes:• O adsorption• Be and W oxidation• BeO and WO3 dissociation• Be and WO3 sublimation• Be2W formation and dissociation

Not included: Depth profiles (Homogeneous distributed phases)

Page 24: M. Reinelt, K. Schmid, K. Krieger SEWG High-Z Ljubljana 01.10.2009 Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

SummarySet up a scalable model for JET (and ITER) that describes the first wall material evolution as a combination of:

+ Dynamic impurity generation (Parametrised TRIDYN)+ Plasma transport via a static background (DIVIMP)+ Some temperature dependent processes (Chemical phase formations, sublimation, directly benchmarked by XPS data)

Method: Numerical solution of a set of coupled algebraic differential equations (Mathematica)

Result: Time evolution of

Surface concentrations (incl. layer growth) Plasma impurity concentrations Erosion and re-erosion fluxes Benchmark the results with JET experiments

(e.g. post-mortem analysis of layers, spectroscopy of erosion fluxes)

Page 25: M. Reinelt, K. Schmid, K. Krieger SEWG High-Z Ljubljana 01.10.2009 Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.
Page 26: M. Reinelt, K. Schmid, K. Krieger SEWG High-Z Ljubljana 01.10.2009 Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

Erosion and re-erosion by impurities

Assumption: Individual sputteryields Yj of a mixture of elements scales linearily with the surface concentration

Assumption: Individual sputteryields Yj of a mixture of elements scales linearily with the surface concentration

Works well for Be / C but only fairly good for W / C, W / BeWorks well for Be / C but only fairly good for W / C, W / Be

0 200 400 600 800 10000.0

0.2

0.4

0.6

0.8

1.0

Be

su

rfa

ce

co

nc

en

tra

tio

n

Fluence (#/A2)

TRIDYN Analytical model

50 eV D + 100 eV Be on C(Precalculated Yields)

Page 27: M. Reinelt, K. Schmid, K. Krieger SEWG High-Z Ljubljana 01.10.2009 Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

10 20 30 40 50 60 70

10

20

30

40

50

60

70

Destination bin

So

urc

e b

in

1.00E-4

6.31E-4

3.98E-3

2.51E-2

1.58E-1

1.00E0

Flux fraction (LOG scale)

BeTotal

Re-deposition matrix (JET SG)

Promtre-deposition

... ... ...

Simple (unverified) OSM plasma background

Page 28: M. Reinelt, K. Schmid, K. Krieger SEWG High-Z Ljubljana 01.10.2009 Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

Re-deposition matrix by DIVIMP

2 3 4

-2

-1

0

1

2

Outer plasma grid cells Projection of the grid to the vessel wall Areas for homogeneous

impurity launch

Z [

m]

R [m]

Lauch flux of Be impurity ionsand map points of re-deposition (Charge resolved)

Re-deposition matrix, n ~ 70

static BGP

Bin

static BGP,standard grid