Lunch & Learn Hospitales Peru.pptx

download Lunch & Learn Hospitales Peru.pptx

of 102

Transcript of Lunch & Learn Hospitales Peru.pptx

Slide 1

Aplicacin de sistemas de generacin para Hospitales

Lima, Per, 19/03/20151This presentation is focused mainly about sizing generators, load attributes what goes into sizing generators. Many people dont realize the complexity of sizing generators. Two types of loads that get people into trouble when sizing: motor types loads(induction motor, compressors pumps, etc.) Linear loads, other types are Non-Linear load Temas a tratar:Dimensionamiento de grupos electrgenos de acuerdo a tipo de aplicacin y clasificacin en base a estndares ISO 8528Interpretacin y aplicacin de normas locales de cumplimento en temas acsticos. Ejemplos de estas normas en otros pases.Sincronizacin y conexin en paralelo de grupos electrgenos. Controles PowerCommand.Cumplimiento de normas de emisiones de gases de escape. Porque usar estndares de la EPA?Cumplimiento con estndares de fabricacin UL. Certificado.Normas de instalacin y cumplimiento IEC, NEC, NFPA.Tablero de Control DMC1000 sistemas de generacin..

Dimensionamiento de Grupos Electrgenos3This presentation is focused mainly about sizing generators, load attributes what goes into sizing generators. Many people dont realize the complexity of sizing generators. Two types of loads that get people into trouble when sizing: motor types loads(induction motor, compressors pumps, etc.) Linear loads, other types are Non-Linear load International Organization for Standardization (ISO, Organizacin internacional para la estandarizacin)La ISO 8528 es la norma para los grupos electrgenos de corriente alterna impulsados por motores de combustin interna recproca. La norma ISO 8528-1 (ISO8528-1:2005(E)) define la aplicacin, las clasificaciones y el funcionamiento de los equipos reguladores y del equipo auxiliar, el interruptor y el control asociados. Se aplica a motores encendidos por compresin (disel) y encendidos por chispa (propano y gas natural). La norma ISO 8528-5 define los criterios de funcionamiento de grupos electrgenos transitorios y estables.ISO 8528-1:2005 defines various classifications for the application, rating and performance of generating sets consisting of a Reciprocating Internal Combustion (RIC) engine, Alternating Current (a.c.) generator and any associated controlgear, switchgear and auxiliary equipment.It applies to a.c. generating sets driven by RIC engines for land and marine use excluding generating sets used on aircraft or to propel land vehicles and Iocomotives.For some specific applications (e.g. essential hospital supplies, high-rise buildings), supplementary requirements may be necessary. The provisions of ISO 8528-1:2005 should be regarded as the basis for establishing any supplementary requirements.For other reciprocating-type prime movers (e.g. sewage-gas engines, steam engines), the provisions of ISO 8528-1:2005 should be used as a basis for establishing these requirements.Generating sets meeting the requirements of ISO 8528-1:2005 are used to generate electrical power for continuous, peak-load and standby applications. The classifications laid down in ISO 8528-1:2005 are intended to help understanding between manufacturer and customer.

4La seccin 13 de la norma ISO 8528-1 define estas clasificaciones:Potencia auxiliar de emergencia (Emergency Standby power, ESP):Potencia principal de tiempo limitado (Limited Time Prime Power, LTP)Potencia principal de tiempo ilimitado (Unlimited Time Prime Power, PRP)Potencia operativa continua (Continuous Operating Power, COP)Cualquier fabricante puede ir ms all de las definiciones de las clasificaciones ISO

Definiciones5Qu significa su clasificacin del grupo electrgeno?(COP PRP LTP ESP)

Tiempo de ejecucin requerido (por ao)

Carga aplicada (variable o constante)

Garanta

Examinemos las clasificaciones disponibles

Definiciones de la norma ISO 8528

Potencia de emergencia (Stand By)Para suministrar potencia de emergencia durante una falla de la red elctrica

No debe exceder las 200 h/ao

Factor de carga promedio del 70% de la clasificacin auxiliar durante un perodo de 24horas

Operaciones de interrupcin del servicio no negociadast1...t1 + t2 + t3 + ...+tn = 24horas

Ao Productost2t3t4tn-1tn100%70%AVG (prome-dio)

AplicacinSistema de potencia auxiliar completamente integrado que contiene 7 grupos electrgenos C2000D6 controlados de manera individual en paralelo con el PCC3201.

Ubicacin: Instituto Samsung SDS en Suwon, Corea del SurEjemplo de aplicaciones de ESPEmergencia (como respaldo para las medidas de seguridad, cargas crticas o exigidas por ley) Auxiliar opcional (no exigida por la autoridad con jurisdiccin, pero conveniente para minimizar las prdidas econmicas o los daos al equipo en un sitio debido a interrupciones en la red elctrica).

Aplicacin3 unidades: 2 a 1250kW DQGAA y 1 a 1500 kW DQGAB Ubicacin: HOSPITAL Intermountain en Salt Lake City, Utah

Examples of Applications that use ESP Ratings:Emergency (such as backup to Life Safety, legally required or critical loads) Optional Standby (not required by the Authority Having Jurisdiction, but desired to minimize economic losses or equipment damages at a site due to utility power interruptions).

8t1t5Las 24 horas/los 365 das del ao Ao Productost2t3t4t6t770%100%Cantidad ilimitada de horas por ao (8760 h/ao menos el servicio)

Carga variable

No debe exceder un promedio del 70% de la clasificacin principal durante ningn perodo de funcionamiento de 24horas. Potencia principal (Prime tiempo ilimitado)AVG (prome-dio)

AplicacinGras Kone

Un generador de 500kVA alimenta las gras prtico portuarias sobre neumticos de caucho

La capacidad de levantamiento de las gras es de 88toneladas y pueden moverse a 440pies por minutoEjemplos de aplicaciones de PRPAplicaciones que usan la generacin en el sitio en lugar de un suministro de red pblica, normalmente donde la red elctrica no est disponibleNivelacin de picos y reduccin de tarifas Examples of Applications that use PRP Ratings:Applications that use onsite generation in lieu of a utility electricity supply, typically where utility power is not available.Peak Shaving and Rate Curtailment.

10t11 Ao Ao Productost1 Parada por programas deCantidad limitada de horas 500 h/ao

Carga invariable

Las aplicaciones no deben exceder el 100% de la clasificacin de potencia principal

Cualquier operacin que exceda las 500horas por ao debe usar la clasificacin de potencia continuaPotencia principal (Prime tiempo limitado)500h/ao mx.t1Ejemplos de aplicaciones de LRPCarga baseReduccin de Tarifas

Aplicacin9 unidades nominales principales C2000D6 Ubicacin: Santo Domingo, Repblica DominicanaExamples of Applications that use LTP Ratings:Base Loading, Rate Curtailment and Interruptible

12t1t11 Ao Ao Productost1 Parada por programas de mantenimientoCOP (8760 h/ao menos el servicio)

Aplicable para suministrar energa para servicios pblicos a una carga constante del 100% durante una cantidad ilimitada de horas por ao.

No hay capacidad de sobrecarga para este rango.Potencia continua

Ejemplos de aplicaciones de COPGeneralmente, el grupo electrgeno de clasificacin COP se usa cuando es paralelo al del servicio pblicoCarga baseCogeneracin de calor y potencia (Co-generation heat and power, CHP)Cogeneracin: Museo de Ciencia e Industria de ChicagoChicago Museum of Science and Industry United States Continuous is used in Co-gen because both heat and power is being used and the sets must run continuous for the heat source.14Ejemplo de clasificacin 2750kW DQLFClasificacin completaClasificacin completaClasificacin completaClasificacin completaCarga promedio mxima en 24horasCarga promedio mxima en 24horasCarga promedio mxima en 24horasCarga promedio mxima en 24horasClasificacin auxiliar 2750kW Carga promedio mxima en un perodo de 24horas (70%): 1925kW 200 h/ao Clasificacin de potencia principal de tiempo ilimitado 2500kWCarga promedio mxima en un perodo de 24horas (70%): 1750kWPotencia principal de tiempo limitado 2500kWCarga promedio mxima en un perodo de 24horas (100%): 2500kW500h/ao con carga invariablePotencia operativa continua 2100kWCarga promedio mxima en un perodo de 24horas (100%): 2100kWEjemplo de clasificacin 2750kW DQLFNote these are the ISO standards for the DQLF but Cummins allows up to 80% Avg. Load over 24 Hour period.16Dimensionamiento: Informacin requeridaCarga nominal a aplicarFrecuencia (50Hz/60 Hz)Voltaje nominalTemperatura ambiente y altitudCada de voltaje y de frecuencia especificadas (puede ser un factor importante en el tamao del grupo electrgeno)Parmetros de carga (Tipo y Comportamiento)Escalones obligatorios para cargar, cuando los hayaSoftware de dimensionamiento (Power Suite)Load Parameters to focus on: Starting Requirements, efficiency, load cycle, VFDs, etc. not just based on Utility bill of kW-hrs17kW (potenciaactiva)kVAR (potencia reactiva)kVA (potenciaaparente)Factor de potencia = kW/kVA: Cos = Adyacente/HipotenusaNota: La corriente siempre es proporcional a la POTENCIA APARENTEkVAR adicional (potencia reactiva)kVA adicional (potencia aparente)A medida que la potencia reactiva aumenta, la cantidad de potencia aparente tambin aumenta para proporcionar una cantidad de potencia activa (kW) dada; el factor de potencia disminuye. Going to be talking about active, reactive and apparent power and want to give an overview of what those terms mean.

Briefly explain PF for those not electrical. Describe how increase in reactive increases apparent power and also current to deliver the same kW.

Give example of Utilities charging for PF and additonal kVA will cost more. May require power factor correction capacitors18

Concepto de factor de potencia atrasado y adelantadoCargas inductivas: el factor de potencia est atrasado

Cargas capacitivas: el factor de potencia est adelantado

El efecto trmico de la corriente siempre es el mismo, ya sea que est atrasada o adelantadakW (potencia activa) kVAR (potencia reactiva)kVA (potencia aparente)kVA (potencia aparente)

Just discuss that there are two different kinds of pf. Then discuss there are limitations to the alternator and the operating chart is just an example and is talked about more in the advanced sizing presentation.19 CARGAS DEL FACTOR DE POTENCIA ADELANTADOFactor de potencia adelantado (CAPACITIVA), las cargas se realizan como: 1. Bancos de correccin del factor de potencia (capacitor) 2. Filtracin de carga no lineal (reduccin de la distorsin del voltaje de armnico, THD) CARGAS DEL FACTOR DE POTENCIA ATRASADOFactor de potencia atrasado (INDUCTIVO), las cargas son un producto de lo siguiente: 1. Motores, transformadores, calentadores por induccin (circuitos magnticos) 2. Cargas no lineales (suministros de potencia controlados electrnicamente) 3. Luces fluorescentes (NO corregidas por el factor de potencia)El generador debe funcionar dentro de los lmites de "REA SEGURA" para cargas de PF bajo.El "REA SEGURA" en los grficos proviene de la REACTANCIA SINCRNICA, (Xd), valores para cada generador.Estos lmites se definen por medio de un GRFICO DE FUNCIONAMIENTO DEL GENERADOR.El PF atrasado AUMENTA la corriente de excitacin del generador y la temperatura se eleva.El PF adelantado DISMINUYE la corriente de excitacin del generador y el AVR puede perder el control del voltaje del generador. EjemplosCarga del motorLos motores elctricos de CA representan cargas inductivas con factores de potencia atrasados. Diferentes tipos de motores tienen diferentes caractersticas de arranque. Las caractersticas de arranque pueden generar la necesidad de contar con un generador ms grande o ms pequeo.Arrancar un motor elctrico puede crear cadas de voltaje por encima del 40% si el grupo electrgeno no est correctamente dimensionado.

AC electric motors represent inductive loads with lagging power factors between 0.5 and 0.95, depending on size, type and loading.

Important to identify the types of motors being used because of the various starting characteristics. Starting characteristics may drive the need for a larger or smaller generator.

Starting current demand can range from four to ten times normal full load current during this period. That above normal current demand is called starting kVA (skVA) and often has great influence on generator selection. A motors starting characteristics have a major impact on system response to a motor start; this greatly influences the final generator set recommendation.

Starting an electric motor can create voltage dips in excess of 40% if the genset is not properly sized.

21Carga inductiva: kW vs. kVARLas cargas inductivas necesitan dos tipos de potencia para funcionar correctamente: Potencia activa (kW), que en realidad realiza el trabajoPotencia reactiva (kVAR), que mantiene los campos electromagnticosLos motores producen kW: controles de las tasas de combustibleLos alternadores generan kVAR: controles de excitacin

Demanda de kW segn la cargaDemanda de kVAR segn la cargakVA = cargakW = motorkVAR = alternadorPotencia aparente22Explain that loads demand kVA; engine provides kW (more fuel, more kW); alternator provides kVAR (more excitation, more kVAR).

Engine provides ALL the kW needed; alternator all the kVAR.

Consider an engine couple to a generator. Power delivered in the shaft of the engine can be converted to active power by alternator. Active power is consumed by load. The engine doesnt produce reactive power, the alternator does. Reactive power is used to magnetize inductive components of circuits (eg. Motors). Reactive power keeps circulating in the system without requiring active power from the engine. More Var More current increased sized and capacity of alternatorArrancadores suavesLimite la corriente de arranque al limitar la cantidad de torsin de arranque.Se debe considerar la distorsin de la corriente para las cargas no lineales.Ventajas: Menos esfuerzo mecnicoCorriente de arranque reducidaControl de velocidad activaDesventajas:Tamao y costo

23The soft start is designed to apply an adjustable voltage to the motor and increase this voltage gradually over a user-selectable acceleration period. The acceleration time being dependent on the application and desired characteristics. The added advantage of this method of reduced voltage control is that the motor can also be stopped gradually by slowly reducing the output voltage to the .Soft Stop feature offers a smooth stop in many process industries such as pumps, where fast stops can result in water hammer and mechanical damageAdvantagesReduced starting current Reduced starting torque Less mechanical stress Improved control of acceleration and deceleration Disadvantages

The major disadvantages are size and costArranque del motor: Reglas rpidasPodemos arrancar lo que podemos hacer funcionar (si la cada de voltaje es aceptable)Lmites de cada de voltaje estrechos grupo electrgeno ligeramente cargadoBomba de encendido 15% (Norteamrica)2KW por HP a tensin plena generalmente est BIENOptimice a 1kW por HPAplique las cargas en mltiples escalonesPrimero arranque grandes cargas de motorUse el mtodo de arranque alternativo (estrella-tringulo, de estado slido, tringulo-estrella, etc.)Analice las cargas cclicas

For Steps, use delays, PLCs, additional transfer switches, etc.

For Cyclic Loads its not always best to choose the load cycle on all motors unless it is possible for them to all cycle on an off at the exact time. Typically selecting 2 out of 4 depending on the situation can prevent the need to start be worried about multiple cyclic loads that will not all start at the same time.24Utilice mltiples interruptores de transferencia automtica (ATS) o alimentadores Conecte a la potencia el grupo electrgeno del comandoCarga primordialServicio400 amperiosATS Carga no primordial400 amperiosATSCarga de equipos400 amperiosATS231

25Recomendaciones de carga escalonadaAplique la carga en mltiples escalones:Cada escaln menos de 1/4 de carga nominalMltiples interruptores de transferenciaPermita la recuperacin entre los escalones (5 a 10 segundos)Primero arranque las cargas ms grandes (despus de las cargas crticas)Aplique mtodos de arranque alternativos: Arranque suave o VFDEntrada de la carga (nivelacin)Adds factors for wire length if necessary as significant voltage drops can occur on longer runs depending on current and wire size.26Especificaciones sugeridas de carga escalonadaCada de voltaje mxima permitida:20% a 35% dentro de la carga escalonada mxima (no potencia nominal del generador)Para cargas sensibles, colquelas en UPSEspecifique la capacidad de kVA de arranque mnima del motorCon la recuperacin de voltaje como mnimo al 90% de la potencia nominal durante el arranque (normas MG1 de NEMA)Excitacin por PMGMejore el rendimiento transitorioMejor respuesta ante cortocircuitoThese suggestion will help reduce the size of genset needed for application.

PMG as apposed to shunt as it has a permanent source of power for the AVR allowing better voltage regulation and no susceptibility to power fluctuations.27ResumenSeleccione la calificacin correcta del grupo electrgeno en funcin del perfil de carga y las horas de funcionamiento.Preste mucha atencin a los requisitos de arranque del motor.Aplique la carga de manera escalonada.Aplique primero los motores grandes.Utilice mtodos de arranque con voltaje reducido (con precaucin).Limite las cadas de voltaje y de frecuencia.Por ltimo, intente reducir el tamao del grupo electrgeno.

Apply Load in Increments

Apply Large Motor Loads First

Limit Voltage and Frequency dip

Ultimately reduce gen-set size

28Ruido!!!!29Como se mide el ruidoUna unidad de medicin del sonido es el decibel (dB). El decibel es un nmero conveniente en una escala logartmica que expresa la relacin de dos presiones de sonido, comparando la presin real con una presin de referencia.Las regulaciones del ruido generalmente se escriben en trminos de decibeles de escala A o dB(A). La A denota que la escala ha sido ajustada para aproximarla a cmo una persona percibe la intensidad del sonido. La intensidad depende en el nivel de presin del sonido (amplitud) y la frecuencia. Cummins ConfidentialComo se mide el ruidoEl nivel de sonido en un lugar dado es la suma de los niveles de ruido de todas las fuentes, incluyendo las fuentes reflejantes.Por ejemplo, el nivel de ruido en un punto en un campo libre equidistante de dos conjuntos generadores idnticos es el doble cuando ambos conjuntos estn operando. El doble de un nivel de ruido se representa como un aumento de aproximadamente 3 dB(A). En este caso, si el nivel de ruido de cualquier conjunto se mide como 90 dB(A), uno podra esperar medir 93 dB(A) cuando ambos conjuntos estn operando.Cummins ConfidentialNiveles de ruidoCummins Confidential

Atenuacin del sonido

Fuentes de sonidoRuido del motor100 a 110dB(A) a 1mRuido del ventilador de enfriamiento 100 a 105dB(A) a 1mRuido del alternador 80 a 90dB(A) a 1mRuido estructural/mecnicoVibracin, marchas, etc.Escape del motor sin silenciador 120 a 130dB(A) a 1m

34Notas sobre la atenuacin sonoraLas especificaciones tcnicas representan los datos "al aire libre"Las condiciones en el lugar y las estructuras circundantes cambian dramticamente la percepcin sonoraSea consciente del nivel Y de la frecuencia de los decibelesLas frecuencias ms altas se disipan ms rpidamenteLas frecuencias ms bajas se transportan distancias importantesLa ubicacin es la nica aliada o enemigaLos cdigos casi siempre se basan en la presin sonora percibida en una propiedadEsto debe tenerse en cuenta durante la etapa de diseo35Aumente la distancia desde el receptorLa presin sonora disminuye a ~6 dBA a 2x de distanciaInserte barreras de gran masa y absorcinGuas de ondas resonantes (especficas de la frecuencia)Tenga cuidado con las superficies de reflejoLa presin de sonido percibido aumenta 3dBA debido a una superficie de reflejo; 5dBA para dos superficies de reflejoDirija el ruido lejos de las ubicaciones sensibles Guas de flujo de descarga del radiadorCodos de descarga por extraccinEstrategias para atenuar el sonido36Something they can take away and use in their work.

Reglamento de Estndares Nacionales de Calidad Ambiental para RuidoDECRETO SUPREMO N 085-2003-PCMQue, los estndares de calidad ambiental del ruido son un instrumento de gestin ambiental prioritario para prevenir y planificar el control de la contaminacin sonora sobre la base de una estrategia destinada a proteger la salud, mejorar la competitividad del pas y promover el desarrollo sostenibleAlgunos conceptos:Decibel A (dBA): Unidad adimensional del nivel de presin sonora medido con el filtro de ponderacin A, que permite registrar dicho nivel de acuerdo al comportamiento de la audicin humana.Estndares Primarios de Calidad Ambiental para Ruido.- Son aquellos que consideran los niveles mximos de ruido en el ambiente exterior, los cuales no deben excederse a fin de proteger la salud humana. Dichos niveles corresponden a los valores de presin sonora continua equivalente con ponderacin A.Nivel de Presin Sonora Continuo Equivalente con ponderacin A (LAeqT): Es el nivel de presin sonora constante, expresado en decibeles A, que en el mismo intervalo de tiempo (T), contiene la misma energa total que el sonido medido.Ruido: Sonido no deseado que moleste, perjudique o afecte a la salud de las personas.Ruidos en Ambiente Exterior: Todos aquellos ruidos que pueden provocar molestias fuera del recinto o propiedad que contiene a la fuente emisora.Reglamento en PerZona de proteccin especial: Es aquella de alta sensibilidad acstica, que comprende los sectores del territorio que requieren una proteccin especial contra el ruido donde se ubican establecimientos de salud, establecimientos educativos asilos y orfanatos.

Artculo 7.- De las zonas de proteccin especialLas municipalidades provinciales en coordinacin con las distritales, debern identificar las zonas de proteccin especial y priorizar las acciones o medidas necesarias a fin de cumplir con el ECA establecido en el Anexo N 1 de la presente norma de 50 dBA para el horario diurno y 40 dBA para el horario nocturno.Artculo 24.- De las Municipalidades DistritalesImplementar, en coordinacin con las Municipalidades Provinciales, los planes de prevencin y control de la contaminacin sonora en su mbito

DISPOSICIONES COMPLEMENTARIASA efectos de proteger la salud de la poblacin en ambientes interiores de viviendas, salones de colegios y salas de hospitales, el Ministerio de Salud podr adoptar los valores guas de la Organizacin Mundial de la Salud - OMS que considere pertinentes para cumplir con este objetivo. stas podrn ser usadas por los gobiernos locales para los fines que estimen convenientesReglamento en Per

Estandares en otros paises.

Cummins Confidential

Understanding Emission RegulationsAn overview of federal regulations for diesel fuel generator sets and emissions reduction technologies41-regulated for almost forty years-mostly governed on-highway engines-1996 nonroad engines brought under the scope of the regulations-The Environmental Protection Agency (EPA) -nonroad engines = used in mobile equipment-farm tractors,-construction earthmovers-mobile generator sets on trailers-other portable industrial engines used in temporary off-road applications. Learning OutcomesParticipants will be able to:Identify US EPA New Source Performance Standard (NSPS) emission regulations in order to select the appropriate equipment and comply with the law.Differentiate spark-ignited (SI) and compression-ignited (CI) emission regulations in order to apply the appropriate equipment type.Recognize the RICE NESHAP rule in order to legally operate generator sets built before NSPS applicability dates.Distinguish applications requiring Tier 4 emission certification to specify genset capability for non-emergency operation.NSPS (New Source Performance Standards)NESHAP (National Emissions Standards for Hazardous Air Pollution)Tier 4Importance for both CI and SIHow these regulations effect youHow to operate in non emergency mode within regulations

42Common AbbreviationsEPA: Environmental Protection AgencyNSPS: New Source Performance StandardsHAP: Hazardous Air PollutantsRICE NESHAP: Reciprocating Internal Combustion Engine National Emission Standards for Hazardous Air PollutantsCI: Compression Ignited (e.g. diesel)SI: Spark Ignited (e.g. gaseous fuels)PM: Particulate MatterNOx: Nitrogen OxidesCO: Carbon MonoxideNMHC: Non-Methane HydrocarbonsVOC: Volatile Organic CompoundsRICE NESHAP (National Emissions Standards for Hazardous Air Pollution)NMHCNSPSCISI

43Introduction to EPA RegulationsClean Air ActLaw dictating EPAs responsibility for protecting and improving the nations air quality and the stratospheric ozone layerNational Ambient Air Quality Standards (NAAQS)Sets limits for pollutants which are considered harmful for public healthCriteria pollutants:CO, Pb, NO2, O3, PM and SO2 Attainment areas are in compliance with national standards; Non-attainment areas are not in compliance

Clean Air Act gave federal government authority to regulate air quality, emissions levels, noise pollution, ozone and acid. EPA (1970) created NAAQS

Greatly expanded mandate for fed and state regulations for industrial and mobile sources of pollutionPresident Johnson in 1963

44Hydrocarbon Fuel Combustion ReactionFuelAirMajor exhaust constituentsExhaust components found in trace concentrationsFuel and air mixMajor constituents: CO2, H2O, N2, O2 (Air that was not used because the engines are generally lean)Minor components: NOx, HC, CO, SOx, and C (trace amounts)Things that happen because of incomplete reaction

45Major Pollutants in Engine ExhaustWhat is it?How is it formed?Affected by?NOxOxides of nitrogenForms at high temperaturesIncreases at high loadHCOver 100 different types of hydrocarbonsProduct of incomplete combustionIncreases at low loadPMAnything that is trapped on or condenses on a filterSoot, lube oil, heavy hydrocarbons, and incomplete combustion of carbonAir-fuel ratio, low combustion temperatures, and maintenance issuesCOCarbon MonoxideProduct of incomplete combustionIncreases at low loadSOxOxides of SulfurProduct of combustion process when sulfur is presentLimited by sulfur in fuelNeed to know how the pollutants are formed so we know how to get rid of them

NOx= nitric oxide and nitric dioxide, high temperaturehigh loads=more NoxHC = over 100 diff compoundsincomplete combustionlow loads=more HCCO = incomplete combustion at low temperaturesPM = SOx = sulfur dioxide and sulfur trioxide

46New source performance standards (NSPS) for Compression Ignited (Diesel) and Spark-Ignited engines

EPA Product Use DefinitionMust meet the emissions requirements for the entire useful life of the engineEmissions determined by actual product use and engine horsepower not electrical output:

Codes and details found on EPA website http://www.epa.gov/ttn/atw/icenginesMost StringentLeast StringentNSPS came about in 2002 for CI engines and 2006 for SI engines

In emissions world, EPA does not care about ISO application of the genset or rating on the engine. Only care about how it is actually used

Stationary applies for both SI and CI48CI and SI NSPS: Useful LifePowerSpeedUseful Life(whichever comes 1st)< 19 kW (< 25 hp)Any3,000 hrs or 5 yrs19-36 kW (25-48 hp)Constant > 3,000 rpm3,000 hrs or 5 yrsConstant < 3,000 rpm5,000 hrs or 7 yrsVariable5,000 hrs or 7 yrs> 37 kW (> 49 hp)Any8,000 hrs or 10 yrsEngines must comply over their entire useful life:Useful life means the period during which the engine is designed to properly function in terms of reliability and fuel consumption, without being remanufactured, specified as a number of hours of operation or calendar years, whichever comes first. The values for useful life for stationary CI ICE with a displacement of less than 10 liters per cylinder are given in 40 CFR 1039.101(g). The values for useful life for stationary CI ICE with a displacement of greater than or equal to 10 liters per cylinder and less than 30 liters per cylinder49Stationary Engine:Stationary Emergency 60.4219, 60.4211(f) for CI, 60.4243(d), 60.4248 for SIEmergency stand-by (safe evacuation, life support)Legally required stand-by (firefighting operations)Optional stand-by (could cause an economic loss)Prime power genset (at loss of utility electricity supply)

EPA does not allow mounting a stationary emergency generator on a trailer or mobilized in any way (Part 1068: General Engine Compliance)

EPA use overrides any rating characteristic of the generator set

If you use you genset only when there is no utility and you were not expecting the loss of utility then it is emergency50Stationary Engine:Stationary Non-Emergency (subject to higher emission standards than emergency)Peak shaving (reduce or flatten peak electricity use)Rate curtailment (favorable energy rates)Interruptible rate programs (favorable energy rates)Continuous base load (constant power to utility grid)Co-generation (capture and use waste heat)Prime power genset (to be used as a primary source of power)EPA does not allow mounting a stationary emergency generator on a trailer or mobilized in any way (Part 1068: General Engine Compliance)

Used when the utility is not down51Stationary vs. Nonroad Engines40 CFR Part 89No movement restrictionsComply with T4 final or T4 interim Or utilize Transitioned Program for Equipment Manufacturers (TPEM) Allotment of engines which do not meet emissions level at time of manufacturingMust meet stationary engine emissions levelOnly available for nonroad

On site for at least 12 consecutive monthsCannot mount on a trailer or mobilizedFederal laws prohibits the use of TPEM certified products on stationary engines

NonroadStationaryStationary must stay at site for 12 consecutive months to be considered stationary

TPEM:-nonroad applications but dont meet nonroad standards-instead meet stationary emissions levels-certain amount of engines sold in the US comply with specific emissions-not necessarily the full tier level in affect at the time of manufacture. -amounts are limited by and highly regulated by the EPA.

Portable- non road (Any indication that the genset can be moved) No movement restrictionsMust comply with T4/T4i and/or utilize transition program for engine manufacturersutilized by all engine manufactures. certain amount of engines to be sold in the US which must comply with specific emissions levels but not necessarily the full tier level in affect at the time of manufacture. These amounts are limited by and highly regulated by the EPA.Stationary must be on site for at least 12 monthsCannot be mounted on trailer or mobilizedCannot use TPEM on stationary emergency of stationary nonemergency applications

52New Source Performance Standards (NSPS) for Stationary CI enginesTitle 40, Part 60: Subpart IIII

Note the EPA text centers on the engine. Engine manufacturer responsible for certifing product meets emission levels for year the engine is manufactured53

EPA CI NSPS for Stationary Engines Standards(60.4201, 60.4202, 60.4204, 60.4205)Requirements in black are same as nonroad; requirements in red are unique for stationary.

(1) Compliance with optional Option 1 0.30 g/kW-hr PM limit in 2008 allows 1-year delay of T4 until 2013.Option 1 engines in 2008 are T4i engines, not T3 engines.(2) Fire pump requirements for 2007+ generally delayed three years.(3) Engines > 10 L/cyl must meet T2 marine requirements of 40 CFR 94.8.(4) There is NO TPEM program for engines in stationary applications.54Tier 5 will come after 4 final for some power bands

Mechanical not electrical power, engine name plate brake horsepower

The EPA does not care about electrical output. Only engines mechanical outputEngine 755kWm but only produces 500 kWeIn 2014, (if looking 500kWe genset) Tier 3 emergency(if looking at 755kWm engine) Tier 2 emergency

NOx/NMHC/CO/PMTier 4: strictest emissions requirement for off highway diesel engines interim requirements: less stringent on one of the main contaminents of diesel exhaust emissions: either NOx or Particulate Matter (PM).

1 Tier 2 genset has equivilent emissions to 10 Tier 4 gensets

Very unlikely that genset will be run at full load the whole time so how do we measure the emsissions?

Evolution of Off-Highway Standards (>751HP)Excludes Stationary Emergency Engines 6.49.20.00.0NOx [g/kW-hr]PM [g/kW-hr]2000 Tier 12006 Tier 2Off-HighwayULSD15 PPM(9/10)5000 PPM(7/06)FUELSULFUR2011 Tier 4i(751 1207 hp)2015 Tier 4f(>751 hp)3.50.030.10.20.540.672011 Tier 4i(> 1207 hp)55Before 1995 mostly looking at fuel economy2000 Tier 1 for this power band was 9.2g/kW-hr for NOx down to less than one gram/kW-hrEmissions has been a major challenge for the industry trying to achieve near-zero emissionsMandating ULSF has reduced sulfur content from 5000 ppm (2006) to 15 ppm (2010)T4 governs most diesel engines in power genEmergency stationary engines less than 49HP exempt from new standard and stay at current Tier level. Nonemergency need to comply with T4i or T4fHave reduced emissions level 95% over just 15 years

Full Authority Electronic ControlImproved control of combustion timing and Air-Fuel ratio Modular common Rail SystemImproved idle stabilityImproved cold start abilityImproved transient response to load changesAdvanced in-cylinder combustion technologyImproved combustion bowl geometryHigh Durability Ferrous Cast Ductile (FCD) Piston Charge Air Cooling (CAC)Lower combustion temperatureExhaust Gas Recirculation (EGR) Lower combustion temperature

Meeting Tiers 2 and 3 Emissions Levels56Full authority electronic controls: optimize ignition timingAdvanced Fuel Injection Systems: New modular common rail fuel injection provides improved idle stability, cold start and transient response while maintaining power densities. The new solenoid controlled electronic injectors precisely deliver fuel at 23,000 psi. Advanced In-Cylinder Combustion: new combustion bowl geometry and multiple fuel injection capability provide more combustion control. Improved or maintained power ratings without increased displacement or higher fuel consumption.High Durability Ferrous Cast Ductile Pistons: Stronger than aluminum, especially when operating at higher temperatures. Help deliver optimum power output.All medium and large diesel generators employ turbo charging to boost power, and improve combustion efficiency. We use after coolers (water-cooled or air-cooled heat exchangers) to increase the density of charge air to increase the power output and reduce emissions.Exhaust Gas Recirculation (EGR) is a well proven method for reducing NOx in internal combustion engines. By recycling a portion of the inert gases of the exhaust stream with incoming engine air, it dilutes the air; lowering the peak combustion temperature and therefore reducing NOx formation.

High Pressure Fuel Systems

Engine Filtration

Controls & Algorithms

CombustionAdvanced Turbocharging

After-treatment

Meeting Tiers 4 Interim and 4 Final Emissions Levels57

In-engine and After-treatment Emission Solutions for ci and si engines for nsps and Rice neshap

58Emissions Reduction TechnologiesCharge Air Cooling (CAC)Direct flow air filtration system

Combustion Optimization

Variable Geometry Turbocharger

Cooled Exhaust Gas Recirculation (CEGR)

High Pressure Common Rail

Electronic Controls Module

Crankcase Ventilation: Coalescing Filter

Combined Diesel Oxidation Catalyst (DOC) with Diesel Particulate Filter (DPF)Selective Catalytic Reduction (SCR) with Diesel Particulate Filter (DPF)

59Meeting Tier 4 InterimCooled Exhaust Gas Recirculation (CEGR) for NOx reductionDiesel Oxidation Catalyst (DOC) for Regenerating particulate filter (DPF) for PM reduction

Direct Flow Air Cleaner6060Compress air in turbos gets hotCool in charge air coolerCombust itRecircuate some exhaust to reduce NOxDOC to reduce CODPF to reduce PMTurbo After CoolerDEF PumpDEFDiesel Exhaust Fluid TankTurboAir Filter SCRCatalystElectricHeaterCummins Diesel EngineExhaustControl PanelGeneratorHeater ControlNOx SensingLevel sensingDPFMixingDEF InjectionMeeting Tier 4 FinalNOx SensingTemp sensingPressure sensing6161Simulation of the exhaust Aftertreatment process SCR + DPF + Heater configuration

We have pressure, temp, Nox sensors constantly measuring parameters to optimize the aftertreatment system.After-treatment ComplicationsExpensive (initial investment, maintenance, and operation)Handling, storing, and refilling chemicals (ie. DEF)Space and power requirementsCompressors and heaters Increased system air flow requirements Sensitive to packaging and mounting location constraintsCan increase back pressureAccurate system operation logs requiredEngine loading will affect after-treatment

62additional costscan add 30-50% additional costSpace and power requirementsnot just of the system but also compressors and heatersIncreased system air flow requiredadditional cooling circuit and up to 25% higher heat rejections from CEGR (reduces combustion temps---reduces NOx)packaging and space limitationshandling and storage of urea, ammonia slip, and sulfur tolerancesignificant amount of back pressurerequiring precise, duty cycle-based control of temperatures and dosing frequency for regenerationadditional item to be serviced. Loading affects temperaturetemperatures may not even be reached by an emergency standby generator that is lightly loaded.

Open Genset with SCR

Housed Genset with SCR63Point at the size of the SCR. Its almost as big as the engine.More space is required which could be a big hassle in some installations.Additional structure for mounting SCR must be considered.

2.5MW gensetAvailable Compliance DocumentationEPA Compliance Statement

EPA Compliance StatementFactory statement certifying the gensets engine compliance with EPA regulations for a specific model yearEPA Certificate of Conformity (upon request only)EPA statement certifying conformity of the engine with EPA regulations for a specific model yearExhaust Emission Data SheetFactory data sheet with recorded emission and performance values at different load levelsExhaust Emission Data Sheet

EPA Certificate of Conformity64NESHAPs Penalties

New civil penalty amount is $37,500.00 per day per violation per engineAdditional Violations:Work Practice StandardsNotificationsPermitting TestingMonitoringRecord keeping

Not for NSPS65Aspectos bsicos de la puesta en ParaleloThis presentation provides an overview of the functional requirements for paralleling of generator sets. It does not cover the entire paralleling system, only the paralleling control functions.The intent is to understand the physical characteristics of the equipment and how it changes when paralleled, and how digital electronics are changing system designs.

Ken Box remarks: This presentation covers paralleling basics. There are a couple of things we intend to address.66Resultados del cursoLos participantes podrn:Explique las ventajas de la puesta en paralelo para mejorar la confiabilidad del sistema en general, el rendimiento y la flexibilidad.Analice las funciones bsicas de control de paralelismo para comprender mejor cmo se logra el la puesta en paralelo y para cambiar el diseo de la arquitectura tradicional de los componentes a un nivel del sistema.Describa cmo se proporcionan las funciones de control de grupo electrgeno en un entorno de control digital para mejorar las especificaciones de los controles del equipo de conmutacin y grupo electrgeno.

Ken Box remarks: We will describe your basic generator set control functions We will relate that to the digital control environment which is pretty well accepted and adopted by most manufacturers today We will talk about interface requirements between the generator set and the paralleling control system We will talk about potential control issues and propose potential solutions Hopefully this will help you as you design systems going forward67Puesta en ParaleloFuncionamiento sincrnico de dos o ms grupos electrgenos juntos en un bus comn para proporcionar potencia a las cargas comunes.

Bus de parallelingCargaParalleling equipment makes two or more generator sets functions as if they were one large set. For example, three generator sets have the following individual performance rating:Steady State kW: 500 kWSurge (momentary overload) kW: 525 kWSteady State kVA: 625 kVAMotor Start kVA: 1150 kVAShort Circuit performance: 5000 A

In this example the three generator sets in parallel will perform as one large set with a combined performance rating equal to the sum of the individual three sets:

Bus Steady State kW: 1500 kWBus Surge (momentary overload) kW: 1575 kWSteady State kVA: 1875 kVAMotor Start kVA: 3450 kVAShort Circuit performance: 15000 A

Paralleling in concept is simple: make multiple generator sets act like one big genset: capacity is the sum of all the steady state capabilities of all machines transients look like transient on single genset based on the same percent of load paralleled generator sets look more like the utility, because the source is much larger than the load.

Ken Box remarks: So what is paralleling really? If we are paralleling 2 or more generators, its the synchronous operation of each of those generators in order to provide power to a common load Think of it as connecting 2 or more batteries in parallel. By doing that, I expect them to operate as a single but much larger capacity battery

68Por qu en paralelo?ConfiabilidadEs muy probable que se sirvan cargas crticasQu sucede con las cargas no crticas?

Servicios CargaBus de parallelingServicios Carga69Flexibility in room design: It is easier to lift, move etc 2 500Kw vs 1Mw. Service, easier and faster to get parts,

RedundancyCommon requirement for data centersPerformanceGenerator bus acts more like utilityScalability/ExpansionAdd capacity as need arisesFlexibility in room designTwo small gens may be easier to install and service than one large one

Lots of reasons have been given for paralleling; some havent rung true on every projectPrimary reason is that customer is looking for improved reliability (you can almost always break down loads into smaller groups so they can be fed from a single machine)Why are paralleling systems more reliable? Historical systems neglect to advise you that the added componentry for paralleling actually made system reliability improvements questionable Need simple design with minimum equipment additions in order to maintain reliability demonstrated in a single genset

Paralleling multiple generators makes generator bus larger relative to load size, making performance look more like the utility

Cost is almost always more, but cost differential can be reduced and sometimes eliminated when use the right equipment for the application (lowest cost/kw genset, right paralleling controls, switchgear, etc.)Common practice from paralleling vendors is to push for more complexity and higher cost than is necessary in many applications Sample specs all describe high end systems

Por qu en paralelo?Capacidad de servicioSaque un grupo electrgeno para realizar el mantenimiento de rutina regular.

70Flexibility in room design: It is easier to lift, move etc 2 500Kw vs 1Mw. Service, easier and faster to get parts,

Lots of reasons have been given for paralleling; some havent rung true on every projectPrimary reason is that customer is looking for improved reliability (you can almost always break down loads into smaller groups so they can be fed from a single machine)Why are paralleling systems more reliable? Historical systems neglect to advise you that the added componentry for paralleling actually made system reliability improvements questionable Need simple design with minimum equipment additions in order to maintain reliability demonstrated in a single genset

Paralleling multiple generators makes generator bus larger relative to load size, making performance look more like the utility

Cost is almost always more, but cost differential can be reduced and sometimes eliminated when use the right equipment for the application (lowest cost/kw genset, right paralleling controls, switchgear, etc.)Common practice from paralleling vendors is to push for more complexity and higher cost than is necessary in many applications Sample specs all describe high end systems

Puesta en Paralelo: Costo total del sistemaBaseEquipos ms grandes requieren soporte estructural adicional.Es posible que los mltiples equipos ms pequeos requieran ms plataformas de hormign.Requisitos de espacioVarios grupos electrgenos ms pequeos requieren ms secciones de equipos de conmutacin.Los grupos electrgenos ms pequeos permiten tener flexibilidad en cuanto a la ubicacin y la instalacin.CablesMs grupos electrgenos requieren ms recorridos de los cables.El trabajo es intenso si los cables se encuentran subterrneos.Costos de puesta en marchaCuesta ms arrancar y poner en marcha grupos electrgenos emparejados en comparacin con un nico grupo electrgeno.Costo de mantenimientoLas piezas de repuesto de grupos electrgenos ms pequeos pueden ser ms baratas en comparacin a las de un solo grupo electrgeno ms grande.Pero mantener dos grupos electrgenos y su equipo de conmutacin implicar ms costos de mano de obra.Inversin en capital/escalabilidad/expansinAgregue capacidad a medida que surja la necesidadMinimice la inversin inicial en capital

71Flexibility in room design: It is easier to lift, move etc 2 500Kw vs 1Mw. Service, easier and faster to get parts,

Lots of reasons have been given for paralleling; some havent rung true on every projectPrimary reason is that customer is looking for improved reliability (you can almost always break down loads into smaller groups so they can be fed from a single machine)Why are paralleling systems more reliable? Historical systems neglect to advise you that the added componentry for paralleling actually made system reliability improvements questionable Need simple design with minimum equipment additions in order to maintain reliability demonstrated in a single genset

Paralleling multiple generators makes generator bus larger relative to load size, making performance look more like the utility

Cost is almost always more, but cost differential can be reduced and sometimes eliminated when use the right equipment for the application (lowest cost/kw genset, right paralleling controls, switchgear, etc.)Common practice from paralleling vendors is to push for more complexity and higher cost than is necessary in many applications Sample specs all describe high end systems

Arquitectura del sistema tradicionalDiseo basado en los componentesGrupo electrgeno bsicoNcleo basado en un controlador lgico programable (PLC)72Discuss structure, compare to previous photo and explain similarity. Note hardware in each section, interfaces from genset to gear, and between sections.

Traditional component based design: switchgear provider selects hardware and designs interfaces between components. Lots of variations due to large number of suppliers of each type of component in the system. Result: increased engineering cost, harder to train, document, service

PLC used to allow for variations in genset interfaces that might occur between different genset suppliers, and to gather data in a common format for monitoring locally and remotely

PLC is programmed for specific needs of the application; similarities from project to project, BUT, if its not the same, its different, right?

Design assumes genset has no paralleling features, but simply a speed and voltage bias input to be driven by paralleling section. Note that there is an independent control for each generator set in the system

Ken Box remarks: So back to the traditional switchgear design. From left to right, you see the utility main section, the master control section, and 2 gen paralleling breaker sections. This is what wed call a component based design. Theres a lot of Swiss cheese in each section including protective relays, metering, synchronizers and the like. Its heavily dependant on specific components and a design involving the interconnection of those components. The assumption is that the generators are stupid that theyre nothing more than a genset control module, an automatic voltage regulator and a governer. Everything intelligent from a control point of view is housed in the switchgear. Its also typically PLC based not only for the master control but also for each genset. So, theres a lot of components, a lot of interconnections, a lot of engineering that all point to a lot of potential points of failure in the switchgear.

Controles bsicos del grupo electrgenoLos diseos tradicionales comienzan con un grupo electrgeno no emparejadoGC: control del grupo electrgenoArranque y paroInterfaz del operador (Alarma/Medicin)GOV: reguladorMide la velocidad/Controla la alimentacion de combustibleAVR: regulacin automtica de voltajeMide el voltaje/Controla la excitacinProteccin:requerida por el cdigo en la mayora de las ubicacionesProteccin contra sobrecarga para el alternador

73Now want to look at the functions necessary to do the paralleling job.

Start with looking at the genset used. Note that all gensets have these three functions.

Explain functions. Explain what signals are needed for each function. Note that these functions can be done with individual independent components, or with packages of integrated components of various types.

Note that you can only do 3 things to a generator: start/stop, change fuel rate, change excitation level. Important to remember this as consider paralleling issues.

Active control depends on measuring voltage and controlling excitation (AVR function); measuring frequency and controlling fuel rate (governor function)

Ken Box remarks: Lets look at what it takes to parallel an genset from a functional point of view On the generator side, you see functional blocks in blue. All gensets, regardless of brand, have these functions. Every generator is going to have an engine control function whose job it is to protect the engine, start and stop the engine, and provide basic information about the operating parameters like metering and alarming Its going to have a governor to measure speed and control fuel Its going to have a voltage regulator to measure and control excitation voltage to the alternator Although the design and components used to accomplish these functions may differ, every genset includes these functions. We also need a means of protecting the alternator against overload, which is an NEC requirement. So, thats whats required for each generator to control voltage and frequency.

Puesta en Paralelo de la red publica y el grupo electrgeno

Cant change the frequency of the grid, and dont want to manipulate voltage (generally) due to concerns around voltage stability. So, need to modify control system operation when in parallel with the grid so that it ignores frequency and voltage, and regulates fuel around kW load and excitation around kVAR load.

Control system needs to know genset voltage and current, a kW and kVAR target, and when it is paralleled to grid in order to do the job.

Ken Box remarks: When we parallel with a utility we need two more functions. They are VAR/Power factor protection and import/export What really needs to be done when utility paralleling is to regulate fuel based on kW load and excitation around kVAR load. Overall, the control system needs to know the genset voltage and current, kW and kVAR targets, and when its being paralleled with the utility The gensets can operate in either peak shave or base load modes of operation

74Puesta en paralelo de grupos electrgenosSistema en espera: bus aislado

G3G2G1DE ESLINGADE ESLINGADE ESLINGAU1U1G2G1G3Describe the typical sequence in a standby application

75

Sincronizacion

76Explain synchronizer function: measure volts on both sides of open cb, speed up or slow down to match 0-crossing; close cb; cb turns on ILS with aux contact.

If time, discuss fail to close, fail to open functions; how to solve those problems. Note impact of FMEA (Failure mode effects analysis)Discuss What can be done about failures related to screwing with the pots?

Note that if everything works, all paralleling needs to work is these two functions (in addition to std genset). Everything else in traditional paralleling panels is for when things go wrongfall back equipment.

Ken Box remarks: Note the synchronizing function senses voltage on the line and load side of the genset paralleling breaker and, in turn, issues a command to close the breaker when synchronization has been achieved. The synchronizing function also actively drives the genset to speed up or slow down as needed to get there quicker rather than just passively allowing drift into synch

kW compartidos: controlada por el combustible (velocidad)kVAR compartidos; controlada por la excitacin (voltaje)Comparticion de CargaControl de comparticion de cargaSe comunica con el control de comparticion de carga en los otros grupos electrgenos.Ajusta el punto de referencia del regulador para compartir kW de la misma manera.Ajusta el punto de referencia del AVR para compartir kVAR de la misma manera.La carga compartida puede ser iscrona o de caida.77Load share function manages the gensets kW and kVAR production when it is connected to a common bus with other gensets (while isolated from the utility bus) Each genset must determine how much of the total bus load to take.

Need controls to manage the LOAD on gensets on in the systemmake fuel rate a function of kW load rather than speed, and excitation a function of kVAR load rather than voltage.kW: isochronous load sharing controls. Note measures volts/amps, calcs kW, compares to others (%kW), correct fuel rate by speed bias signal to governor. (governor still trying to make 1800 rpm, just bias to move a little in one direction or another.kVAR, use cross current or reactive droop compensation. Measure amps, run into AVR; compare % of reactive load. Note cross current share load without volt droop but demands identical AVRs; reactive droop doesnt care about AVR type, but get 3-8% volt droop from no load to full load reactive.

Example of operation:(2) 1000 kW gensetsFirst genset closes to the bus, and 500 kW of load is applied: What is genset percent of load (50%) and what is system percent of load (50%--therefore no correction required) (remember that system load is based on total number of gensets that are CONNECTED to the system)Second generator set closes to the bus. At instant it connects (before and correction occurs in either machine), what is the percent of load on first genset/ (50%), second genset (0%), and system (25%). So, genset 1 ramps down fuel rate and genset 2 ramps up. RAMP helps the system maintain a stable frequency so other generators can synchronize and loads are not disrupted.If load changes occur, each genset responds, and drives to the same percent of load as the system.

Ken Box remarks: For paralleling and load sharing, we have an isochronous load sharing or ILS function. ILS may be located in the genset or it may be in the genset, but its needed for generators connected in parallel to share load Proteccin, medicin y alarmas

Proteccines minias del grupo electrgeno en paralelo. Prdida del campo (40) Potencia inversa (32)78Other equipment: metering (am, vm, hz, kW) plus manual parallel provisions (sync scope, lights are one way; show manual parallel provisions in PCC demo) Note again that measured parameters are voltage and current to get this metering

Alarm is basically warning and status conditions. Often individual lights. Modern machines have lots of alarm conditions (3200 has 206), so hard to use lights to show all conditions.

Note that in traditional systems the yellow functions in parallel board mounted above a paralleling breaker in big grey switchgear box.

Ken Box remarks: And of course, we want metering. Weve moved away from analog to digital metering so a lot of the meters today are combination meters or they display on a HMI display. Metering may be displayed at the switchgear and in some cases remotely We need alarms too. If something bad has happened or is about to happen, the operator should know right away. There are more than 200 alarm points that can be accessed in our PCC controls. I can choose which ones along with the method of alarming (HMI display, annunciator, paging, email)Manejo de la cargaRasurado de PicosCarga basePeak Shave, Base Load, Zero Power Transfer and Interruptible are types of operating modes during a peaking period. Peaking is a period of time over which a customers power generation equipment assumes the facility loads by Peak Shaving, Base Loading, Zero Power Transfer or responding to an Interruptible signal

Zero Power Transfer: utility and power generation system are both connected to the load, but there is no power being imported to the facility nor power being exported to the utility.79Paralleling con la red publica.

Cant change the frequency of the grid, and dont want to manipulate voltage (generally) due to concerns around voltage stability. So, need to modify control system operation when in parallel with the grid so that it ignores frequency and voltage, and regulates fuel around kW load and excitation around kVAR load.

Control system needs to know genset voltage and current, a kW and kVAR target, and when it is paralleled to grid in order to do the job.

Ken Box remarks: When we parallel with a utility we need two more functions. They are VAR/Power factor protection and import/export What really needs to be done when utility paralleling is to regulate fuel based on kW load and excitation around kVAR load. Overall, the control system needs to know the genset voltage and current, kW and kVAR targets, and when its being paralleled with the utility The gensets can operate in either peak shave or base load modes of operation

80Puesta en paralelo en un mundo digitalFuncion de paraleloProteccin del grupo electrgenoRegulacin de voltaje

Control del grupo electrgenoProteccin del motorRegulacin

Mdulo de control del motorEnlace de datos81Capacidad de los controles de puesta en paraleloLos controles del grupo electrgeno pueden emparelarse entre s sin un control maestro.Un grupo electrgeno puede sincronizarse con la red publica sin un control maestro.Se requiere un control maestro para La sincronizacin de mltiples generadores con un servicio publicoLa gestin de carga y capacidad (adicin/discriminacion de carga y demanda de carga)El control y monitoreo de sistemas

82Aplicacin simple parallelingArranque del generadorArranca por seal enviada directamente desde el dispositivo de deteccin de energa, ya que un ATS es ms confiable en comparacin con el envo de una seal a travs de un control maestro. Cierre a un bus muertoLos generadores deben comunicarse entre s para que nicamente un grupo electrgeno cierre al bus en lugar de esperar una seal de permisiva de cierre de un controlador maestro.Sincronizacin y cierre a un bus vivo.Los grupos electrgenos se sincronizan de manera confiable y rpida cuando no hay ningn otro control en el sistema.

83Certificaciones del PowerCommand Control como Dispositivo de Proteccin

84AmpSentryProtege al sistema de los efectos de sobrecorriente, alto/bajo voltaje, alta/baja frecuencia y sobrecarga.

Brinda proteccin al alternador contra sobrecorriente sin la necesidad de un interruptor de lnea principal , con mayor confiabilidad

Las seales de sobrecarga se pueden utilizar para discriminar cargas

Brinda cierto grado de proteccin a las cargas conectadas al equipoGenset PowerCommand

800 AmpsCargas de EquipoCargas CrticasRed PblicaNo se necesita el interruptor de lnea principal400 AmpsATS400 AmpsATS85Protecciones en el tablero...o en el PowerCommand???GENSETAMSWVMSWKWKWHPF4032659051VHZ2781U59SURGE SUPPRESSORSVMSWHZ47SYNC2586SSPOWERCOMMAND CONTROLSWITCHGEARTRIPCLOSE86

Numeros de dispositivos ANSI87Note: surge protection at entrance to control on both genset and bus. Note also interface to switchgear is limited to breaker control and breaker status.There are many more functions in the control than are shown on this drawing, but ANSI didnt anticipate integrated control functionality like this.PCC Runs parallel cb, includes utility grade protection and control.Reference (dont need to discuss):40-loss of field32-reverse power65-governor90-regulating device (note that we have several here depending on state: AVR, GOV, ILS, etc)51V-voltage restrained overcurrent27-under voltage81U- under frequency59-over voltage47-phase sequence25-sync check86-lock out relay

Note that PCC is self-contained, and does everything all by itself. Generac design requires master to be working. Un control de paralelo para generadoresTodas las funciones basicas de un control integradas en el Power Command sin importar el modeloTodas las funciones de paralelo y protecciones integradas de igual forma.El Panel de Operador, AVR, y funciones de Paralelismo siguen en el PowerCommandMejorada confiabilidadMejor desempeoBajo Costo

88This means its easy to do an integrated digital control that does all the paralleling function in a single control system.

Discuss advantages and disadvantages.

Bloques de control en un DMC89Funciones de un Control Maestro Digital o DMC

Funciones de TransferenciaTipos de transicionesSensores de transferenciaRetardos de tiempo ajustables

Funciones de Control de Carga Demanda de Carga (Load Demand)4 n generadores, dependiendo del modelo de controlSecuencia predeterminada o en base a horas de operacin.Discriminacin /Adiccin de Carga (Load Add/Shed)Niveles de control de cargas en base a control de transferencias y o interruptores de alimentacin/distribucin.Manteniendo continuidad del sistema aun con la falla de uno o varios generadores.Interfase con el operador Interfase con el sistema de monitoreo

90

DMCS1000 - Configuraciones91DMCS1000 - Configuraciones

92

DMCS1000 - Configuraciones93

DMCS1000 - Configuraciones94DMC1000

Sincronia entre 4 generadores y un servicios pblicos (transicin cerrada suave, paralelo extendido)

Controles de carga avanzados

Sistemas de monitoreo por redes integrado

Panel de control sencillo y de facil acceso.

Configurable a secuencias de operacin seleccionablesNormado IEC y UL

95Control DMC1000

96Ejemplo

97DMC300DMC 300Sincronia entre varios generadores y varios servicios pblicos (transicin cerrada suave, paralelo extendido)Controles de carga avanzados Display tipo tactil configurable a cualquier interfaseSistemas de monitoreo por redes integradoProgramable con cualquier secuencia de operacinNormado IEC y UL

98Estandares de Switchgears aplicables en la regin de LAOLos mercados de Latinoamerica al igual que en Europa, Asia, Africa y Oceana normalmente aceptan los estandares IEC 60439-1 Type tested y non Type Tested. IEC es la entidad reguladora mundial en estandares de faricacin.En territorios regulados por normas y estndares estadounidenses y en grandes proyectos diseados por empresas que buscan un grado mas alto en proteccin de equipos se especifican tableros UL891 o UL1558 listed. UL es una empresa privada dedicada a certificar equipos y productos bajo sus propios estndares

99Tableros UL Equipos de conmutacin (Switchgear) vs. paneles de conmutacin (Switchboard)Las caractersticas fsicas son similaresLa principal diferencia es el tipo de BREAKERLas normas se dan seccin por seccin

100As como existe una diferencia entre un alternador y un generador, hay una diferencia entre los paneles de control y los equipos de control, pero en el negocio de las operaciones en paralelo, tenemos la tendencia a usar estas palabras de forma indiscriminada.

Hay dos cosas importantes para observar: Fsicamente, se pueden parecer, y pueden tener funciones similaresEl estado en UL se hace seccin por seccin de manera que se puede tener una alineacin contigua que contiene tanto secciones de equipo de conmutacin como de paneles de conmutacin (que a menudo son utilizadas por instalacin en los pequeos y generalmente no estn disponibles en aplicaciones de proveedores ms grandes porque el equipo proviene de fbricas diferentes.)El equipo de conmutacin corresponde a la seccin UL1558 y los tableros de conmutacin son de la seccin UL891La seccin UL1558 requiere BREAKERS UL 1066La seccin UL891 requiere BREAKERS UL489El equipo de conmutacin tiene una clasificacin hasta de 30 ciclos de aguanteCertificaciones de los equipos CPGLos grupos electrgenos, alternadores, controles y switchgears estn diseados, manufacturados, probados y certificados por las siguientes normas:UL 2200, 1446, 1008, IEC 60439ISO 8528Pueden ser usados para cumplir con los cdigos de instalacin en cada localidad:NFPA 70, 110Recordando que el NFPA 70 es el mismo NEC.

101___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

EJEMPLO:Centro Mdico Trinity West, Rock Island, Illinois

Grupo electrgeno de 1750kWSin interruptor, etiqueta del rel de proteccin de ULEl switchgear se encuentra en la central elctrica AmpSentry protege el cable que va desde el grupo electrgeno hasta el interruptor principal en la central elctricaEl desconectador de servicio est en el tablero de distribucin

Trinity Medical Center - Example of overload protection of alternator and cable, disconnect requirements at genset, example of outdoor genset with service disconnect at the building.102Ejemplo de aceptacin de AmpSentry

Actas de juntas publicadas por el ingeniero consultorProteccin de sobrecorriente para PowerCommandPermitido por NEC 445.12Desconectador provisto mediante parada de emergencia (NEC 445.18)103RecomendacionesEspecificar:El alternador debe estar protegido de acuerdo con los requisitos de la seccin 445.12 de la NFPA70.La proteccin provista se debe coordinar con la curva de dao trmico del alternador. Se deben presentar la curva de dao y la curva de proteccin para verificar el funcionamiento.La proteccin debe permitir la operacin del grupo electrgeno de manera continua a su salida nominal.El equipo de proteccin provisto debe estar certificado por terceros para verificar el funcionamiento.

En funcin de esta especificacin, el equipo tpico provisto podra ser:Un interruptor en caja moldeada con desconexiones slidas Una proteccin de sobrecorriente inherente

800amperiosCargas de equiposCargas esencialesRed pblicaNo se requiere interruptorde lnea principal para la proteccin del alternador400 amperiosATS 400 amperiosATS 104Major Points: PowerCommand fully protects the alternator and provides protection for loads, so no external protective device is required for compliance to code. Local authorities may insist on a circuit breaker anyway. If that is the case, any circuit breaker will work, but less care may be needed since whether or not it works is not an issue. Note that use of a breaker does obstruct coordination. For OPG (other peoples generators), should use a solid state trip breaker, coordinated with the suppliers thermal damage curve. For OPG, should provide line to neutral sensing instantaneous overvoltage protection for protection of loads.Resumen de proteccin del grupo electrgenoEs posible que los interruptores termomagnticos montados sobre grupos electrgenos no protejan el grupo electrgeno y ser difcil coordinarlos con dispositivos aguas abajo.AmpSentry es un rel de proteccin de sobrecorriente reconocido por UL, fundamental para los controles de grupos electrgenos CumminsEst incluido en el software SKMEl interruptor de parada de emergencia del grupo electrgeno cumple los requisitos de desconexin de NECNEC 445.19 permite que los interruptores se monten fuera del grupo electrgeno, lo cual simplifica los requisitos de separacin de los circuitosMain Points:Summary of Generator Protection

105Mobile Off-Highway RegsMOBILE OFF-HIGHWAY EMISSION REGULATION SCHEDULESNOx / HC2 / CO / PM(g/kW-hr)(NOx+NMHC) / CO / PM(g/kW-hr)[Conversion: (g/kW-hr) x 0.7457 = g/bhp-hr]U.S. EPAkW(HP)19961997199819992000200120022003200420052006200720082009201020112012201320142015201620170 - 7(0 - 10)( 10.5 ) / 8.0 / 1.0( 7.5 ) / 8.0 / 0.80( 7.5 ) / 6.6 / 0.408 - 18(11 - 24)( 9.5 ) / 6.6 / 0.80( 7.5 ) / 6.6 / 0.8019 - 36(25 - 48)( 9.5 ) / 5.5 / 0.80( 7.5 ) / 5.5 / 0.60( 7.5 ) / 5.5 / 0.30( 4.7 ) / 5.0 / 0.0337 - 55(49 - 74)9.2 / -- / -- / --( 7.5 ) / 5.0 / 0.40Opt T4i 0.30 PM: 37-55 kWNote 6(4.7) / 5.0 / 0.40: 37-74 kW56 - 74(75 - 99)3.4 / 0.19 / 5.0 / 0.020.40 / 0.19 / 5.0 / 0.0275 - 129(100 - 173)9.2 / -- / -- / --( 6.6 ) / 5.0 / 0.30( 4.0 ) / 5.0 / 0.30130 - 224(174 - 301)9.2 / 1.3 / 11.4 / 0.54( 6.6 ) / 3.5 / 0.20( 4.0 ) / 3.5 / 0.202.0 / 0.19 / 3.5 / 0.020.40 / 0.19 / 3.5 / 0.02225 - 449(302 - 602)9.2 / 1.3 / 11.4 / 0.54( 6.4 ) / 3.5 / 0.20( 4.0 ) / 3.5 / 0.20450 - 560(603 - 751)9.2 / 1.3 / 11.4 / 0.54( 6.4 ) / 3.5 / 0.20( 4.0 ) / 3.5 / 0.20>560*(>751)*9.2 / 1.3 / 11.4 / 0.54( 6.4 ) / 3.5 / 0.203.5 / 0.40 / 3.5 / 0.100.67 / 0.40 / 3.5 / 0.10a3.5 / 0.19 / 3.5 / 0.040.67/ 0.19/ 3.5/ 0.03bTier 1Tier 2Tier 3Tier 4 InterimTier 4 Finala. Applies to portable power gen engines >900kW (>1207hp).b. Applies to portable power gen engines >560kW (>751hp).EUROPEkW(HP)199619971998199920002001200220032004200520062007200820092010201120122013201420152016201718 - 36(24 - 48)8.0 / 1.5 / 5.5 / 0.8( 7.5 ) / 5.5 / 0.637 - 55(49 - 74)9.2 / 1.3 / 6.5 / 0.857.0 / 1.3 / 5.0 / 0.4( 4.7 ) / 5.0 / 0.4( 4.7 ) / 5.0 / 0.02556 - 74(75 - 99)3.3 / 0.19 / 5.0 / 0.0250.4 / 0.19 / 5.0 / 0.02575 - 129(100 - 173)9.2 / 1.3 / 5.0 / 0.706.0 / 1.0 / 5.0 / 0.3( 4.0 ) / 5.0 / 0.33.3 / 0.19 / 5.0 / 0.025130 - 560(174 - 751)9.2 / 1.3 / 5.0 / 0.546.0 / 1.0 / 3.5 / 0.2( 4.0 ) / 3.5 / 0.22.0 / 0.19 / 3.5 / 0.0250.4 / 0.19 / 3.5 / 0.025Stage IStage IIStage IIIAStage IIIBStage IVJAPAN (Tier 1 standards applicable by application. Tier 2 and Tier 3 applicable by power category. Introduction dates October of year listed.)kW(HP)199619971998199920002001200220032004200520062007200820092010201120122013201420152016201719 - 36(25 - 48)Tier 1 application-specific standards8.0 / 1.5 / 5.0 / 0.86.0 / 1.0 / 5.0 / 0.4037 - 55(49 - 74)9.2 / 1.3 / 5.0 / --; Tier 1 standards are application specific and apply to engines 30-260 kW7.0 / 1.3 / 5.0 / 0.44.0 / 0.7 / 5.0 / 0.3056 - 74(75 - 99)4.0 / 0.7 / 5.0 / 0.2575 - 129(100 - 173)Tier 1 application-specific standards6.0 / 1.0 / 5.0 / 0.33.6 / 0.4 / 5.0 / 0.20130 - 560(174 - 751)Tier 1 application-specific standards6.0 / 1.0 / 3.5 / 0.23.6 / 0.4 / 3.5 / 0.17Step 1Step 2Step 3Step 4Step 4Notes:1. All standards are based upon ISO 8178 C1 8-mode test for variable-speed engines and D2 5-mode test for constant-speed engines. Transient test required beginning in 2011 for Tier 4 and Stage IIIB.2. Separate NOx and HC standards separated by a "/". Combined NOx and NMHC standards denoted in parenthesis "( )". Tier 4, Stage IIIB, and Stage IV are NMHC limits.3. Smoke requirements: U.S: On-highway federal test procedure. Europe - None, but some OEM's require R24.03 certification. Japan has unique smoke standard and procedure.4. For EU, constant-speed engines (i.e. generator set engines) are first regulated and required to meet Stage II standards beginning 1 January 2007. Stage IIIA phased-in for constant-speed beginning in 2011.5. For U.S. Tier 4, "Split-family" standards are shown above for 56 - 560kW. Optional "Phase-in" and "Phase-out" standards for NOx are permitted by EPA.6. For U.S.Tier 4, optional 0.30 g/kW-hr PM standard for engines 37-55kW in 2008. Selecting this option allows a 1 year delay of Tier 4 Final implementation from 2012 to 2013.7. Other countries with known nonroad engine regulations:- CANADA - Beginning 2006, Environment Canada required Tier 2 - Tier 3 EPA certified engines per the U.S. EPA chart above. Proposal and adoption of Tier 4 standards is expected.- KOREA - Vehicle certification by Korean government required. U.S. EPA Tier 1 and Tier 2 equivalent standards phased in beginning in 2004 and 2005 respectively for engines 19 - 560kW.- SINGAPORE - PEM to confirm that Singapore accepts U.S. Tier 1, EU Stage I, and Japan Step 1 equivalent engines.- INDIA - Engine certification required by Indian government. Ag and Const regulated separately and currently < Tier 1 levels. Considering Stage IIIA levels in 2009 (Ag) and 2011 (Const).- CHINA - Engine certification required by Chinese government. Stage I equivant levels beginning July 2007. Stage II beginning Jan 2010. [locally, Beijing has requires Stage II since 2005]- ECE Countries - ECE R96 aligns with EU Stage I and Stage II emission limits. Implementation dates are set and will vary by each individual country.MOHREGS.XLS Revised 07APR08 (Clarified Note 6 in chart.)

MOH Regs T4 ZoomNOx / NMHC / CO / PM(g/kW-hr)(NOx+NMHC) / CO / PM(g/kW-hr)[Conversion: (g/kW-hr) x 0.7457 = g/bhp-hr]kW(HP)200720082009201020112012201320142015201620170 - 7(0 - 10)( 7.5 ) / 6.6 / 0.408 - 18(11 - 24)19 - 36(25 - 48)( 7.5 ) / 5.5 / 0.30( 4.7 ) / 5.0 / 0.0337 - 55(49 - 74)Opt T4i 0.30 PM: 37-55 kWNote 6(4.7) / 5.0 / 0.40: 37-74 kW56 - 74(75 - 99)3.4 / 0.19 / 5.0 / 0.020.40 / 0.19 / 5.0 / 0.0275 - 129(100 - 173)( 4.0 ) / 5.0 / 0.30130 - 224(174 - 301)( 4.0 ) / 3.5 / 0.202.0 / 0.19 / 3.5 / 0.020.40 / 0.19 / 3.5 / 0.02225 - 449(302 - 602)( 4.0 ) / 3.5 / 0.20450 - 560(603 - 751)( 4.0 ) / 3.5 / 0.20>560*(>751)*( 6.4 ) / 3.5 / 0.203.5 / 0.40 / 3.5 / 0.100.67 / 0.40 / 3.5 / 0.10a3.5 / 0.19 / 3.5 / 0.040.67/ 0.19/ 3.5/ 0.03bT2Tier 3Tier 4 InterimTier 4 Finala. Applies to portable power gen engines >900kW (>1207hp).Rev 2008-04-07b. Applies to portable power gen engines >560kW (>751hp).

NR & Stationary Regs T4 ZoomNOx / NMHC / CO / PM(g/kW-hr)(NOx+NMHC) / CO / PM(g/kW-hr)[Conversion: (g/kW-hr) x 0.7457 = g/bhp-hr]kW(HP)200720082009201020112012201320142015201620170 - 7(0 - 10)( 7.5 ) / 8.0 / 0.408 - 18(11 - 24)( 7.5 ) / 6.6 / 0.4019 - 36(25 - 48)( 7.5 ) / 5.5 / 0.30( 4.7 ) / 5.5 / 0.03Emergency: Stay at previous tier37 - 55(49 - 74)Opt T4i 0.30 PM: 37-55 kWNote 1(4.7) / 5.0 / 0.40: 37-74 kW56 - 74(75 - 99)3.4 / 0.19 / 5.0 / 0.02Emergency: Tier 30.40 / 0.19 / 5.0 / 0.02Emergency: Tier 375 - 129(100 - 173)( 4.0 ) / 5.0 / 0.30130 - 224(174 - 301)( 4.0 ) / 3.5 / 0.202.0 / 0.19 / 3.5 / 0.02Emergency: Tier 30.40 / 0.19 / 3.5 / 0.02Emergency: Tier 3225 - 449(302 - 602)( 4.0 ) / 3.5 / 0.20450 - 560(603 - 751)( 4.0 ) / 3.5 / 0.20>560(>751)( 6.4 ) / 3.5 / 0.20Stationary >3000 hp: Tier 13.5 / 0.40 / 3.5 / 0.100.67 / 0.40 / 3.5 / 0.10aEmergency: Tier 23.5 / 0.19 / 3.5 / 0.040.67/ 0.19/ 3.5/ 0.03bEmergency: Tier 2T2Tier 3Tier 4 InterimTier 4 Finala. Applies to non-emergency power gen engines >900kW (>1207hp).b. Applies to non-emergency power gen engines >560kW (>751hp).Rev 2009-04-14

VM

WM

AM

LS

W

81U

SELSW

SELSW

SS

SL

SL

MASTERCONTROL

PARALLELINGUNIT #1

PARALLELINGUNIT #2

VM

WM

AM

W

25

SELSW

SELSW

HZ

EH

PLC

32

PLC

ILS

SSSW

VM

WM

AM

W

25

SELSW

SELSW

HZ

EH

32

ILS

SSSW

PLC

ECM

AVR

GENSETCONTROL

I/E

TO LOADS

TOUTILITY

UTILITY MAIN

VM

WM

AM

W

25

SELSW

SELSW

HZ

32

VARPF

POWERTOLOAD

ENGINE

GEN

GC

GOV

AVR

CB

REMOTE

SYNC

ENGINE

GEN

EC

GOV

AVR

CB

POWERTOLOAD

REMOTE

LOAD SHARE

PROT

METER

ALARM

LOAD SHAREDATA

I/E

VAR/PF

POWERTOLOAD

ENGINE

GEN

GC

GOV

AVR

CB

REMOTE

SYNC

POWERTOLOAD

ENGINE

GEN

GC

GOV

AVR

CB

REMOTE

LOAD SHAREDATA

SYNC

LoadShare

POWERTOLOAD

ENGINE

GEN

EC

GOV

AVR

CB

REMOTE

SYNC

LOAD SHARE

PROT

METER

ALARM

LOAD SHAREDATA

SYNC

ENGINE

GEN

EC

GOV

AVR

CB

POWERTOLOAD

REMOTE

LOAD SHARE

PROT

METER

ALARM

LOAD SHAREDATA

I/E

VAR/PF

POWERTOLOAD

ENGINE

GEN

PowerCommandOperator PanelAVRParallel Control

ECMGOV/EC

CAN

CB

REMOTE

LOAD SHARING

52-GM

52-UM

MASTER COMMAND MODULE(MCM3320)

GENSET

PCC3100PCC3200/1

52-G1

GENSET

PCC3100PCC3200/1

52-G2

OperatorPanel

PROTECTION

LOADS

LOADS

XXX

PCC

3

3

3

XXX

3

3320

3

UTILITY

LOADS

G

1a

UTILITY SINGLE

XXX

G

PCC

3

3

3

G

PCC

3

3

3

G

PCC

3

3

3

3

MCM3320

3

LOADS

LOAD SHARE LINES

1st START SENSOR

DISPLAY

ISOLATED BUS

6

LOADS

G

PCC

G

PCC

G

PCC

XXX

3

3

MCM3320

3

UTILITY

LOAD SHARE LINES

1st START SENSOR

XXX

3

3

3

XXX

3

3

3

XXX

3

3

3

COMMON BUS

9

DISPLAY

3

3

MCM3320

3

UTILITY

LOADS

3

G

PCC

3

3

3

G

PCC

3

3

3

G

PCC

3

3

3

DISPLAY

TRANSFER PAIR

10