LowPowerDesignMOSCAP

43
 Low Power CMOS VLSI Circuit Design (LPVD) Dr. Veena S Chakravarthi

Transcript of LowPowerDesignMOSCAP

Page 1: LowPowerDesignMOSCAP

5/14/2018 LowPowerDesignMOSCAP - slidepdf.com

http://slidepdf.com/reader/full/lowpowerdesignmoscap 1/43

 

Low Power CMOS VLSI Circuit Design (LPVD)

Dr. Veena S Chakravarthi

Page 2: LowPowerDesignMOSCAP

5/14/2018 LowPowerDesignMOSCAP - slidepdf.com

http://slidepdf.com/reader/full/lowpowerdesignmoscap 2/43

 

Goal of the Course

To understand the need for low power fromdevice/technology point of view of VLSI designs,

Basic idea/concepts of low power, estimating powerconsumption and power optimization design

methodology for VLSI chips.

Page 3: LowPowerDesignMOSCAP

5/14/2018 LowPowerDesignMOSCAP - slidepdf.com

http://slidepdf.com/reader/full/lowpowerdesignmoscap 3/43

 

Agenda

UNIT 1Introduction : Need for low power VLSI chips, Sources of 

power dissipation on Digital Integrated circuits. Emerging

Low power approaches, Physics of power dissipation in

CMOS devices.

UNIT 2

Device & Technology Impact on Low Power: Dynamic

dissipation in CMOS, Transistor sizing & gate oxide

thickness, Impact of technology Scaling, Technology & 

Device innovation

UNIT 3

Power estimation, Simulation Power analysis: SPICE circuit

simulators, gate level logic simulation, capacitive power

estimation, static state power, gate level capacitance

estimation, architecture level analysis, data correlation

analysis in DSP systems, Monte Carlo simulation.

Page 4: LowPowerDesignMOSCAP

5/14/2018 LowPowerDesignMOSCAP - slidepdf.com

http://slidepdf.com/reader/full/lowpowerdesignmoscap 4/43

 

Agenda

UNIT 4

Probabilistic power analysis: Random logic signals,

probability & frequency, probabilistic power analysis

techniques, signal entropy.

UNIT 5

Low Power Design Circuit level: Power consumption in

circuits. Flip Flops & Latches design, high capacitance

nodes, low power digital cells library

UNIT 6Logic level: Gate reorganization, signal gating, logic

encoding, state machine encoding, pre-computation logic

Page 5: LowPowerDesignMOSCAP

5/14/2018 LowPowerDesignMOSCAP - slidepdf.com

http://slidepdf.com/reader/full/lowpowerdesignmoscap 5/43

 

Agenda

UNIT 7

Low power Architecture & Systems: Power & performance

management, switching activity reduction, parallel

architecture with voltage reduction, flow graph

transformation, low power arithmetic components, low

power memory design.

UNIT 8

Low power Clock Distribution: Power dissipation in clock

distribution, single driver Vs distributed buffers, Zero skew

Vs tolerable skew, chip & package co design of clock

network

UNIT 9Algorithm & Architectural Level Methodologies: Introduction,

design flow, Algorithmic level analysis & optimization,

Architectural level estimation & synthesis.

Page 6: LowPowerDesignMOSCAP

5/14/2018 LowPowerDesignMOSCAP - slidepdf.com

http://slidepdf.com/reader/full/lowpowerdesignmoscap 6/43

 

Reference Books

1. Kaushik Roy, Sharat Prasad, “Low-Power CMOS VLSI

Circuit Design” Wiley, 2000

2. Gary K. Yeap, “Practical Low Power Digital VLSI

Design”, KAP, 2002

3. Rabaey, Pedram, “Low Power Design Methodologies”

Kluwer Academic, 19974. Web materials… 

Page 7: LowPowerDesignMOSCAP

5/14/2018 LowPowerDesignMOSCAP - slidepdf.com

http://slidepdf.com/reader/full/lowpowerdesignmoscap 7/43

Curtosy: Copyright Agrawal & Srivaths, 2007

Low-Power Design and Test,Lecture 1

7

ISSCC, Feb. 2001, Keynote

“Ten years from now,

microprocessors will run at 10GHz to30GHz and be capable of processing1 trillion operations per second – 

about the same number ofcalculations that the world's fastestsupercomputer can perform now.

“Unfortunately, if nothing changes

these chips will produce as much 

heat, for their proportional size, as a nuclear reactor. . . .”  

Patrick P. Gelsinger Senior Vice PresidentGeneral Manager

Digital Enterprise GroupINTEL CORP.

 

Page 9: LowPowerDesignMOSCAP

5/14/2018 LowPowerDesignMOSCAP - slidepdf.com

http://slidepdf.com/reader/full/lowpowerdesignmoscap 9/43

Copyright Agrawal & Srivaths, 2007 Low-Power Design and Test,Lecture 1 9

VLSI Chip Power Density

4004 

8008 8080 

8085 

8086 

286 386 

486 Pentium®  

P6 

10 

100 

1000 

10000 

1970  1980  1990  2000  2010 

Year 

   P  o

  w  e  r   D  e  n  s   i   t  y   (   W

   /  c  m   2   )

Hot Plate 

Nuclear 

Reactor 

Rocket 

Nozzle 

Sun’s Surface 

Source: Intel 

 

Page 10: LowPowerDesignMOSCAP

5/14/2018 LowPowerDesignMOSCAP - slidepdf.com

http://slidepdf.com/reader/full/lowpowerdesignmoscap 10/43

Copyright Agrawal & Srivaths, 2007 Low-Power Design and Test,Lecture 1 10

SIA Roadmap for Processors (1999)

  Year 1999 2002 2005 2008 2011 2014

Feature size (nm) 180 130 100 70 50 35

Logic transistors/cm2 6.2M 18M 39M 84M 180M 390M

Clock (GHz) 1.25 2.1 3.5 6.0 10.0 16.9

Chip size (mm2) 340 430 520 620 750 900

Power supply (V) 1.8 1.5 1.2 0.9 0.6 0.5

High-perf. Power (W) 90 130 160 170 175 183

Source: http://www.semichips.org  

 

Page 11: LowPowerDesignMOSCAP

5/14/2018 LowPowerDesignMOSCAP - slidepdf.com

http://slidepdf.com/reader/full/lowpowerdesignmoscap 11/43

 Power values of processors [ISSCC]

 

Page 12: LowPowerDesignMOSCAP

5/14/2018 LowPowerDesignMOSCAP - slidepdf.com

http://slidepdf.com/reader/full/lowpowerdesignmoscap 12/43

 Problems found on first spin of silicon in 180/130 nm

 

Page 13: LowPowerDesignMOSCAP

5/14/2018 LowPowerDesignMOSCAP - slidepdf.com

http://slidepdf.com/reader/full/lowpowerdesignmoscap 13/43

Trends in Power conumption

 

Page 14: LowPowerDesignMOSCAP

5/14/2018 LowPowerDesignMOSCAP - slidepdf.com

http://slidepdf.com/reader/full/lowpowerdesignmoscap 14/43

Trends in power components

Component 90nm 65nm 45nm

Dynamic Power

per sq.cm

1X 1.4X 2X

Static Powerper sq. cm

1X 2.5X 6.5X

Total Power persq.cm

1X 2X 4X

 

Page 15: LowPowerDesignMOSCAP

5/14/2018 LowPowerDesignMOSCAP - slidepdf.com

http://slidepdf.com/reader/full/lowpowerdesignmoscap 15/43

Dynamic vs Static power

 

Page 16: LowPowerDesignMOSCAP

5/14/2018 LowPowerDesignMOSCAP - slidepdf.com

http://slidepdf.com/reader/full/lowpowerdesignmoscap 16/43

Sources of Power Consumption

Logic transitions

PD proportional to V, voltage swing, av.Switched capacitance/cycle

n-subnetwork and p-subnetworkconducting simultaneously.

Depends on input-output transitions

When input to and output from arenot changing

Current flow when ip is stable.

 

Page 17: LowPowerDesignMOSCAP

5/14/2018 LowPowerDesignMOSCAP - slidepdf.com

http://slidepdf.com/reader/full/lowpowerdesignmoscap 17/43

Designing for Low power

Reducing supply voltage

Reducing Vt

Frequency of transition or probabilityof transition.

 

Page 18: LowPowerDesignMOSCAP

5/14/2018 LowPowerDesignMOSCAP - slidepdf.com

http://slidepdf.com/reader/full/lowpowerdesignmoscap 18/43

MIS Structure as a tool to study surfaces

Metal

x

y

Insulator

Semiconductor- p-type

d

 

Page 19: LowPowerDesignMOSCAP

5/14/2018 LowPowerDesignMOSCAP - slidepdf.com

http://slidepdf.com/reader/full/lowpowerdesignmoscap 19/43

MOS (Metal-Oxide-Semiconductor)

Assume work function of metal and semiconductor are same.

 

Page 20: LowPowerDesignMOSCAP

5/14/2018 LowPowerDesignMOSCAP - slidepdf.com

http://slidepdf.com/reader/full/lowpowerdesignmoscap 20/43

MOS materials

 

Page 21: LowPowerDesignMOSCAP

5/14/2018 LowPowerDesignMOSCAP - slidepdf.com

http://slidepdf.com/reader/full/lowpowerdesignmoscap 21/43

MOS structure

Shown is the semiconductor substrate with a thin oxide layer and atop metal contact, also referred to as the gate.

A second metal layer forms an Ohmic contact to the back of thesemiconductor, also referred to as the bulk. The structure shown has a p-type substrate. We will refer to this as an n-type MOS capacitor since the

inversion layer contains electrons.

 

Page 22: LowPowerDesignMOSCAP

5/14/2018 LowPowerDesignMOSCAP - slidepdf.com

http://slidepdf.com/reader/full/lowpowerdesignmoscap 22/43

Terminologies

Workfunction: Minimum energy necessary for a metal

electron in metal vacuum system to escape into vacuum from an initialenergy at a fermi level. In metal semiconductor system, still it can beused by replacing free space permittivity ε0 semiconductor permittivityε

Electron Affinity: The difference in potential between an

electron at the vacuum level and electron at the bottom of theconduction band. Х 

Bandgap: Is the the energy difference between the top of the

valence band and the bottom of the conduction band in thesemicondutor Eg

 

Page 23: LowPowerDesignMOSCAP

5/14/2018 LowPowerDesignMOSCAP - slidepdf.com

http://slidepdf.com/reader/full/lowpowerdesignmoscap 23/43

Energy bandgap (Eg) in semiconductor

 

Page 24: LowPowerDesignMOSCAP

5/14/2018 LowPowerDesignMOSCAP - slidepdf.com

http://slidepdf.com/reader/full/lowpowerdesignmoscap 24/43

Structure and principle of operation

To understand the different bias modes of an MOS we consider 3

different bias voltages.

below the flatband voltage, V FB 

between the flatband voltage and the threshold voltage, V T

, and

larger than the threshold voltage.

These bias regimes are called the accumulation, d epletion and

inversion mode of operation.

 

Page 25: LowPowerDesignMOSCAP

5/14/2018 LowPowerDesignMOSCAP - slidepdf.com

http://slidepdf.com/reader/full/lowpowerdesignmoscap 25/43

Structure and principle of operation

Charges in a MOS structure under accumulation,depletion and inversion conditions

Page 26: LowPowerDesignMOSCAP

5/14/2018 LowPowerDesignMOSCAP - slidepdf.com

http://slidepdf.com/reader/full/lowpowerdesignmoscap 26/43 

Page 27: LowPowerDesignMOSCAP

5/14/2018 LowPowerDesignMOSCAP - slidepdf.com

http://slidepdf.com/reader/full/lowpowerdesignmoscap 27/43

Four modes of MOS operation

The four modes of operation of an MOS structure:

Flatband,

Depletion,

Inversion and

Accumulation. 

Flatband conditions exist when no charge is present in thesemiconductor so that the Si energy band is flat.

Surface depletion occurs when the holes in the substrate are pushedaway by a positive gate voltage.

A more positive voltage also attracts electrons (the minority carriers) tothe surface, which form the so-called inversion layer.

Under negative gate bias, one attracts holes from the  p-type substrateto the surface, yielding accumulation

 

Page 28: LowPowerDesignMOSCAP

5/14/2018 LowPowerDesignMOSCAP - slidepdf.com

http://slidepdf.com/reader/full/lowpowerdesignmoscap 28/43

Effects of Real Surfaces

Page 29: LowPowerDesignMOSCAP

5/14/2018 LowPowerDesignMOSCAP - slidepdf.com

http://slidepdf.com/reader/full/lowpowerdesignmoscap 29/43

Page 30: LowPowerDesignMOSCAP

5/14/2018 LowPowerDesignMOSCAP - slidepdf.com

http://slidepdf.com/reader/full/lowpowerdesignmoscap 30/43 

Page 31: LowPowerDesignMOSCAP

5/14/2018 LowPowerDesignMOSCAP - slidepdf.com

http://slidepdf.com/reader/full/lowpowerdesignmoscap 31/43

Charge Distribution

 

Page 32: LowPowerDesignMOSCAP

5/14/2018 LowPowerDesignMOSCAP - slidepdf.com

http://slidepdf.com/reader/full/lowpowerdesignmoscap 32/43

Key Definitions

 

Page 33: LowPowerDesignMOSCAP

5/14/2018 LowPowerDesignMOSCAP - slidepdf.com

http://slidepdf.com/reader/full/lowpowerdesignmoscap 33/43

Potential Definition

 

Page 34: LowPowerDesignMOSCAP

5/14/2018 LowPowerDesignMOSCAP - slidepdf.com

http://slidepdf.com/reader/full/lowpowerdesignmoscap 34/43

Depletion Width

 

Page 35: LowPowerDesignMOSCAP

5/14/2018 LowPowerDesignMOSCAP - slidepdf.com

http://slidepdf.com/reader/full/lowpowerdesignmoscap 35/43

Gate Voltage (depletion case)

 

Page 36: LowPowerDesignMOSCAP

5/14/2018 LowPowerDesignMOSCAP - slidepdf.com

http://slidepdf.com/reader/full/lowpowerdesignmoscap 36/43

MOS capacitor structure

 

Page 37: LowPowerDesignMOSCAP

5/14/2018 LowPowerDesignMOSCAP - slidepdf.com

http://slidepdf.com/reader/full/lowpowerdesignmoscap 37/43

MOS capacitor- accumulation

 

Page 38: LowPowerDesignMOSCAP

5/14/2018 LowPowerDesignMOSCAP - slidepdf.com

http://slidepdf.com/reader/full/lowpowerdesignmoscap 38/43

Accumulation occurs typically for -ve voltages where the -ve charge on

the gate attracts holes from the substrate to the oxide-semiconductor

interface.

Depletion occurs for positive voltages.

The +ve charge on the gate pushes the mobile holes into the substrate.

Therefore, the semiconductor is depleted of mobile carriers at the

interface and a -ve charge, due to the ionized acceptor ions, is left in the

space charge region.

MOS capacitor- accumulation

 

Page 39: LowPowerDesignMOSCAP

5/14/2018 LowPowerDesignMOSCAP - slidepdf.com

http://slidepdf.com/reader/full/lowpowerdesignmoscap 39/43

MOS capacitor- flat band

 

Page 40: LowPowerDesignMOSCAP

5/14/2018 LowPowerDesignMOSCAP - slidepdf.com

http://slidepdf.com/reader/full/lowpowerdesignmoscap 40/43

The voltage separating the accumulation and depletion regime is referred

to as the flatband voltage, V FB. 

The flatband voltage is obtained when the applied gate voltage equals

the workfunction difference between the gate metal and the

semiconductor.

If there is a fixed charge in the oxide and/or at the oxide-silicon

interface, the expression for the flatband voltage must be modified

accordingly.

MOS capacitor- flat band

 

Page 41: LowPowerDesignMOSCAP

5/14/2018 LowPowerDesignMOSCAP - slidepdf.com

http://slidepdf.com/reader/full/lowpowerdesignmoscap 41/43

MOS capacitor- depletion

 

Page 42: LowPowerDesignMOSCAP

5/14/2018 LowPowerDesignMOSCAP - slidepdf.com

http://slidepdf.com/reader/full/lowpowerdesignmoscap 42/43

MOS capacitor- inversion

 

Page 43: LowPowerDesignMOSCAP

5/14/2018 LowPowerDesignMOSCAP - slidepdf.com

http://slidepdf.com/reader/full/lowpowerdesignmoscap 43/43

?