Low temperature atmospheric pressure discharge plasma processing.pdf

download Low temperature atmospheric pressure discharge plasma processing.pdf

of 9

Transcript of Low temperature atmospheric pressure discharge plasma processing.pdf

  • 7/26/2019 Low temperature atmospheric pressure discharge plasma processing.pdf

    1/9

  • 7/26/2019 Low temperature atmospheric pressure discharge plasma processing.pdf

    2/9

    94

    T. Oda et aL /Journal of Electrostatics 35 (1995) 93-101

    a g a s m i x i n g p o i n t a f te r a c e r a m i c

    r e a c t o r a n d g a s m i x i n g s p a c e w i t h

    a lo w pr e ss u re l m e r c u r y l am p U V

    s o u r c e ) i s n e w l y at t ac h e d . T y p i c a l

    e x p e r i m e n t a l p r o c e d u r e i s a s

    fo l lows:

    a . D I R E C T : p l a s m a p r o c e s s i n g

    a f t e r m i x i n g

    M i x i n g P o i n t B )

    o f c o n t a m i - n a t e d

    a i r con tami -

    n a n t i s e x p o s e d t o

    p l a s m a )

    b . I N D I R E C T : m i x i n g o f c o n -

    t a m i n a t e d a i r a n d

    p l a s m a p r o c e s s e d

    c l e a n a i r a t m i x i n g

    p o i n t A .

    c . U V : p o w e r o n o f a U V

    l a m p U V

    ir radiat ion) .

    The c e r amic r eac to r t e s t ed i s 10

    m m i n i n n e r d i a m e t e r a n d 1 1 5 m m

    l o n g d r i v e n b y a s t a n d a r d p o w e r

    s u p p l y o f 5 K h z .

    2 2 S a m p l e G a s e s

    As con taminan t s , t yp ica l o rgan ic

    m a t e r i a l s d e c o m p o s e d a r e

    a

    MixingTank Nz

    b) total experimental setup

    a) cross section o f a reactor

    It , UV Lump

    ,~/Mixing Point A ~

    ~ e r a m i c Reactor

    Fl0wl I Flow[

    M et e~ t Mete~

    L~

    02 Air Tank

    F i g . 1 S c h e m a t i c d i a g r a m o f S P C P e x p e r i m e n t a l s e tu p .

    t r i ch lo roe thy lene : CICH=CCI2, mo lecu la r w e igh t : 131.39 , spec i f i c g r av i ty : l . 47 , vapor

    p ressu re 60 mmHg a t 20 .5~C.

    b . t e t r ach lo romethane : CCI4 vapo r p r essu re 89 .5 m m Hg a t 20C. f o rb idden f rom 1996)

    c . 1 ,1 ,1 -t r ich lo roe thane : CH3CCI3 , vapo r p r essu re 100 m mH g a t 20C. f o rb idden f rom

    1996)

    d . 1 ,2 -d ich lo roe thane : CH2CICH2CI va por p r essu re 61 mm Hg a t 20C.

    e . d ichlo rom ethan e: CH2C12, 349 m m H g at 20~C

    f . ace tone : CH3COCH~, mo lecu la r we igh t :58 .08 , spec i f i c g r av i ty :0 .79 ,

    vapor p r essu re :200 mmHg a t 22 .7C.

    A g i v e n a m o u n t o f l i q u i d w a s s a m p l e d b y a m i c r o s y r in g e a n d w a s i n j e c t e d i n to a p r e s s u r iz e d

    tank con ta in ing d ry compressed a i r was mixed a t up to 6 a tmospher i c p r essu re .

    2 3 E x p e r i m e n t a l P r o c e d u r e s

    T w o d i f fe r e n t s e r i e s o f e x p e r i m e n t s w e r e d o n e a s f o l l o w s .

    2.3.1. Decomposition Mechanism

    I n o r d e r t o h a v e a g o o d u n d e r s ta n d i n g o f t h e d e c o m p o s i t io n m e c h a n i s m , a n I N D I R E C T

    me thod was n ew ly t e s t ed where the c l ean a ir was in t roduced in to the ce r am ic r eac to r. Af t e r

  • 7/26/2019 Low temperature atmospheric pressure discharge plasma processing.pdf

    3/9

    1 . Oda e t al . IJourn al of Electrostatics 35 (1995) 93-101 95

    plasma processing, the clean air was mixed with other VOC-contaminated air at mixing point

    A. A small pen-type low pressure mercury lamp (Hamamatsu Photonics, L937-02, input

    power: 5W), is inserted in a mixing gas chamber of contaminated gas and processed air shown

    in Fig. 1.

    Pure nitrogen or pure oxygen gas are also tested as carrier gas in place of clean dry air.

    Trichloroethylene and acetone are tested as contaminants and a large difference of

    decomposition performance was recognized. Those data were compared with other typical

    data obtained by the standard process (DIRECT method).

    2 . 3 .2 A N e w S a m p l e T e s t

    Decomposition performance of four new halogenated organic compounds Co, c, d, and e

    in 2.) was tested to know the applicability of SPCP for halogenated organic contaminant

    decomposition. Especially, the two which will be forbidden in the near future.

    3.RESULTS AND DISCUSSIONS

    3 .1 D I R E C T a n d I N D I R E C T D e c o m p o s i t i o n T e s t s fo r T r i c h l o r o e t h y l e n e a n d A c e t o n e

    3 . 1 . 1 T r i c h l o r o e t h y l e n e

    3.1.1.1 DIRECT and INDIRECT Effects

    The decomposition rates of trichlo- ~

    roethylene in air versus discharge elect-tic ;~

    power consumption at the reactor are g.

    shown in Figs. 2 and 3. Fig. 2 was

    recorded with a low flow rate; that is, a

    Ca

    flow rate of the 1,000 ppm

    trichloroethylene in air at 400 ml/min and ~

    Q)

    the rate of pure air was 712 ml/min.

    In the case of INDIRECT, the time

    interval after the plasma processing (gas

    flow time from the reactor to the mixing

    point A) is 0.24 seconds and the final

    concent-ration of the trichloroethylene is

    360 ppm. At power consumption of only

    1 W, the decomposition rate is already 40 ~ 100

    %, but it does not increase at higher o

    ~.~

    electric power. At a power of more than ~

    10 or 15 W, it decreases drastically to zero ~

    in the case of the INDIRECT method.

    This tendency is similar to ozone C~

    generation. High power causes high

    temperature of the reactor wall and the

    produced ozone might be decomposed at ~

    high temperature. FAN in Fig. 2 means

    fan cooling of the reactor with cooling

    fins. Cooling by fan increases the

    decomposition rate (Fig.3) occurs. In the

    case of DIRECT, more than 90 %

    100 f ~ - -

    80 / --,,- :DIRECT

    -i- :INDIRECT

    60 -*-:INDIRECT+FAN

    40 r,~'m''~:a- -~'*'--

    20 ,

    0 ' : '.

    ----' --

    0 10 20 30

    Power (W)

    Fig.2 Decomposition rate of trichloroethylene

    in air for the low flow rate.

    80 ~ i =

    40 : ,IY

    .. .

    CT

    20 ..~-:INDIRECT

    d

    - t -. : I N D I R E C T F A N

    0 10 20 30

    Power (W)

    Fig.3 Decomposition rate of vichloroethylene in

    air for the high flow rate.

  • 7/26/2019 Low temperature atmospheric pressure discharge plasma processing.pdf

    4/9

    96 T. Oda et aL /dournal o f Electrostatics 35 (1995) 93-101

    o~ 100 F Interval Tim e ~ 100 Interval T im e ~.-:10cm(0.08sec)

    ~ 80 ~ f/ : ' ' ~ [ -*-:10cm(0'24sec) I ~ I ~

    .... :70cm (l.68sec) c~ 80 w. :70cm(0.56sec)

    6

    ~

    6

    8

    20 ~ 20

    ~

    0 10 20 30 ~ 0 10 20 30

    Power (W) Power (W)

    (a) low flow rate (b) high flow rate

    Fig . 4 De com posit ion ra te of 1 ,000 ppm tr ichloroethylene in a ir .

    deco mp osit ion occu rs a t only 5 W electr ic p owe r. On the other hand, in Fig .3 a t the high

    flow rate (1 ,000 ppm tr ichloroethylene: 1 ,172 ml/min and air : 2 ,000 ml/min, f inal

    concentra t ion: 370 ppm), the t ime interval is only 0 .08 seconds, and the decomposit ion ra te

    gradua lly increases with e lectric p ow er for DIR EC T and an abrupt decrease o f the

    decomposit ion ra te ( the maximum is not so high as that for DIRECT) at h igh e lectr ic power

    is not so apparent. A slight FA N effect (a few %) is detected. In the case o f f luorocarbon

    decomp os i t ion , no decompos i t ion w as de tec ted b y IND IRE CT o r U V i rrad ia tion . 3~

    A t ime interval between the plasm a processing and m ixing with contam inated gas at point

    A, m ay a f fec t the decomp os i t ion ra te tha t was sugges ted by Y amam oto . ~} Tw o jo in t p ipes o f

    d i f fe ren t leng ths o f 0.1 m o r 0 .7 m be tween the ou t le t o f the p lasma reac to r and the mix- ing

    point A of two gases was tested to check radical species and their li fe times. Results are

    show n in Figs. 4 (a) and (b) where the t ime in parenthesis was the e lapsed t ime before m ixing.

    In the shortest case , the decomposit ion ra te is the largest which is in good agreement with

    the normal radical o r ozo ne li fe t ime effects . Ho we ver , the effect o f longer t ime is not

    apparent and the results suggest that the ozone in the a ir created by SPCP may be the main

    decomposit ion source.

    100

    3.1 .1 .2 Carr ier Gas Dependence

    In place o f air, pure nitrog en or :=_ 80

    oxygen gas was used as the carr ier gas .

    E 60

    Figures 5 and 6 show such results . In ~ 40

    n i t rogen car rier , the DIR EC T method can

    eas i ly decom pose t r i-ch lo roe thy lene up to ~ 20

    99%, bu t no t r ich lo roe thy lene can be ~ 0 -

    d e c o m p o s e d b y I N D I RE C T a t a ll. 0

    Ni t rogen rad ica ls o r h igh energy e lec t rons

    in t h e p l a s m a p r o d u c e d b y S P CP m a y

    des troy trichloroethylene. The ir life time

    may be ve ry smal l (o f mi l l i second o rder

    - - - - : D I R E C T

    - i v : D I R E C T + U V

    - - : I N D I R E C I + F A N

    - n - : I N D I R E C T + F A N + U V

    - ~ . . . . . . . . . ~ . X X . . . . . . X

    10 20 30

    Power (W)

    Fig . 5 Decom pos i t ion o f t r ich lo roe thy lene in N

    for the low f low rate .

    ) and any ( less than a few percent which is the detect ion l imit) decomposit ion is not detected

    b y t h e I N D I RE C T m e th o d.

    3 .1 .1 .3 UV Irradiat ion Effects

    As the mixing cel l contains a UV lamp, the UV irradiat ion effect is a lso shown in Figs.

  • 7/26/2019 Low temperature atmospheric pressure discharge plasma processing.pdf

    5/9

    7 . Oda et al./Journal of Electrostatics 35 (1995) 93-101 97

    5 and 6 with the mark UV. The

    decomposition rate of trichloroethylene is

    more than 95 for the low flow rate

    (1,116 ml/min in total) or 65 for the

    high flow rate (3,172 ml/min) with slight

    (weak) UV light irradiation without

    plasma discharge. The input power of

    the low pressure mercury lump ( source as

    calibration) is only 5 W and total UV

    light intensity (2553A) may be less than 1

    (30mW); that is, the UV decomposition

    effect is much stronger than SPCP energy.

    In the oxygen carrier, the UV effect is

    greater and roughly 80 or 100

    trichloroethytene are decomposed by the

    very weak UV irradiation. Sometimes,

    the UV irradiation effects might be

    reduced (decomposit ion rate decreases) by

    plasma discharge which is assumed to be

    ozone and temperature effects. In a

    nitrogen carrier, the UV effect is not so

    large and constant; that is, the

    decomposition rate is 20 for the low

    flow rate and 5 for the

    high flow rate.

    3.1.2 Acetone

    3.1.2.1 DIRECT and INDIRECT

    The decomposition performance of

    acetone in air by DIRECT or INDIRECT

    SPCP is shown in Fig.7 where only the

    DIRECT method can decompose 90

    acetone at 30 W for the low flow rate

    (1,000 ppm acetone in air:400 ml/min +

    dry air:716ml/min). The maximum

    decomposition rate by INDIRECT method

    is less than 20 . For the high flow rate

    (1,000 ppm acetone air: 1172ml/min,

    air:2,000ml/min), the decomposition

    rate is very low and the maximum rate is

    only 60 at 30W by DIRECT shown in

    Fig.8. For the same high flow, the de-

    composition rate by INDIRECT is roughly

    1oo ~ . . . ~

    s

    : - - -0 - - : D I R E C T

    4o

    - . J ,. : I N D I R E C T * F A N

    20 - ~ :INDIRECT+FAN+UV

    o

    0

    0 10 20 3o

    Power (W)

    Fig. 6 Decomposition of trichloroethylene in

    oxygen for the high flow rate.

    1 0 0

    ;~ 80

    ~

    6o

    ~ 4o

    N 20

    o

    ~ o

    o

    o l i

    I n ' - a - D I R E C T + U V

    t . . b . I N D I R E C T + F A N

    / - ~ - I N D I R E C T F A N + U V

    1 0 2 0 3 0

    Power (W)

    Fig. 7 Decomposition of acetone in air for the

    low flow rate.

    100

    ?-2 80

    ~ 6

    ~ 4o

    ~ 20

    ~ o

    : D I R E C T

    - t v : D I R E C T + U V

    - - t ,- : I N D I R E C T + F A N

    - ~ - : I N D I R E C T + F A N + U V ~ ~ ~ - - . - ~ l

    . j r ' -

    0 10 20 30

    Power (W)

    Fig. 8 Decomposition of acetone in air for the

    high flow rate.

    the same as that for the small flow rate, 20 . All decomposition rates of acetone are much

    smaller than rates of trichloroethylene at the same conditions indicating hat the decomposition

    of acetone is difficult. For the higher flow rate, the maximum decomposition rate is less than

    70 by DIRECT. By gas-chromato-analysis, no apparent difference of processed products

  • 7/26/2019 Low temperature atmospheric pressure discharge plasma processing.pdf

    6/9

    98 T. Oda et al./Yournal of Electrostatics 35 (1995) 93-101

    were de tec ted .

    100

    3 . 1 .2 . 2 C a r r i e r G a s a n d U V E f f e c t s

    : 80

    W h e n t h e c a r r i e r g a s i s o x y g e n , t h e ~

    d e c o m p o s i t i o n r a t e o f a c e t o n e i s v e r y ~ - 6 0

    h i g h c o m p a r e d w i t h t h e a i r c a r r ie r w h i c h ~ 4 0

    i s show n in F igs . 9 and 10 . Espe c ia l ly , :~

    t h e m a x i m u m d e c o m p o s i t i o n r a te s o f ~ 2 0

    a c e t o n e b y I N D I R E C T a r e v e r y h i g h , a s ~ 0

    60 % fo r the low f low ra te o r 40 % fo r ~ /

    t h e h i g h f l o w r a t e c o m p a r e d w i t h t h e

    c a s e i n a i r o r n i tr o g e n . O z o n e o r O

    s h o u l d b e v e r y e f f e c t iv e i n d e c o m p o s i n g F i g . 9

    a c e t o n e . T h e U V i r ra d i a t i o n e f f ec t i s

    v e r y s m a l l , s i m i l a r t o t h e a i r c a r r i e r

    a l t h o u g h U V i s v e r y e f f e c t i v e i n

    d e c o m p o s i n g t r i c h l o ro e t h y l e n e . T h e ~ 1 00

    t im e in te rva l e f f ec t i s sho wn in F ig . 11 . o

    Fo r the h igh gas f low ra te , the :~ 80

    d e c o m p o s i t i o n r a te f o r a s h o r t p a t h a n d ~ - 6 0

    l o w e l e c t r i c a l p o w e r i s v e r y h i g h a t 6 0

    40

    % , b u t i t r e d u c e s t o t h e s a m e l e v e l f o r a

    l o n g g a s p i p e w h e n t h e i n p u t e l e c t r ic 8 2 0

    p o w e r i s l a rg e . F o r t h e l o w f l o w r a t e ~ 0

    o f ca r r i e r gas , 10 o r 20 % h ighe r ~

    d e c o m p o s i t i o n r a te ( c o n s t a n t to b e 6 0 % )

    o c u r s i n m o s t p o w e r c o n s u m p t i o n r a n g e.

    W h e n t h e c a r r i e r g a s i s n i t r o g e n , th e

    d e c o m p o s i t i o n r a t e o f a c e t o n e is l o w . F i g .

    C o m p a r e d w i t h t h e a i r c a r r i e r , t h e

    d e c o m p o s i t i o n r a te i s 5 o r 1 0 % s m a l l e r

    b y D I R E C T s h o w n i n F i g . 1 2 f o r t h e l o w ~ 1 00

    f low ra te . Th e r a te i s l e s s than 5 %

    ( w i t h i n e r r o r l e v e l ) w h i c h i s m u c h :~ 8 0

    sm al le r tha n tha t fo r the a i r ca r r i e r by ~ - 60

    I N D I R E C T . O x i d a t i o n o f a c e t o n e $

    s h o u l d b e t h e e s s e n t i a l f o r :~ 4 0

    dec om pos i t io n . ~6 20

    )

    0

    e , :

    F o u r N e w H a l o ge n a te d V O C s

    F i g u r e 1 3 s h o w s o n e e x a m p l e o f

    t e t r a c h l o r o m e t h a n e d e c o m p o s i t i o n

    p e r f o r m a n c e v e r s u s e l e c t r i c p o w e r

    c o n s u m p t i o n w h e r e t h e r e s i d e n c e t im e i s

    c a l c u l a t e d a s t h e r e a c t o r v o l u m e d i v i d e d

    [

    + : D I R E C T

    ~ - i - : D I R E C T + U V

    - k . : I N D I R E C T + F A N

    - ~ - : IN D I R E C T + U V + F

    A N

    0 10 20 30

    Power (W )

    A c e t o n e d e c o m p o s i t i o n i n o x y g e n f o r th e

    low f low ra te .

    Fig. 11

    . a / 9 < , - - x

    - - Jr - : I I ~ C T + F M q

    - - : l l ~ l l ~ f f r + F . ~ q + l J V

    0 10 20 30

    Power (W )

    1 0 A c e t o n d e c o m p o s i t io n i n o x y g e n f o r th e

    h igh f low ra te .

    Interval Time

    --*- : l)cm(0.08sec)

    m. :70cm(0.56sec)

    _ r . - -

    0 10 20 30

    Power (W )

    A c e t o n e d e c o m p o s i t i o n i n o x y g e n f o r

    d i f f e r e n t m i x i n g t i m e i n t e r v a l .

    b y t h e g a s f l o w r a te . A v e r y h i g h d e c o m p o s i t i o n r a t e o f m o r e t h a n 9 5 % i s r e a l i z e d a t

    e l e c t r ic a l p o w e r c o n s u m p t i o n o f 3 0 - 4 0 W f o r 1 , 00 0 p p m t e t r a c h l o r o m e t h a n e i n a i r. W h e n

  • 7/26/2019 Low temperature atmospheric pressure discharge plasma processing.pdf

    7/9

    T . O d a e t a l . I J o u r n a l o f E l e c tr o s t a ti c s 3 5 ( 1 9 9 5 ) 9 3 - 1 0 1 99

    t h e c o n c e n t r a t i o n o f c o n t a m i n a n t is 1 0 0

    p p m , t h e h i g h e r d e c o m p o s i t i o n r a t e

    was r eco rded .

    T h e n e c e s s a r y e l e c t r i c p o w e r

    c o n s u m p t i o n t o d e c o m p o s e o n e

    m o l e o f c o n t a m i n a n t s i s sh o w n i n

    F i g . 1 4 w h e r e o r i g i n a l c o n t a m i - n a n t

    c o n c e n t r a t i o n fo r e a c h o f t e t r a e t h a n e ,

    t r i c h l o r o e t h a n e , d i - c h l o r o e t h a n e o r

    d i c h l o r o - m e t h a n e , i s 1 ,0 0 0 p p m . I n

    e v e r y c a se , t h e m i n i m u m p o w e r i s 2 -

    3 X 1 7 J / m o l e o r d e r. H o w e v e r , t h e

    d e c o m p o s e d p r o d u c t a n a l y s i s6) sugges ts

    t h a t t h e r e a r e m a n y i n t e r m e d i a t e b y -

    p r o d u c t s i n c l u d - i n g p o i s o n o u s m a t e r i a l s

    w h e n t h e d e c o m p o s i t i o n r a t e i s l e s s

    t h a n 6 0 o r 70 % . I n g e n e r a l , w h e n th e

    f l o w r a t e i s l a r g e ( s m a l l r e s i d e n c e

    t i m e ) , t h e n e c e s s a r y p o w e r t o

    d e c o m p o s e o n e m o l e o f V O C i s s m a l l.

    A t t h e d e c o m p o s i t io n

    r a t e o f 8 0 % , d i c h l o r o e t h a n e i s t h e

    e a s ie s t d e c o m p o s e d a m o n g f o u r V O C s

    a n d t r i c h l o r o e t h a n e i s t h e m o s t s t a b l e

    ( t h e m o s t d i f f i c u l t m a t e r i a l t o

    d e c o m p o s e ) . H o w e v e r , t h e d i f f e r e n c e

    i s o n l y f a c to r o f 2 o r 3 . A t t h e h i g h

    d e c o m p o s i t i o n r a t e , N z O i n c r e a s e s i n

    the p roduc t gas es .

    4 . C O N C L U S I O N S

    100

    -

    o

    :~ 80

    60

    E

    o

    40

    20

    0

    0

    , f i / - I - : D IR E C T + U V

    J --~ ,- : INDIR ECT

    ? - ~ - :INDIE , _ . , . . _ C I + U V. . . . .

    10 20 30

    P o w e r ( W )

    F i g . 1 2 A c e t o n e d e c o m p o s i t i o n i n n i t r o g e n fo r t h e

    l o w f l o w r a t e .

    100

    0

    :.-2_- 80

    6 0

    E

    o

    40

    20

    S P C P d e c o m p o s i t i o n p e r f o r m a n c e ~ 1 00

    o f 1 ,0 0 0 p p m v o l a t i l e o r g a n i c . ~ 8 0

    c o m p o u n d s ) V O C s ) i n a t m o s p h e r ic 8

    -~

    p r e s s u r e a i r , o x y g e n o r n i t r o g e n w a s E 6 0

    t e st e d . O x y g e n i s f o u n d t o b e t h e 8

    40

    mo s t des t ruc t ive ca r r i e r gas o f d i lu te c3

    V O C s . V O C s i n p u r e n i t r o g e n c a r ri e r , ~ 2 0

    e s p e c i a l l y t r i c h l o r o e t h y l e n e , c a n b e

    d e c o m p o s e d b y S P C P w h e n t h e

    c o n t a m i n a t e d g a s i s d i r e c t l y p r o c e s s e d .

    H o w e v e r , t h e V O C s d e c o m p o s i t i o n

    p e r fo r m a n c e b y t he I N D I R E C T m e t k o d

    ( p l a s m a p r o c e s s e d n i t r o g e n g a s i s F i g . 1 3

    m i x e d w i t h c o n t a m i n a t e d g a s ) , i s v e r y

    p o o r i n d i c a t i n g th e l i f e - t im e o f t h e

    at g

    / m'

    ,. .,-

    i , Residence Time

    ; .. --*- :0.3 9s

    ; - - :0 .76s

    .

    --- : 1.65s

    10 20 30 40

    P o w e r ( W )

    (a) 100 ppm

    ~ A _ , _ . A - . . . . . . . . . A ' . - i . . . . . .

    m - . l , - -

    , / , . .

    # A . -

    / J ~ T i m e

    t ' J - -- : 0 .3 9 s

    i~ J .... :0.76s

    ~ / - - : 1 .65s

    0 10 20 30 40

    P o w e r ( W )

    (b) 1 ,000 ppm

    D e c o m p o s i t i o n o f t e t ra c h l o ro m e t h a n e f o r

    1 0 0 a n d 1 , 0 0 0 p p m i n a i r b y S P C P .

  • 7/26/2019 Low temperature atmospheric pressure discharge plasma processing.pdf

    8/9

    1O0 T O da et al /Journal f Electrostatics 35 (1995) 93-101

    n i t ro g e n r a d i c a l o r h i g h e n e r g y e l e c t ro n p r o d u c e d b y t h e p l a s m a w h i c h m a y d e c o m p o s e V O C s

    i s a s s u m e d t o b e v e r y sm a l l . O z o n e o r O r a d i c a l s e e m s t o b e v e r y e f fe c t iv e in d e c o m p o s i n g

    V O C s a s o p p o s e d t o t h e f l u o r o c a r b o n d e c o m p o s i t i o n t e s t ( w h e r e n o d e c o m p o s i t i o n w a s f o u n d

    b y t h e I N D I R E C T m e t h o d ) . F o r a l l 1 ,0 00 p p m c h lo r o - o r g a n ic c o m p o u n d s i n a i r

    ( t e tr ach lo romethane , t r ich lo roe thane , d i ch lo roe thane o r d i ch lo romethane) , t he necessa ry e l ec t r ic

    p o w e r to d e c o m p o s e 1 m o l e o f V O C s i s f o u n d t o b e 2 - 3 X 107 J / m o l e w h e n t h e

    d e c o m p o s i t i o n r a te i s 6 0 o r 7 0 % .

    Tr i ch lo roe thy lene was found to de com pose w i th a s l igh t ir r ad ia t ion o f UV l igh t , bu t t he

    m e c h a n i s m i s n o t y e t u n d e r s to o d .

    M uch fu r the r r esea r ch shou ld be done fo r f u r the r p r ac t i ca l app l i ca t ion o f SPC P gas con t ro l .

    R E F E R E N E S

    1 ) S . M a s u d a N o n - E q u i l i b r i u m P l a s m a C h e m i c a l P r o c e s s P P C P a n d S P C P f o r C o n t r o l o f

    NO x, Sox and Other Gaseo us Po l lu t an t s, P roc .4 th In t .Conf .ESP pp .615-623(1990)

    2 ) S . M a s u d a

    e t a l ,

    A C e r a m i c - B i a s e d O z o n i z e r U s i n g H i g h F r e q u e n c y S u r f ac e D i s c h a rg e ,

    IEEE Trans . IA-24 , pp .223-231(1988)

    3 ) T . O d a et a l , A t m o s p h e r i c P r e s s u r e D i s c h a rg e P l a s m a P r o c e s s i n g f o r G a s e o u s A i r

    Con tam inan t s , IEEE Trans . IA-29 , pp .787-792(1993)

    4 ) T . O d a e t a l , D e c o m p o s i t io n o f G a s e o u s O r g a n i c C o n t a m i n a n t s b y S u r f ac e D i s c h a r g e

    I n d u c e d P l a s m a C h e m i c a l P r o c e s s i n g - S P C P , C o n f . R e c . o f I E E E / I A S 1 99 2 A n n .

    M ee t ing pp . 1570-1574(1992) .

    5 ) T . Y a m a m o t o : p r i v a t e c o m m u n i c a t i o n .

    6 ) t o be p r esen ted in fu tu r e Confe r ence .

  • 7/26/2019 Low temperature atmospheric pressure discharge plasma processing.pdf

    9/9

    T . O d a e t a l . / J o u r n a l o f E l e c t r o st a t ic s 3 5 ( 1 9 9 5 ) 9 3 - 1 0 1

    101

    o E 16

    ~ 14

    ~ 12

    ~ : 10

    ~ . o 6

    u ~

    2

    u ~ 0

    o - 6

    o - , 1 6

    14

    ~ 12

    ~ ~0

    8

    ~ . ~ 6

    _ 4

    o o

    ud 2

    ~

    0

    ~ ..~

    Resi.dence Time - --*- 0.39s

    "'~" :0.76s

    - ~ - : 1 . 6 5 s

    ~ t

    ~ , ~ . . . . . A ~ -

    Residence Time ~ )

    - * - :0.39s

    .m . :0.76s ,

    - ~ - : l . 6 5 s

    ~ 1 8

    ~ 1 6

    o x

    ~ 12

    10

    ~.=__

    Z

    ~ 8

    ~ . ~ 6

    E o

    . ak

    20 40 60 80 100 0 20 40 60 80

    Rate o f Decom posi t ion (%) Ra te of Decom posi t ion (%)

    (a) tetrachloromethane (b) trichloroethane

    Residence Time

    ~ - : 0 : 3 9 s

    " '~" :0 .76s

    - ~ - : 1 . 6 5 s

    /,

    / '

    / ' . '

    / ~ ) ' l i . a n

    18

    ~ 1 4

    0 X

    -

    ~ 1 2

    ~ 10

    ._=

    o

    g~ 6

    ~ 4

    ~ ~ 2

    o

    100

    Residence Time i A

    - :0 .39s ,

    " '~" :0.76s

    - ~ - : 1 .6 5 s , . . i

    f

    / .

    o 0

    o . -

    20 40 60 80 100 : ' ~ 0 20 40 60 80

    . ~ '

    R a t e o f D e c o m p o s i t i o n ( % ) ~ ~ R a te o f D e c o m p o s i t i o n ( % )

    (c) 1,2 dichloroethane (d)di-chloromethane

    F i g . 1 4 N e c e s s a r y e l e c t r ic a l e n e r g y t o d e c o m p o s e 1 m o l e V O C s i n ai r w h e r e

    c o n c e n t r a t i o n i s 1 , 0 0 0 p p m .

    100