Low Carbon Policy in Controversy Basic Energy Plan (2010 ......0 990 年 2 000 年 2 005 年 2 008...

8
Low Carbon Policy in Controversy - after Fukushima & Durban Impacts of Fukushima & Durban Rd ti t ti l 2012 2020 2050 Reduction potential: 2012, 2020, 2050 What reduction target means? China-Japan Climate Policy Dialogue 2012 Beijing 06 January 2012 Shuzo Nishioka Shuzo Nishioka Institute for Global Environmental Strategies (IGES) Procedure to new integrated policy after Fukushima & Durban -2011 Basic Energy Plan (2010) with 9 new nuclear in 2020 Basic Law on GW Countermeasures to Diet 2020 R d (i t i )i by METI 2011 2020 Roadmap (interim) in Central Council of Envt. New Government policy :Less nuclear dependent society 2011 3.11 Fukushima New Government policy :Less nuclear dependent society Enhance saving energy and renewable Distributed system for robust energy supply Reform electricity management 12.17 Durban New full participation framework from 2050, decided until 2015 Japan: withdrawal from Kyoto legally-binded target after 2013 2011.12.21 Basic policy for Ene-Env by Central Council of Envt. Low carbon plan aim to 2050(80%) & 2030, Council of Natural Res. & EnergyRevise Basic Energy Japan Atomic Energy Commission Cost validation of Cabinet Office 2012 spring Integrated plan 2020 target options Global contribution Bi-lateral Offset Low carbon cities Demand side policy New energy with RE & less nuclear innovation policy electricity sources Integrated plan, concluded In summer Low carbon cities Smart community innovation policy New integrated policy of Energy and Envt. 2 hort Term: Kyoto Target can be cleared with a bit effort in following 2 years Before Fukushima: 25% reduction scenario (Dec 2010) Before Fukushima: 25% reduction scenario (Dec.2010) Domestic reduction only Assumption: Plus 9 Nuclear in 2020 plus 14 in 2030 over existing 54 Assumption: Plus 9 Nuclear in 2020, plus 14 in 2030 over existing 54 Mainly reduction in housing, office and transportation ⇒10-25% reduction: Technically possible with cost of 1-2% of GDP 4

Transcript of Low Carbon Policy in Controversy Basic Energy Plan (2010 ......0 990 年 2 000 年 2 005 年 2 008...

Page 1: Low Carbon Policy in Controversy Basic Energy Plan (2010 ......0 990 年 2 000 年 2 005 年 2 008 年 15% 20% 25% 次 エネルギ a ry Energy o n KL of Oi 0 0 5 8 ・Install at most

Low Carbon Policy in Controversy- after Fukushima & Durban

Impacts of Fukushima & DurbanR d ti t ti l 2012 2020 2050Reduction potential: 2012, 2020, 2050 What reduction target means?

China-Japan Climate Policy Dialogue 2012Beijing 06 January 2012Shuzo NishiokaShuzo NishiokaInstitute for Global Environmental Strategies (IGES)

Procedure to new integrated policy after Fukushima & Durban

-2011・Basic Energy Plan (2010)

with 9 new nuclear in 2020 ・Basic Law on GW

Countermeasures to Diet2020 R d (i t i ) i by METI

2011

・2020 Roadmap (interim) inCentral Council of Envt.

・New Government policy :Less nuclear dependent society20113.11 Fukushima

New Government policy :Less nuclear dependent society・Enhance saving energy and renewable・Distributed system for robust energy supply・Reform electricity management

12.17 Durban ・New full participation framework from 2050, decided until 2015・Japan: withdrawal from Kyoto legally-binded target after 2013

2011.12.21Basic policy for Ene-Env by

Central Council of Envt.⇒Low carbon plan aimto 2050(80%) & 2030,

Council of NaturalRes. & Energy⇒Revise Basic Energy

Japan Atomic Energy Commission⇒Cost validation of y

Cabinet Office

2012 spring Integrated plan

( ) ,⇒2020 target options・Global contribution・Bi-lateral OffsetLow carbon cities

・Demand side policy・New energy with RE& less nuclear・innovation policy

electricity sources

Integrated plan,concludedIn summer

・Low carbon cities・Smart community

innovation policy

New integrated policy of Energy and Envt. 2

hort Term: Kyoto Target can be cleared with a bit effort in following 2 yearsBefore Fukushima: 25% reduction scenario (Dec 2010)Before Fukushima: 25% reduction scenario (Dec.2010)

• Domestic reduction only

• Assumption: Plus 9 Nuclear in 2020 plus 14 in 2030 over existing 54Assumption: Plus 9 Nuclear in 2020, plus 14 in 2030 over existing 54

• Mainly reduction in housing, office and transportation

• ⇒10-25% reduction: Technically possible with cost of 1-2% of GDP

4

Page 2: Low Carbon Policy in Controversy Basic Energy Plan (2010 ......0 990 年 2 000 年 2 005 年 2 008 年 15% 20% 25% 次 エネルギ a ry Energy o n KL of Oi 0 0 5 8 ・Install at most

A 80% i i d ti b 2050 ill t l l diff t i t f t d It ill b

Japanese GHG reduction target (2050 80%, 2020 25% from 1990

100020

An 80% emission reduction by 2050 will create a largely different society from today. It will be

critical to strategically move forward under mid-term 2020 and 2030 targets that take into account

this eventual 80% reduction.

800

1000

16

18

20

ス排

出量

GDP and Greenhouse Gases Coupling ⇒ Decoupling

ions

al

ent)

en)

60012

14

DP

(兆円

室効果ガ

CO

2eq)

温室効果ガス

▲15% (90年比)GH

GE

mis

sC

O2

equi

va GHG

▲15%(Compared to 1990 level) P

(trill

ion

ye

400

6

8

10

の実

質G

O2・

温室

(億

トン

C

▲20% (90年比)

GDP

▲15% (90年比)

▲25% (90年比)

CO

2 an

d G

on to

ns o

f C (Compared to 1990 level)

s R

eal G

DP

▲20%(Compared to 1990 level)▲25%(Compared to 1990 level)400

200

2

4

6

日本

日本

のC

O (

▲80%

Oil CrisisOnset of Financial Crises

Rapid EconomicJapan’s Asset-Inflated

Japa

n’s

(100

mill

io

Japa

n’

80% Reduction

00

2

00 10 20 30 40 50 60 70 80 90 00 10 20 30 40 50

日 80%(90年比)

(100歳)

CO2(80歳)(60歳)(40歳)(20歳) (0歳)

Rapid Economic Growth

Bubble Economy (Compared to the 1990s)

19 19 19 19 19 19 19 19 19 19 20 20 20 20 20 20

1) ( )内の年齢は、各年に生まれた人が2050年を迎えたときの年齢

2) GDPの将来値は国立環境研究所 脱温暖化2050プロジェクト A・Bシナリオの想定値2) Future GDP values are assumed values based on scenarios A and B from the NIES Low Carbon

Society Research Project 2050 5

Historical and projected GHG emissions R d ti t i 2020GHG i i t d

160業務部門

(07年比32~49%)

▲15% ▲20% ▲25%to 2007

Reduction rate in 2020GHG emissions trends Commercial

120

140

(07年比 32 49%)

家庭部門(07年比33

~50%)

16%10%

17%10%

19%11%

5% 7% 8%

33%19%

40%24%

50%31%

14% 17% 19%19% 25% 31%

Industry

Residential

Residential

0 =

1

100

32%19%

40%25%

49%31%

13% 15% 18%

28%27%

31%30%

34%32%

1% 1% 1%

7%7%

1%1%

1%1%

Commercial

Transport

Non energyn in

199

0

60

80

産業部門(07年比16~19%)

非エネ部門

▲15% ▲20% ▲25%

18%13%

19%13%

22%14%

7% 1% 1%0% 0% 0%Non-energy

to 1990Industry

Industry

TransportEm

issi

on

20

40 運輸部門(07年比28~34%)

非エネ部門(07年比 +7~1%)※

18% 19% 22%5% 6% 8%

6%14%

16%8%

30%3%

20% 23% 27%

1%20%

11%11%

25%2%

19% 22% 27%

Industry

Residential

Commercial

Non-energy

p

0

1990

1995

2000

2005

2010

2015

2020

19% 22% 27%

19%18%

22%21%

25%23%

1% 1% 2%

20%20%

25%25%

26%26%

0% 0% 0%

Transport

Non-energyLeft: total reductionRight: upper: reduction within the sector

lower: reduction due to energy sector6

Projected greenhouse gas emissions [2020/2030]Projected greenhouse gas emissions [2020/2030]

• 25% reduction of GHG in 2020 is technically possible • Demand side (household, office, transportation) reduction is the key

7179 79 78202

179 155148

188

188

198

198▲16% ▲20%

1 , 261

1 , 346 1 , 358

1 , 286

1 , 398

1 , 317 1 , 061 1 , 011 946

1 , 393

1 , 307 834 769 706

1 , 500

算)

非エネルギー部門Non-energy sector

CO

2)

206 237232

270224

271220

217

265257

236

228

227

171165

211

210

68

7178 71

5046

42

70

162155

154

152

▲20%▲25%

▲34%▲39%

▲43%1, 000

万ト

ンC

O2換

エネルギー転換部門

運輸部門

Energy conversion sectorTransportation sector

ns o

f ton

s of C

127 158 174172

181 162114 103 90

182 163

74 61 49

164206 232 224

165 152133

220

11396

73

165153

118108

97

3630

27

145144

500

ス排

出量

(百

業務部門

家庭部門

Offie sector

Household sector

issi

ons (

mill

ion

482 467 456 420 451 444 398 390 374452 446

342 328 316

0

温室

効果

ガス

産業部門

基準年排出量

Tf Ti

Industry sector

Standard annual volume of emissionsLo Mm H

im

enhou

se g

as e

mi

固定 参照 ▲25%

▲25%

▲25%

固定 参照 対策

下位

対策

中位

対策

上位

1990 2000 2005 2008 2020 2030( 参考)

Technology fixed

Technology im

provement trend

Technology fixed

Technology im

provement trend

C f h i f

ow order m

easures

Middle order

measures

gh order easures

olum

e of

gre

en

7Note: 2020 25% (1): case including around 10% of international contribution and sinks; 25% (2): case including around 5% of international contribution and sinks; 25% (3): case including no international

contribution and sinks. 2030 lower order to high order measures: the emissions volume for 2030 is done assuming that the measures that have been carried out in order to reduce emissions toward the 25% reduction in 2020 will continue to be carried out in 2012 through 2030.

1990 2000 2005 2008 2020 2030( 参考)d d

Case of changing macro-frames for all sectors

(Reference)

Vo

7

IV. How can Japan Achieve the Targets for 2020?IV. How can Japan Achieve the Targets for 2020?

Specialist WG discussions incorporating the results of interviews with concerned parties concluded that it is possible for Japan to achieve its reduction targets by building up existing technologies expected to be used in countermeasures.

1,26

11,

344

1,35

51,

282

076

8

1,500 <Demand Sector Image><Demand Sector Image>・Popularize refrigerating machines that use natural

refrigerants, etc.ent)

1,0

1,01

949

1,000

eq)

g ,

・40-50% improvement of passenger vehicle efficiency(ownership basis; including EV/HV)・EV/HV: 1 out of every 2 new car salesO

2 E

quiv

ale

500

百万

tCO

2e

y・Car sharing utilization rate: Increase from 0.3% to 1%

of urban population・Eco-driving in practice: 20 to 30%

n of

tons

CO

G排

出量

(百

・Ensure all newly built homes and buildings use advanced insulation and energy saving designs/features

・50 to 70% penetration of high-efficiency water heater in h h ldio

ns (M

illio

n

0

990年

000年

005年

008年

▲15

%▲

20%

▲25

%

GH

G households・30 to 40% penetration of building energy control systems ・10 to 20% penetration of PV power in households

St dil l i t t f t b t il bl t h lGH

G E

mis

si

0 0 5 819 20 20 20 ▲ ▲ ▲実績 2020年

・Steadily popularize state of art best-available-technology in the world

・Fuel conversion to natural gases

G

Actual2020

1990

2000

2005

2008

8

Page 3: Low Carbon Policy in Controversy Basic Energy Plan (2010 ......0 990 年 2 000 年 2 005 年 2 008 年 15% 20% 25% 次 エネルギ a ry Energy o n KL of Oi 0 0 5 8 ・Install at most

F rther dis ssions are s hed led to be held on the q antitati e erifi ation of poli

IV. How can Japan Achieve the Targets for 2020?IV. How can Japan Achieve the Targets for 2020?

Further discussions are scheduled to be held on the quantitative verification of policy effectiveness, the supply structure for low-carbon technologies and the existence of additional burdens resulting from policy implementation.

700

・ Compared to 2005: PV power 24x to 35xWind power 10x

<Supply Sector Image><Supply Sector Image>50

858

858

855

7

544

531

517600

700

) Wind power 10xGeothermal power 3x

・ Ratio of renewable energy to primary energy supply: 10% to 12%

400

500

換算百万

kL

ガス

Gas

supply: 10% to 12%

・Expand utilization of nuclear power under basic premise of securing the safety (construction of 9 new plants)200

300

給(石

油換

石炭

apan

t)

Coa

l

new plants)

・Significant reduction of oil consumption caused by efficiency improvement and energy conversion in all end-use sectors

100

200

ー国

内供給

石油

Sup

ply

in J

l Equ

ival

ent

Oil

・Decrease of coal consumption resulting from reduction of coal thermal power generation by moving forward with the shift to natural gas

I ll 1 i i l h l l

0

990年

2000

2005

2008

▲15

%▲

20%

▲25

%

次エ

ネル

ギar

y E

nerg

y on

KL

of O

il

0 0 5 8

・Install at most 1 unit in coal thermal power plant(in case of ▲25%)

1 2 2 2 ▲ ▲ ▲

実績 2020年

一次

Actual2020

Prim

a(M

illio

199

2000

2005

2008

9

Relationship between low-carbon investment and energy reduction expense

• As for the investment amount for global warming, half of the overall investment amount will be collected by 2020 and an amount equal to the

and energy reduction expense

investment amount will be collected by 2020 and an amount equal to the investment amount will be collected by 2030 based on energy expenses that can be saved through technologies introduced.

<Low-carbon investment amount and energy reduction expense>

Energy saving investment through

2020100

150

Additi ln) 2020

Volume of reduction from energy saving technologies

In the case of device with 10 year lifespan

58 78 96 50

100 Additional investment(’11 – ’20 total)

illio

n Ye

n

2010

2015

2020

2025

2030

E d ti E d ti

-36 -43 -50

-35 42-50

0 Energy reduction expense(’11 – ’20 total)E d i

Cos

t (Tr

i

Energy reduction expense from energy saving investment= approx. 50 trillion

Energy reduction expense from energy saving investment= approx. 49 trillion

35 -42 -49-100

25% reduction

Energy reduction expense(’21 – ’30 total)20% 

reduction15% 

reduction

10

yen(25% reduction)

yen(25% reduction)

10

J d t i t 6 t 10 t illi i dditi l f d t hi ▲15% t

Huge green business opportunity accompanied by transition to low carbon society

Japan needs to invest on average 6 to 10 trillion yen per annum in additional funds to achieve a ▲15% to ▲25% by 2020. If this spending is not spread across all sectors of society, Japan will face difficulty in implementing the necessary countermeasures to achieve this target. Yet, this also means Japan will need to create new markets on par with this spending.

9 7

12[Additional Investments Required to Achieve CO2 Reduction Target]

/ Yea

r) Need to spend between 6 and 10 trillion yen per annum across all sectors of

i t1-2% of GDP

1 50

0.9 0.4

0.5 7.8

9.7

8

10 その他

電力系統

その他新エネ発電

(Tril

lion

Yen

/ societyOther

Electric Power SystemsOther New Energy Generation

1 11 01.1 0.9

1.0

1.1

1.3

1.5

0.6

0.7

0.2 5.8

4

6太陽光発電

自動車

業務用建築物・機器

men

t Am

ount

Create Green Markets

PVAutomobilesCommercial Buildings / Equipment

1 0 1.5 2.0 0.6 0.8

1.0 0.5

0.8 1.1

0.6

1.0 0.8

2

4家電製品

家庭用給湯器

住宅

tiona

l Inv

estm

Grow Green

Home ElectronicsResidential Water HeatersHousing

0.3 0.3 0.3 1.0 1.5

0▲15% ▲20% ▲25%

産業

Add

it

Comments from the Roadmap Subcommittee

Grow Green Markets

15% Reduction

Industrial

20% Reduction

25% Reduction

・Japan needs to develop policies that reward consumers who chose and companies that manufacture low-carbon products.・Japan needs to proactively move forward with investments that contribute to green innovation.

Comments from the Roadmap Subcommittee

11

Impacts of Nuclear Loss (~2020)Impacts of Nuclear Loss (~2020)

• More than half of 62 Nuclear will be out of operation

• Increase CO2 by substituting nuclear by fossil fuel (0 5% CO2/oneIncrease CO2 by substituting nuclear by fossil fuel (0.5% CO2/one Nuclear)

• More demand side saving of energy and electricity : How much effort?

St th i l t H ff ti ?• Strengthening regulatory measures: How effective?

12

Page 4: Low Carbon Policy in Controversy Basic Energy Plan (2010 ......0 990 年 2 000 年 2 005 年 2 008 年 15% 20% 25% 次 エネルギ a ry Energy o n KL of Oi 0 0 5 8 ・Install at most

A f l d ft l h b i l d d t dd 9 l t b 2020 d hi

IV. How can Japan Achieve the Targets for 2020?IV. How can Japan Achieve the Targets for 2020?

• As for nuclear power, a draft proposal has been included to add 9 new plants by 2020 and achieve a utilization ratio of 85% (has averaged 75% since 1990).

• Each new reactor will reduce Japan’s CO2 emissions by approximately 5 million tons, while every 1% increase in the utilization ratio of new plants will lead to a 3 million ton reduction.

8000

10000

W)

2010年2009年

2020

●●Outlook for Nuclear Power in the LongOutlook for Nuclear Power in the Long--term Energy Supplyterm Energy Supply--Demand ForecastDemand Forecast

(*)

●●Relationship between the Plan for Additional Nuclear Relationship between the Plan for Additional Nuclear Power Capacity and CO2 EmissionsPower Capacity and CO2 EmissionsCO2 emissions will rise 66 million tons if Japan’s nuclear power utilization ratio remains at 75% and only 2 new plants are built. This would mean a 5.2% increase over the benchmark for 1990.

kW)

2010 (*)

20092010 (*)

4000

6000

子力発電(

万k 2005年

2001年1998年1997年1994年

・ Utilization Ratio 85%・New plants 9・Total Output 61.43 MM kW

-98MM tons of CO2(▲7.8% over 1990)

Pow

er (1

0,00

0 k

200520011998

19971994

0

2000

1990 2000 2010 2020 2030

原子 1994年

1990年実績値

・Utilization Ratio 75%・New Plants 9・Total Output 61.43MM kW

・Utilization Ratio 85%・New Plants 2・Total Output 51.60MM kW

+30MM tons of CO2(*) Years appearing in the legend indicate years for which the Advisory Committee

+40MM tons of CO2

Nuc

lear

P 19941990Results

・Utilization Ratio 75%・New plants 2

( 2.4% increase over 1990)( ) Years appearing in the legend indicate years for which the Advisory Committee

on Energy and Natural Resources has formulated a long-term forecast for the energy supply-demand balance

●●Utilization Ratio of Nuclear Power PlantsUtilization Ratio of Nuclear Power Plants

( 3.2% increase over 1990)

% % % % 4% % 2% %

100%p・Total Output 51.60MM kW

+66MM tons of CO2( 5.2% increase over 1990)

[when reducing CO2 emissions by 25%]73

%74

%74

%75

%77

% 80%

81%

81 84 80%

82 81%

73%

60% 67

% 72%

70%

61%

60% 66

%

40%

60%

80%

[when reducing CO2 emissions by 25%]

・Utilization Ratio 66%・48.85MM kW

2009

0%

20%

1990 1995 2000 2005

Plan to add nuclear power generation and fluctuations in utilization ratio will play a key role. 13

Plausible Nuclear assumption after FukushimaPlausible Nuclear assumption after FukushimaⅠ.原子力発電運転停止に関わる影響分析

①Before Fukushima ②After Fukushima

62 plant(including 9 new)

31 plant(no new, scrap after 40 year lifetime)

⇒ ⇒++

【北海道】泊1 2 3 【電源開発】大間【日本原電】敦賀

1 2 3 4

【関西】高浜1 2 3 4

74 75 84 89 91 0985 69 86

※ 本想定は電力中央研究所(2011)「原

子力利用の停滞は電気料金にどの程度影響するか?」における「新設・建て替え中止」シナリオに準じて設定。

(including 9 new) year lifetime)

【東京】東通1 2

【東北】東通1 2【関西】美浜

1 2 3【東京】柏崎刈羽

1 2 3 4 5 6 7

【 】

74 75 84

【東北】

70 72 76

85 69 86

05

【関西】大飯1 2 3 4

【東京】福島第一1 2 3 4 5 6 7 8

【東北】女川 1 2 3

【北陸】志賀1 278 79 91 92

【東北】浪江・小高85 90 93 94 90 96 97

84 95 01

【東京】福島第二1 2 3 4

【中国】上関1 2

【九州】玄海

1 2 3 4 5 6 7 8

【中国】島根1 2 3 71 74 76 78 78 79

93 05

73 88

【九州】川内

【九州】玄海1 2 3 4

75 97

82 83 85 87

9380【日本原電】東海第二

2020年現役

2020年退役

現在建設中断

現在着工準備中

78【九州】川内1 2 3

2020年 日本の原子力発電所分布

【四国】伊方1 2 3

【中部】浜岡3 4 5 6

77 81 94

84 85 ※1 : 各図の中の数字は運転開始年を表す。※2 : ピンク色は昨年度RMにおいて2020年までの運転開始を想定した発電所。※3 : 美浜1号(50年)、敦賀1号(48年)については寿命延伸認可を考慮。87 93 04

78

14

Ⅰ.原子力発電運転停止に関わる影響分析

Possible reduction by strengthening policyPossible reduction by strengthening policy

Increase of CO2 from substituting nucleartechnology deployment

CO2 emission increases 11% without planed nuclear in 2020. But 25% reduction may possible by strengthening policy in conservation and acceleration of technology deployment

2020 emission (mil tCO2eq)

1,200

1,400

Base year (1990) emission

%% 114%4% Base:62 nuclear (incl. new 9)

Increase of CO2 from substituting nuclearby fossil fuel burned electric power generation

(2%)

2020 emission (mil.tCO2eq)

1,000

トンCO

2換算

225

%5% 11 ( )

revised: 31(no new construction, scrap 40 year lifetime )

Strengthening policy(9%)

(2%)

600

800

排出

量(百

万ト

■ saving ・ Experience in 2011summer (saved 15% electric power)⇒continuation of effort ⇒10% saving of energy service demand in household and office⇒reduction of 25 illi tCO2 2%

400

室効

果ガ

ス排 25million tCO2 =2%

■ Policy・ to enhance early attainment of new fuel efficiency

0

200

2020

年温

ma r

standard of cars and promoting selection of efficient car by introducing Eco-points etcs. and eco-drive manner

・high energy conservation standard setting in housing and building (visualization subsidisey

Bef

ore

Fuku

shi m

31 n

ucle

ar building (visualization, subsidise,

With

pol

icy

15

Summer 2011Summer 2011::1616--14% saving electric power consumption14% saving electric power consumptionⅡ.削減目標達成に向けた対策深堀の可能性

In Tohoku and Tokyo Electric Power area, 16% and 14% ave. reduction attained compared with 2010

●Demand track of Tohoku and Tokyo Electric Power Co.

120,000東北電力(2011年) 東北電力(2010年) 東京電力(2011年) 東京電力(2010年)

Demand10000kWh

80 000

100,000

Tokyo

2010

10000kWh

60,000

80,000

電力

需要

(万kW

h2011

40,000

Tohoku

201020,000

week

2010

2011

0第1週 第2週 第3週 第4週 第1週 第2週 第3週 第4週 第1週 第2週 第3週 第4週 第1週 第2週 第3週 第4週 第1週 第2週 第3週 第4週 第5週 第1週 第2週 第3週 第4週 第1週 第2週 第3週 第4週

3月 4月 5月 6月 8月7月 9月

(出典) 電力系統利用協議会資料より作成

week

month 16

Page 5: Low Carbon Policy in Controversy Basic Energy Plan (2010 ......0 990 年 2 000 年 2 005 年 2 008 年 15% 20% 25% 次 エネルギ a ry Energy o n KL of Oi 0 0 5 8 ・Install at most

Ⅰ.原子力発電運転停止に関わる影響分析

Suggested component of electric generation in 2020Suggested component of electric generation in 2020・・20302030

12 000

Retirement of nuclear can be covered by demand conservation and renewables

Generation of Electricity0 1billion kWh

10,000

12,000

h)

conservation 省エネ

0.1billion kWh

Renew

6 000

8,000 その他

再生可能エネ発電

量(億

kWh

renewable

再エネ

Renew

F il

4,000

6,000

火力発電

発電

電力

量 Fossil

2,000原子力発電

ma

ma

Nuclear

0

With

Pol

icy

lf N

ucle

ar

ore

Fuku

shim

With

pol

icy

lf N

ucle

ar

ore

Fuku

shim

20052020

W

Hal

Befo

2030

W

Hal

Befo

17

Long term target (2050 80%)Long-term target (2050 80%)

• Achievability depend on how Japan draw its future vision

18

Possibility on 80% reduction in 2050Possibility on 80% reduction in 2050Ⅰ.原子力発電運転停止に関わる影響分析

Without nuclear, we have to depend much on renewable energy and CCS (Carbon Dioxide

Capture and Storage).

Possibility depend on how we design Japanese future. Service oriented society can achieve 80%

d ti ith d ti CCS b t i d t i t d i t d f i CCS

1 600600

Primary energy supply(million ton OEq)

GHG emission(million ton CO2eq)

reduction with domestic CCS but industry oriented society needs foreign CCS

1,200

1,400

1,600

非エネ

500

600

地熱 1990 emissionHydroNuc Non energy

Energy shift

600

800

1,000非エネ

CCS

エネ転300

400水力

原子力

新エネ ▲80

%

NGEnergy shift

Transport

0

200

400運輸

業務

家庭

200

新 ネ

バイオマス

天然ガス

oilOfficeResidentindustry

‐400

‐200

0 家庭

産業

0

100 石油

石炭

MIJ ShareSBMade in sharingService

coal CCS

2005 MIJ SB Share2005 MIJ SB ShareMIJ ShareSBade

JapansharingService

Brand

Vision of Society in 2050Vision of Society in 2050 19

2050 scenario of Japanese society2050 scenario of Japanese societyⅠ.原子力発電運転停止に関わる影響分析

Road map committee draw 5 Scenarios of Japanese future concerning industry and society

Desirable way for growth where to produceD l t

Economic Growth /cap

DvelopmentNIES Scenario

Intelligence cente

1.6%Economic Growth

risk

Intelligence cente

1.8%

1 4%

IndustryGrowth

Globalize

Intern’lcompetition

Made in Japan

Service brand1.4%

1.1%

serviceIndependencyGlobalize

NationalizeNaturalresource

Resource self- feed

0.1%

Slow Financial crisis

Service sharing

Economycrisis

20

Page 6: Low Carbon Policy in Controversy Basic Energy Plan (2010 ......0 990 年 2 000 年 2 005 年 2 008 年 15% 20% 25% 次 エネルギ a ry Energy o n KL of Oi 0 0 5 8 ・Install at most

Ⅰ.原子力発電運転停止に関わる影響分析

GDP(GNP) growth by ScenarioGDP(GNP) growth by Scenario

2050年の社会像のあり方次第で、 2020、2030年においても、社会経済状況は大きく変化し得る。

MIJ, 159160

180

2030 premise

Plan before Fukushima

A

R&D, 148SB, 141

120

140

005

年=

100)

2020 premiseGDP(GNP)Growth

BRI, 117

100

120

民)総

生産

(20Growth

2005=100

Share, 78

60

80

国内

(民

20

40

01970 1980 1990 2000 2010 2020 2030 2040 2050 2060 21

III. What the “80% reduction society” would look like in 2050?III. What the “80% reduction society” would look like in 2050?

・In the 80% reduction society in 2050, demand for high-temperature heat from the industrial sector and long-distance logistics from the transport sector will preferentially and strategically utilize fossil fuels.

・The residential and commercial sector power sector as well as passenger vehicles and short・The residential and commercial sector, power sector as well as passenger vehicles and short-distance logistics will need to be zero emission.

運輸 運輸1200

1500

400

500

万ト

万ト

ンui

vale

nt

uiva

lent

Transport Transport

Energy conservation prioritized

Low-carbon energy prioritized

民生

民生

運輸

運輸民生

運輸

600

900

200

300

O2換

算百

油換

算百

40% Reduction 80% Reduction Compared to 1990

ns o

f Oil

Equ

s of

CO

2 E

quTransport Transport

TransportResidential/Commercial

Residential/C i l

Residential/Commercial

産業産業

民生

産業産業

運輸

0

300

0

100

2005 2050 2005 2050

CO

石油

Mill

ion

ton

Milli

on to

ns

TransportIndustrial Industrial Industrial

Industrial

Commercial

2005 2050 2005 2050

終エネルギー消費量 CO2排出量Final Energy Consumption CO2 Emissions

Source: Compiled based on preliminary calculations from the snapshot model of the Low-Carbon Society Research Project 2050(*Preliminary calculation representing one possible scenario if the 80% reduction target for 2050 is met) 22

Mid-term reduction policy (2020, 2030 ~25%)

Final aim=Contribution to climate stability (2050 △80%)

・ tentatively, no international obligation

・due responsibility in the near future (2020 more than 25%?)

⇒how it should be? Equity?

・Smooth transition to long-term target*

Balance between international and domestic reduction

Reduction abroad

B l i J h l i d i・By applying Japanese technology, investment and assistance

・Q: Japanese technology still strong? e.g.. RE Smart Grid in Germany, China,, *,

・Bilateral offset credit: (CDM applicable?)

・Research cooperation: e g ARNLCD**・Research cooperation: e.g., ARNLCD**

Domestic reduction target

・What for? Integrate short-/mid-term issues in long-term target of LC-SocietyWhat for? Integrate short /mid term issues in long term target of LC Society

・Synergy for energy security (energy demand reduction, distributed system, S-D integration)

・Guiding industry to long-term transition to green economy & investment

・Guiding society fit to low carbon future (Infrastructure, lifestyle)

・ Avoiding employment friction and keeping international competitive strength of industry 23

10th ASEAN Plus Three Environment Ministers Meeting

A proposal for establishing theAsia Research Network for Low CarbonAsia Research Network for Low Carbon

Development (ARNLCD)

Dr. Shuzo Nishioka

Senior Research Advisor, Institute for Global Environmental Strategies (IGES)

Secretary-General, International Research Network for Low Carbon Societies (LCS-RNet)

24

Page 7: Low Carbon Policy in Controversy Basic Energy Plan (2010 ......0 990 年 2 000 年 2 005 年 2 008 年 15% 20% 25% 次 エネルギ a ry Energy o n KL of Oi 0 0 5 8 ・Install at most

How ?How ?

H ?H ?How ?How ?

25

Input to PolicyInput to Policy Institutional Knowledge

Asia Research Network for Low Carbon Development (ARNLCD)Contribution from 

International p yp y((G8/G20 UNFCCC G8/G20 UNFCCC ))

gSharing

International Organisations, etc

Gov

RIRI

UNEP

UNESCA

LCS‐RNet

SATREPS

GovGov

UNESCAP

ADB

JST/JICA

APN

COE

COE

RIRI

Steering GroupSecretariatJICA

KOICA

CLEAN

GGGICOE

COE COERIRI

KOICA

USAIDEtc

GGGI

EUEtc

COECentre of Excellence

RIResearch

RIResearch

Gov

InstituteInstitute

Government

26

Low Carbon Asia ProjectResearch Institutions/ researchers’ network

h d di ti di tl i LCS li kiwho dedicating directly in LCS policy making process

Rizaldi BOER MikikoK i

Mohamad Bin SA’ELALMalaysia

Ho Chin SIONGMalaysia

Sirintornthep TOWPRAYOON

Thailand

Indonesia KainumaJapan

Developed Countries Energy‐Intensive 

Lock ins in

Bundit

YutakaMATSUZAWA

Japanions per capita

Lock‐ins in Development

Damaging theBundit LIMMEECHOKCHAI

Thailand

p

GHG emissi

Low Carbon World

Damaging the Economy and Natural SystemDeveloping 

Countries

Leapfrog‐

Jiang KEJUNChinaHak MAO

p gdevelopment

ChinaHak MAOCambodia

27

Dialogue between Policy makers and Researchers in ASEAN countries (2010- )ASEAN countries (2010 )

Min. of Natural Resources and Environment

Thailand Greenhouse Gas M t

University of Hanoi

VietNumVietNum

ManagementOrganization

ThailandThailandMinistry of Environment

LCS‐RNet Secretariat/IGES

y

Joint Graduate School of Energy and Environment

Indian Institute of

Ministry of Environment

CambodiaCambodia

Ministry of EnvironmentMalaysia Iskandar Source : WEO 2009

Indian Institute of Management, etc

Bogor Agricultural 

Ministry of Environment

IndonesiaIndonesiaUniversity of Technology 

yAuthorityMalaysiaMalaysia

Source : WEO 2009

Bogor Agricultural University

University of Technology Malaysia 28

Page 8: Low Carbon Policy in Controversy Basic Energy Plan (2010 ......0 990 年 2 000 年 2 005 年 2 008 年 15% 20% 25% 次 エネルギ a ry Energy o n KL of Oi 0 0 5 8 ・Install at most

A proposal for establishing the

Asia Research Network for Low Carbon Development (ARNLCD)

by research organisations dedicating to LCD policy formationR ti l I d t t th A i ’ f d t l d t i d it i f l tiRationale: In order to strengthen Asia’s fundamental and sustained capacity in formulating

science-based policies for low-carbon development, and to carry out “leapfrog” development in Asia for global climate stabilisation, launching a network called the “Asia Research Network for Low Carbon Development” should be considered.

Mechanism: A platform for knowledge sharing and capacity building of in-country researchers, composed of research communities deeply involved in low-carbon development policy processes. Active researchers in-country will work together with Japanese researchers on practical matters not reports for the bookshelfon practical matters—not reports for the bookshelf.

Objective: To strengthen the scientific base for LCD policies by proactively exchanging the knowledge rooted in the region between policy makers and researchers.

Characteristics: A self-independent autonomous research network operated throughCharacteristics: A self independent, autonomous research network, operated through

voluntary initiatives by researchers in each country.

Organisation: A network of COEs (Centers of Excellence) designated as country focal points. Managed by a steering group and secretariat. g y g g p

Funding: Contributions are expected not only from donor countries but also from international organizations and from ASEAN countries themselves.

Action Schedule: After agreed at the ASEAN+3 EMM, preparatory arrangements will be initiated for its launch by 2013.

29

A 80% i i d ti b 2050 ill t l l diff t i t f t d It ill b

Japanese GHG reduction target (2050 80%, 2020 25% from 1990

100020

An 80% emission reduction by 2050 will create a largely different society from today. It will be

critical to strategically move forward under mid-term 2020 and 2030 targets that take into account

this eventual 80% reduction.

800

1000

16

18

20

ス排

出量

GDP and Greenhouse Gases Coupling ⇒ Decoupling

ions

al

ent)

en)

60012

14

DP

(兆円

室効果ガ

CO

2eq)

温室効果ガス

▲15% (90年比)GH

GE

mis

sC

O2

equi

va GHG

▲15%(Compared to 1990 level) P

(trill

ion

ye