Loudoun County Public Schools Science Curriculum Guide

56
Loudoun County Public Schools Science Curriculum Guide Modified from the 2010 Virginia Science Standards of Learning Curriculum Framework to include pacing and resources for instruction for the 2018-19 school year 6 th Grade Science 2018-19

Transcript of Loudoun County Public Schools Science Curriculum Guide

Loudoun County Public Schools

Science Curriculum Guide

Kindergarten

Modified from the 2010 Virginia Science Standards of Learning Curriculum Framework

to include pacing and resources for instruction for the 2018-19 school year

6th Grade Science 2018-19

Grade 6 Science – Page 2

2018-2019 Grade 6 Science

Pacing Guide At a Glance

Quarter Month Topic Related SOL Suggested

number of

Lessons

Target Date for

Completion LCPS Core

Experience

1st

September Water and Its Properties with

emphasis on Experimental Design 6.5 a, b; 6.1 a, b, d, e, f, g, h, j

13

November 2, 2018

Properties of

Water

October Watersheds ‡6.5 c, e, f ‡6.7 a, b, c, d, e, f, g 6.1 a, b, d, e, f, g, h, j

10 Watersheds

2nd November

Atmosphere and Weather

6.6 a, b, c, e, f, 6.3 a, b, c, d, e 6.5 d 6.1 a, b, d, e, f, g, h, i, j

17 January 17, 2019 Atmosphere

December January

3rd

February March Matter

6.4 a, b, c, d, e, f, g; 6.1 a, b, d, f, g, j

21 March 28, 2019 Properties of

Matter

March

4th

April May

Resources and Energy

6.2 a, b, c, d, e; ‡6.9 a, b, c, d 6.6 d, 6.1 a, b, d, e, f, g, h, j 6.5 e

11 June 7, 2019

Energy

Resources

May June

Space 6.8 a, b, c, d, e, f, g, h, i, 6.1 a, b, c, d, e, f, g, h, i, j

13 Space

*Scientific Investigation, Reasoning, and Logic (Science SOL 6.1) standards are infused throughout the year in all science units.

‡Meaningful Watershed Experience Opportunity

Grade 6 Science – Page 3

Introduction to Loudoun County Public Schools Science Curriculum

This Curriculum Guide is a merger of the Virginia Standards of Learning (SOL) and the Science

Achievement Standards of Loudoun County Public Schools. Many sections are modifications of Virginia’s

SOL documents. Suggestions on pacing and resources represent the professional consensus of Loudoun’s

teachers concerning the implementation of these standards.

Contents

Science Learning Goals Page 4 Investigate and Understand Page 5 LCPS Vision for STEM Education Page 6 Meaningful Watershed Educational Experience Page 7 Model Performance Indicators Page 9 K-12 Safety in the Science Classroom Page 14 The Role of Instructional Technology in the Science Classroom Page 15 Internet Safety Page 16 Grade 6 Science Standards of Learning Page 17 Science Standard 6.1 Page 18 Resources for 6.1 Page 21 Science Standard 6.2 Page 23 Resources for 6.2 Page 25 Science Standard 6.3 Page 26 Resources for 6.3 Page 28 Science Standard 6.4 Page 29 Resources for 6.4 Page 31 Science Standard 6.5 Page 32 Resources for 6.5 Page 35 Science Standard 6.6 Page 36 Resources for 6.6 Page 38 Science Standard 6.7 Page 39 Resources for 6.7 Page 42 Science Standard 6.8 Page 44 Resources for 6.8 Page 47 Science Standard 6.9 Page 48 Resources for 6.9 Page 50 Appendix A: 6th Grade Science Focal Points Page 52 Appendix B: Course Concept Map and Course Questions Page 53

Grade One page 4

Science Learning Goals

The purposes of scientific investigation and discovery are to satisfy humankind’s quest for knowledge and understanding

and to preserve and enhance the quality of the human experience. Therefore, as a result of science instruction, students

will be able to achieve the following objectives:

1. Develop and use an experimental design in scientific inquiry.

2. Use the language of science to communicate understanding.

3. Investigate phenomena using technology.

4. Apply scientific concepts, skills, and processes to everyday experiences.

5. Experience the richness and excitement of scientific discovery of the natural world through the collaborative quest for

knowledge and understanding.

6. Make informed decisions regarding contemporary issues, taking into account the following:

public policy and legislation;

economic costs/benefits;

validation from scientific data and the use of scientific reasoning and logic;

respect for living things;

personal responsibility; and

history of scientific discovery.

7. Develop scientific dispositions and habits of mind including:

curiosity;

demand for verification;

respect for logic and rational thinking;

consideration of premises and consequences;

respect for historical contributions;

attention to accuracy and precision; and

patience and persistence.

8. Develop an understanding of the interrelationship of science with technology, engineering and mathematics.

9. Explore science-related careers and interests.

Grade 6 Science – Page 5

Investigate and Understand

Many of the standards in the Science Standards of Learning begin with the phrase “Students will investigate and

understand.” This phrase was chosen to communicate the range of rigorous science skills and knowledge levels embedded

in each standard. Limiting a standard to one observable behavior, such as “describe” or “explain,” would have narrowed

the interpretation of what was intended to be a rich, highly rigorous, and inclusive content standard.

“Investigate” refers to scientific methodology and implies systematic use of the following inquiry skills:

• observing;

• classifying and sequencing;

• communicating;

• measuring;

• predicting;

• hypothesizing;

• inferring;

• defining, controlling, and manipulating variables in experimentation;

• designing, constructing, and interpreting models; and

• interpreting, analyzing, and evaluating data.

“Understand” refers to various levels of knowledge application. In the Science Standards of Learning, these knowledge

levels include the ability to:

• recall or recognize important information, key definitions, terminology, and facts;

• explain the information in one’s own words, comprehend how the information is related to other key facts, and

suggest additional interpretations of its meaning or importance;

• apply the facts and principles to new problems or situations, recognizing what information is required for a particular

situation, using the information to explain new phenomena, and determining when there are exceptions;

• analyze the underlying details of important facts and principles, recognizing the key relations and patterns that are not

always readily visible;

• arrange and combine important facts, principles, and other information to produce a new idea, plan, procedure, or

product; and

• make judgments about information in terms of its accuracy, precision, consistency, or effectiveness.

Therefore, the use of “investigate and understand” allows each content standard to become the basis for a broad range of

teaching objectives.

Application

Science provides the key to understanding the natural world. The application of science to relevant topics provides a

context for students to build their knowledge and make connections across content and subject areas. This includes

applications of science among technology, engineering, and mathematics, as well as within other science disciplines.

Various strategies can be used to facilitate these applications and to promote a better understanding of the interrelated

nature of these four areas.

Grade 6 Science – Page 6

Loudoun County Public Schools’ Vision for STEM Education

According to the Congressional Research Service (2008), the United States ranks 20th among all nations in the proportion

of 24-year-olds who earn degrees in natural science or engineering. In response, government, business and professional

organizations have identified improvements in K-12 education in science, technology, engineering and mathematics

(STEM) as a national priority. The National Academy of Sciences report, Rising Above the Gathering Storm (2007), calls

for the strengthening of math and science education and for an urgent change in STEM education. The U.S. Department

of Education’s Report of the Academic Competitiveness Council lists several K-12 STEM Education goals. Foremost is a

goal to prepare all students with science, technology, engineering, and math skills needed to succeed in the 21st century

technological economy.

Increased performance in STEM fields requires STEM literacy. To become truly literate, students must have better

understanding of the fields individually, and more importantly, they must understand how the fields are interrelated and

interdependent. Clearly, formative experiences in STEM during their K-12 school years will allow for a deeper STEM

literacy and better prepare them for university and beyond. In order to properly prepare our students, they must have a

broad exposure to and a knowledge base in the STEM fields as part of their K-12 education.

The goal of STEM education at LCPS is to deepen students’ knowledge, skills, and habits of mind that characterize

science, technology, engineering, and mathematics. Loudoun County Public Schools has many exemplary programs

designed to answer the call for STEM education. The Loudoun Governor’s Career and Technical Academy at Monroe

Technology Center and the Academy of Science at Dominion High School are specialized programs that meet these goals.

Additionally, LCPS offers students a variety of STEM courses and opportunities that are rigorous, demanding, and help

students develop skills required for the 21st century.

Based on the success of these programs, we are building capacity to provide integrated STEM education to all LCPS

students. Integrated STEM in LCPS is defined as experiences that develop student understanding within one STEM area

while also learning or applying knowledge and/or skills from at least one other STEM area.

Within this framework of integrated STEM, LCPS science courses will develop student’s science understanding necessary

to be scientifically literate; which includes science content, habits of mind, science process skills, and relevant application

of scientific knowledge. Through integrated STEM science instruction students will develop an understanding of the

connections with other STEM disciplines. Additionally, science instruction at LCPS is intended to generate a large pool

of students prepared to pursue STEM areas in college or through further on-the-job training in the workplace.

LCPS STEM experiences will:

• Capitalize on student interest

• Build on what students already know

• Engage students in the practices of STEM

• Engage students with inquiry learning

Grade 6 Science – Page 7

Meaningful Watershed Educational Experiences

The “Stewardship and Community Engagement” Commitment of the Chesapeake 2000 agreement clearly focuses on

connecting individuals and groups to the Bay through their shared sense of responsibility and action. The goal of this

Commitment formally engages schools as integral partners to undertake initiatives in helping to meet the Agreement.

Two objectives developed as part of this goal describe more specific outcomes to be achieved by the jurisdictions in

promoting stewardship and assisting schools. These are:

Beginning with the class of 2005, provide a meaningful Bay or stream outdoor experience for every school student

in the watershed before graduation from high school.

Provide students and teachers alike with opportunities to directly participate in local restoration and protection

projects, and to support stewardship efforts in schools and on school property.

There is overwhelming consensus that knowledge and commitment build from firsthand experience, especially in the

context of one’s neighborhood and community. Carefully selected experiences driven by rigorous academic learning

standards, engendering discovery and wonder, and nurturing a sense of community will further connect students with the

watershed and help reinforce an ethic of responsible citizenship.

Defining a Meaningful Bay or Stream Outdoor Experience

A meaningful Bay or stream outdoor experience should be defined by the following.

Experiences are investigative or project oriented.

Experiences include activities where questions, problems, and issues are investigated by the collection and analysis of data,

both mathematical and qualitative. Electronic technology, such as computers, probeware, and GPS equipment, is a key

component of these kinds of activities and should be integrated throughout the instructional process.

The nature of these experiences is based on learning standards and should include the following kinds of activities.

• Investigative or experimental design activities where students or groups of students use equipment, take

measurements, and make observations for the purpose of making interpretations and reaching conclusions.

• Project-oriented experiences, such as restoration, monitoring, and protection projects, that are problem solving in

nature and involve many investigative skills.

Experiences are richly structured and based on high-quality instructional design.

Experiences are an integral part of the instructional program.

Experiences are part of a sustained activity.

Experiences consider the watershed as a system.

Experiences involve external sharing and communication.

Experiences are enhanced by natural resources personnel.

Experiences are for all students.

Experiences such as tours, gallery visits, simulations, demonstrations, or “nature walks” may be instructionally useful, but

alone do not constitute a meaningful experience as defined here.

Grade 6 Science – Page 8

The preceding text contains excerpts from:

Chesapeake Bay Program Education Workgroup

STEWARDSHIP AND MEANINGFULWATERSHED EDUCATIONAL EXPERIENCES

http://vaswcd.org/?s=meaningful+watershed+education+experience

The link is found in the Virginia Department of Education Instructional Resources for Science:

http://www.doe.virginia.gov/instruction/science/index.shtml

Each LCPS K-12 Science Pacing Guide indicates where the Meaningful Watershed Educational Experiences fit into the

Virginia Standards of Learning. Resources for these experiences are cited in the Resources section of each standard.

Many of the resources are from Lessons from the Bay and Virginia’s Water Resources a Toolkit for Teachers.

Grade 6 Science – Page 9

Model Performance Indicators

Listed in the LCPS Science curriculum guide are sample Model Performance Indicator (MPI) tables. These

tables will be useful as you differentiate instruction for all of your learners, but they are especially helpful for

English Language Learners. Below are frequently asked questions about MPI.

What is a Model Performance Indicator (MPI)?

An MPI is a tool that can be used to show examples of how language is processed or produced within a

particular context, including the language with which students may engage during classroom instruction and

assessment.

Each MPI contains three main parts:

• Language Function: The first part of an MPI, this shows how students are processing/producing

language at each level of language proficiency

• Content Stem: This will remain consistent throughout an MPI strand and should reflect the knowledge

and skills of the state’s content standards

• Support: The final part of an MPI, this highlights the differentiation that should be incorporated for

students at each language level by suggesting appropriate instructional supports for students at each

level of language proficiency

The samples provided also include an example context for language use that provides a brief descriptor of the

activity or task in which students would be engaged, while the inclusion of topic-related language helps to

support the emphasis on imbedding academic language instruction into our content-area teaching practices.

How can these sample MPIs help me?

Educators can use MPI strands in several ways:

• to align students’ performance to levels of language development

• as a tool for creating language objectives/targets that will help extend students’ level of language

proficiency

• as a means for differentiating instruction that incorporates the language of the content area in a way that

meets the needs of students’ levels of language proficiency

An MPI strand helps illustrate the progression of language development from one proficiency level to the next

within a particular context. As these strands are examples, they represent one of many possibilities; therefore,

they can be transformed in order to be made more relevant to the individual classroom context.

Where can I get more information about WIDA, MPIs, etc.?

See My Learning Plan for several WIDA training modules

• Introduction to the WIDA ELD Standards

• Transforming the WIDA ELD Standards

• Interpreting the WIDA ACCESS Score Report

The information above was adapted from the 2012 Amplification of the English Development Standards Kindergarten-Grade 12 resource guide and can be accessed at www.wida.us

Grade 6 Science – Page 10

Model Performance Indicator Examples

SOL STRAND AND BULLET: 6.1 a The student will demonstrate an understanding of scientific reasoning, logic, and the nature of science by planning and

conducting investigations in which observations are made involving fine discrimination between similar objects and organisms. EXAMPLE CONTEXT FOR LANGUAGE USE: Students will be provided with real life objects to sort/classify/compare and contrast to practice using all parts

of Scientific Investigation. Teacher will need to collect real world objects/organisms and a simple completed lab for the students to use in these lessons. Teacher

will access student’s prior knowledge of this topic by discussing labs completed in other grade levels or the students’ home country. COGNITIVE FUNCTION: Students at all levels of English Language Proficiency (ELP) will APPLY scientific investigation, reasoning and logic.

LIS

TE

NIN

G

Level 1 Entering

Level 2 Emerging

Level 3 Developing

Level 4 Expanding

Level 5 Bridging

Lev

el 6-R

each

ing

Select objects by using

observation to discriminate

between similar objects and

organisms using verbal

cues from the teacher and

real life objects

Sort objects using

observation to

discriminate between

similar objects and

organisms following

verbal directions from the

teacher and real life

objects

Classify objects using

observation to discriminate

between similar objects and

organisms following verbal

directions from the teacher

with partners

Identify similar objects

using observation to

discriminate between

similar objects and

organisms following verbal

directions from the teacher

in small groups

Compare and Contrast

objects using observation

to discriminate between

similar objects and

organisms following

verbal directions from the

teacher in cooperative

groups

SP

EA

KIN

G

Level 1 Entering

Level 2 Emerging

Level 3 Developing

Level 4 Expanding

Level 5 Bridging

Lev

el 6-R

each

ing

Name using observations

involving fine

discrimination between

similar objects and

organisms using real life

objects

Explain observations

involving fine

discrimination between

similar objects and

organisms using real life

objects in pairs or partners

Elaborate observations

involving fine discrimination

between similar objects and

organisms using real life

objects in pairs or partners

Discuss observations

involving fine

discrimination between

similar objects and

organisms using real life

objects in cooperative

groups

Evaluate observations

involving fine

discrimination between

similar objects and

organisms using real life

objects small groups

TOPIC-RELATED LANGUAGE: Students at all levels of English language proficiency interact with grade-level words and expressions, such as:

discriminate, organisms, observation, explain, similar

Grade 6 Science – Page 11

SOL STRAND AND BULLET: 6.1a The student will demonstrate an understanding of scientific reasoning, logic, and the nature of science by planning and

conducting investigations in which observations are made involving fine discrimination between similar objects and organisms. EXAMPLE CONTEXT FOR LANGUAGE USE: Students will be provided with real life objects to sort/classify/compare and contrast to practice using all parts

of Scientific Investigation. Teacher will need to collect real world objects/organisms and a simple completed lab for the students to use in these lessons. COGNITIVE FUNCTION: Students at all levels of English Language Proficiency (ELP) will apply scientific investigation, reasoning and logic.

RE

AD

ING

Level 1 Entering

Level 2 Emerging

Level 3 Developing

Level 4 Expanding

Level 5 Bridging

Lev

el 6-R

each

ing

Match similar objects and

organisms to labels using

observations made

involving fine

discrimination with real

world objects

Choose similar objects and

organisms using

observations made

involving fine

discrimination from

written description and

real world objects

Select similar objects and

organisms using

observations made involving

fine discrimination from

written description and real

world objects

Organize similar objects

and organisms using

observations made

involving fine

discrimination from

scientific articles and real

world photos

Categorize similar objects

and organisms using

observations made

involving fine

discrimination from

scientific articles and real

world photos

WR

ITIN

G

Level 1 Entering

Level 2 Emerging

Level 3 Developing

Level 4 Expanding

Level 5 Bridging

Lev

el 6-R

each

ing

Label similar objects and

organisms using

observations made

involving fine

discrimination with real

world objects

Explain in writing the

similarities of objects and

organisms using

observations made

involving fine

discrimination with real

world objects and a

partner

Compare and contrast in

writing the similarities of

objects and organisms using

observations made involving

fine discrimination with real

world objects and a partner

Distinguish in writing the

similarities of objects and

organisms using

observations made

involving fine

discrimination with real

world objects and a partner

Justify in writing the

similarities of objects and

organisms using

observations made

involving fine

discrimination with real

world objects and a small

group

TOPIC-RELATED LANGUAGE: Students at all levels of English language proficiency interact with grade-level words and expressions, such as:

discriminate, organism, observation, compare and contrast

Grade 6 Science – Page 12

SOL STRAND AND BULLETS: 6.7 The student will investigate and understand the natural processes and human interactions that affect watershed systems.

Key concepts include a) the health of ecosystems and the abiotic factors of a watershed f) major conservation, health, and safety issues associated with watersheds; and g) water monitoring and analysis using field equipment including hand-held technology

EXAMPLE CONTEXT FOR LANGUAGE USE: Teacher will assign Environmental Detectives lab to students.

http://environmentaldetectives.wikispaces.com/home : Lab Mystery of the Dying Fish in Gray Area COGNITIVE FUNCTION: Students at all levels of English Language Proficiency (ELP) will analyze and evaluate natural processes and human interactions

that affect watershed systems.

LIS

TE

NIN

G

Level 1 Entering

Level 2 Emerging

Level 3 Developing

Level 4 Expanding

Level 5 Bridging

Lev

el 6-R

each

ing

Listen to background

knowledge on health of

ecosystems and the abiotic

factors of a watershed

system, as teacher explains

verbally

Listen to background

knowledge on health of

ecosystems and the abiotic

factors of a watershed

system, as teacher explains

verbally

Listen to background

knowledge on health of

ecosystems and the abiotic

factors of a watershed

system, as teacher explains

verbally

Listen to background

knowledge on health of

ecosystems and the abiotic

factors of a watershed

system, as teacher explains

verbally

Listen to background

knowledge on health of

ecosystems and the

abiotic factors of a

watershed system, as

teacher explains verbally

SP

EA

KIN

G

Level 1 Entering

Level 2 Emerging

Level 3 Developing

Level 4 Expanding

Level 5 Bridging

Lev

el 6-R

each

ing

List and Name characters

introduced in the lab that

could be affecting the

health of ecosystems and

abiotic factors of a

watershed with a partner

Restate characters

introduced in the lab that

could be affecting the

health of ecosystems and

abiotic factors of a

watershed with a partner

Identify characters who

could be affecting the health

of ecosystems and abiotic

factors of a watershed with

your group

Assess character

involvement that could be

affecting the health of

ecosystems and abiotic

factors of a watershed with

your group

Discuss character

involvement that could be

affecting the health of

ecosystems and abiotic

factors of a watershed

with your group

TOPIC-RELATED LANGUAGE: Students at all levels of English language proficiency interact with grade-level words and expressions, such as:

Watershed, ecosystem, abiotic factors, fish, phosphates, chlorine

Grade 6 Science – Page 13

SOL STRAND AND BULLETS: 6.7 The student will investigate and understand the natural processes and human interactions that affect watershed systems.

Key concepts include a) the health of ecosystems and the abiotic factors of a watershed f) major conservation, health, and safety issues associated with watersheds; and g) water monitoring and analysis using field equipment including hand-held technology

EXAMPLE CONTEXT FOR LANGUAGE USE: Teacher will assign Environmental Detectives lab to students.

http://environmentaldetectives.wikispaces.com/home : Lab Mystery of the Dying Fish in Gray Area COGNITIVE FUNCTION: Students at all levels of English Language Proficiency (ELP) will analyze and evaluate natural processes and human interactions

that affect watershed systems.

RE

AD

ING

Level 1 Entering

Level 2 Emerging

Level 3 Developing

Level 4 Expanding

Level 5 Bridging

Lev

el 6-R

each

ing

Outline important

information on abiotic

factors of a watershed

affecting the health of the

ecosystem read about in the

lab with a partner

Summarize important

information on abiotic

factors of a watershed

affecting the health of

ecosystems read about in

the lab with a partner

Identify important

information on abiotic

factors of a watershed

affecting the health of

ecosystems read about in the

lab with your group

Distinguish important

information on abiotic

factors of a watershed

affecting the health of

ecosystems read about in

the lab with your group

Construct an outline or

table to evaluate the

health of ecosystems and

the abiotic factors of a

watershed as read about

in the lab with your group

WR

ITIN

G

Level 1 Entering

Level 2 Emerging

Level 3 Developing

Level 4 Expanding

Level 5 Bridging

Lev

el 6-R

each

ing

Record information from

water monitoring and

analysis using field

equipment including hand-

held technology with a

partner in the lab Mystery

of the Dying Fish

Record information from

water monitoring and

analysis using field

equipment including hand-

held technology with a

partner in the lab Mystery

of the Dying Fish

Record and evaluate

information from water

monitoring and analysis

using field equipment

including hand-held

technology with a partner in

the lab Mystery of the Dying

Fish

Record and explain

information from water

monitoring and analysis

using field equipment

including hand-held

technology with a partner in

the lab Mystery of the

Dying Fish

Record and construct a

graph for information

from water monitoring

and analysis using field

equipment including

hand-held technology

with a partner in the lab

Mystery of the Dying

Fish TOPIC-RELATED LANGUAGE: Students at all levels of English language proficiency interact with grade-level words and expressions, such as:

chlorine test, water fleas, pH, acid rain, sediment, temperature, graph, phosphates, oxygen, autopsy

Grade 6 Science – Page 14

K-12 Safety in the Science Classroom In implementing the Science Standards of Learning, teachers must be certain that students know how to

follow safety guidelines, demonstrate appropriate laboratory safety techniques, and use equipment safely

while working individually and in groups.

Safety must be given the highest priority in implementing the K-12 instructional program for science.

Correct and safe techniques, as well as wise selection of experiments, resources, materials, and field

experiences appropriate to age levels, must be carefully considered with regard to the safety precautions

for every instructional activity. Safe science classrooms require thorough planning, careful management,

and constant monitoring of student activities. Class enrollment should not exceed the designed capacity of

the room.

Teachers must be knowledgeable of the properties, use, and proper disposal of all chemicals that may be

judged as hazardous prior to their use in an instructional activity. Such information is referenced through

Materials Safety Data Sheets (MSDS). The identified precautions involving the use of goggles, gloves,

aprons, and fume hoods must be followed as prescribed.

While no comprehensive list exists to cover all situations, the following should be reviewed to avoid

potential safety problems. Appropriate safety procedures should be used in the following situations:

• observing wildlife; handling living and preserved organisms; and coming in contact with natural

hazards, such as poison ivy, ticks, mushrooms, insects, spiders, and snakes;

• engaging in field activities in, near, or over bodies of water;

• handling glass tubing and other glassware, sharp objects, and labware;

• handling natural gas burners, Bunsen burners, and other sources of flame/heat;

• working in or with direct sunlight (sunburn and eye damage);

• using extreme temperatures and cryogenic materials;

• handling hazardous chemicals including toxins, carcinogens, and flammable and explosive materials;

• producing acid/base neutralization reactions/dilutions;

• producing toxic gases;

• generating/working with high pressures;

• working with biological cultures including their appropriate disposal and recombinant DNA;

• handling power equipment/motors;

• working with high voltage/exposed wiring; and

• working with laser beam, UV, and other radiation.

The use of human body fluids or tissues is generally prohibited for classroom lab activities. Further

guidance from the following sources may be referenced:

OSHA (Occupational Safety and Health Administration);

ISEF (International Science and Engineering Fair) rules; and

public health departments’ and school divisions’ protocols.

For more detailed information about safety in science, consult the LCPS Science Safety Manual.

Grade 6 Science – Page 15

The Role of Instructional Technology in the Science Classroom The use of current and emerging technologies is essential to the K-12 science instructional program.

Specifically, technology must accomplish the following:

• Assist in improving every student’s functional literacy. This includes improved communication

through reading/information retrieval (the use of telecommunications), writing (word processing),

organization and analysis of data (databases, spreadsheets, and graphics programs), presentation of

one’s ideas (presentation software), and resource management (project management software).

• Be readily available and regularly used as an integral and ongoing part of the delivery and assessment

of instruction.

• Include instrumentation oriented toward the instruction and learning of science concepts, skills, and

processes. Technology, however, should not be limited to traditional instruments of science, such as

microscopes, labware, and data-collecting apparatus, but should also include computers, robotics,

video-microscopes, graphing calculators, probeware, geospatial technologies, online communication,

software and appropriate hardware, as well as other emerging technologies.

In most cases, the application of technology in science should remain “transparent” unless it is the actual

focus of the instruction. One must expect students to “do as a scientist does” and not simply hear about

science if they are truly expected to explore, explain, and apply scientific concepts, skills, and processes.

As computer/technology skills are essential components of every student’s education, it is important that

teaching these skills is a shared responsibility of teachers of all disciplines and grade levels.

Grade 6 Science – Page 16

Internet Safety

The Internet allows students to learn from a wide variety of resources and communicate with people all

over the world. Students should develop skills to recognize valid information, misinformation, biases, or

propaganda. Students should know how to protect their personal information when interacting with others

and about the possible consequences of online activities such as social networking, e-mail, and instant

messaging.

▪ Students need to know that not all Internet information is valid or appropriate.

▪ Students should be taught specifically how to maximize the Internet’s potential while protecting

themselves from potential abuse.

▪ Internet messages and the people who send them are not always what or who they seem.

▪ Predators and cyber bullies anonymously use the Internet to manipulate students. Students must learn

how to avoid dangerous situations and get adult help.

Cyber safety should be addressed when students research online resources or practice other skills through

interactive sites. Science teachers should address underlying principles of cybersafety by reminding

students that the senses are limited when communicating via the Internet or other electronic devices and

that the use of reasoning and logic can extend to evaluating online situations.

Listed below are 6th Grade Science Virginia Standards of Learning which lend themselves to integrating

Internet safety with a brief explanation of how the two can be connected.

6.1 If students are using online tools for written communications, address the general safety issues

appropriate for this age group.

Don’t be Fooled by a Photograph

http://www.nationalgeographic.com/xpeditions/lessons/03/g68/hoaxphoto.html

This lesson, based on a doctored photograph of a shark, can help students understand that not all they see

online is true.

6.1 Students doing research must explore the difference between fact and opinion and recognize

techniques used to persuade others of a certain point of view.

Additional information about Internet safety may be found on the Virginia Department of Education’s

Website at

http://www.doe.virginia.gov/support/safety_crisis_management/internet_safety/index.shtml

Grade 6 Science – Page 17

Grade 6 Science Standards of Learning The sixth-grade standards emphasize data analysis and experimentation. Methods are studied for testing

the validity of predictions and conclusions. Scientific methodology, focusing on precision in stating

hypotheses and defining dependent and independent variables, is strongly reinforced. The concept of

change is explored through the study of transformations of energy and matter. The standards present an

integrated focus on the role of the sun’s energy in Earth’s systems, on water in the environment, on air

and atmosphere, and on basic chemistry concepts. A more detailed understanding of the solar system and

space exploration becomes a focus of instruction. Natural resource management, its relation to public

policy, and cost/benefit tradeoffs in conservation policies are introduced.

The sixth-grade standards continue to focus on student growth in understanding the nature of science.

This scientific view defines the idea that explanations of nature are developed and tested using

observation, experimentation, models, evidence, and systematic processes. The nature of science includes

the concepts that scientific explanations are based on logical thinking; are subject to rules of evidence; are

consistent with observational, inferential, and experimental evidence; are open to rational critique; and are

subject to refinement and change with the addition of new scientific evidence. The nature of science

includes the concept that science can provide explanations about nature and can predict potential

consequences of actions, but cannot be used to answer all questions.

Standard 6.1

Grade 6 Science – Page 18

The Grade 6 Science Standards of Learning are listed successively in the pages that follow. See the At A

Glance page at the beginning of this document for pacing and teaching sequence.

6.1 The student will demonstrate an understanding of scientific reasoning, logic, and the nature of science by planning and conducting investigations

in which

a) observations are made involving fine discrimination between similar objects and organisms;

b) precise and approximate measurements are recorded;

c) scale models are used to estimate distance, volume, and quantity;

d) hypotheses are stated in ways that identify the independent and dependent variables;

e) a method is devised to test the validity of predictions and inferences;

f) one variable is manipulated over time, using many repeated trials;

g) data are collected, recorded, analyzed, and reported using metric measurements and tools;

h) data are analyzed and communicated through graphical representation;

i) models and simulations are designed and used to illustrate and explain phenomena and systems; and

j) current applications are used to reinforce science concepts.

Overview

The skills described in standard 6.1 are intended to define the “investigate” component of all of the other sixth-grade standards

(6.2–6.9). The intent of standard 6.1 is that students will continue to develop a range of inquiry skills and achieve proficiency with

those skills in the context of the concepts developed at the sixth grade. Standard 6.1 does not require a discrete unit on scientific

investigation because the inquiry skills that make up the standard should be incorporated in all the other sixth-grade standards. It is

also intended that by developing these skills, students will achieve greater understanding of scientific inquiry and the nature of

science, as well as more fully grasp the content-related concepts in the standards. It is also intended that models, simulations and

current applications are used throughout the course in order to learn and reinforce science concepts.

Standard 6.1

Grade 6 Science – Page 19

Essential Understandings Essential Knowledge, Skills, and Processes

The concepts developed in this standard include the following:

• The nature of science refers to the foundational concepts that govern the

way scientists formulate explanations about the natural world. The nature

of science includes the following concepts

a) the natural world is understandable;

b) science is based on evidence, both observational and experimental;

c) science is a blend of logic and innovation;

d) scientific ideas are durable yet subject to change as new data are

collected;

e) science is a complex social endeavor; and

f) scientists try to remain objective and engage in peer review to

help avoid bias.

• To communicate an observation accurately, one must provide critical

details of exactly what is being observed. Using that information,

students will be able to differentiate definitively between or among

similar objects and/or organisms.

• Systematic investigations require accurate measurements; however, in the

absence of precision tools, observers must record careful estimations.

• Scale models must maintain relative values of size and/or quantity in

order to maintain the integrity of the object or topic being modeled.

• An experiment is a structured test of a hypothesis. A hypothesis is stated

in terms of a testable relationship.

• A scientific prediction is a forecast about what may happen in some

future situation. It is based on the application of scientific principle and

factual information.

• An inference is an explanation based on observations and background

knowledge. A conclusion is formulated from collected data. For example,

one might observe darkly colored pond water and make the inference that

it is polluted. However, only after data are collected can a conclusion be

formulated.

In order to meet this standard, it is expected that students will

• make connections between the components of the nature of science

and their investigations and the greater body of scientific knowledge

and research.

• make observations that can be used to discriminate similar objects

and organisms, paying attention to fine detail.

• make precise and consistent measurements and estimations.

• create approximate scale models to demonstrate an understanding of

distance, volume, and quantity.

• differentiate between independent and dependent variables in a

hypothesis.

• propose hypotheses or predictions from observed patterns.

• compare and contrast predictions and inferences. Analyze and judge

the evidence, observations, scientific principles, and data used in

making predictions and inferences.

• design an experiment in which one variable is manipulated over

many trials.

• collect, record, analyze, and report data, using metric terminology

and tools.

• analyze and communicate data, using graphs (bar, line, and circle),

charts, and diagrams.

• design a model that explains a sequence, for example, the sequence

of events involved in the formation of a cloud.

Standard 6.1

Grade 6 Science – Page 20

Essential Understandings Essential Knowledge, Skills, and Processes

• Patterns discerned from direct observations can be the basis for

predictions or hypotheses that attempt to explain the mechanism

responsible for the pattern.

• Accurate observations and evidence are necessary to draw realistic and

plausible conclusions.

• In order to conduct an experiment, one must recognize all of the potential

variables that can affect an outcome.

• In a scientific investigation, data should be collected, recorded, analyzed,

and reported using appropriate metric measurement and tools.

• In a scientific investigation, data should be organized and communicated

through appropriate graphical representation (graph, chart, table, and

diagram).

• Models provide a way of visually representing abstract concepts. The use

of models permits students to order events or processes.

• Science concepts are applied through observations and connections with

everyday life and technology.

Standard 6.1

Grade 6 Science – Page 21

Resources Teacher Notes

Standard 6.1

Grade 6 Science – Page 22

LCPS Core Experiences:

Properties of Matter

Properties of Water

Atmosphere

Space

Energy

Resources

Weathering & Erosion

Watersheds

Text: Glencoe Science

The Nature of Science. Pages 2 -12

Doing Science. Pages 14 - 26

Skill Handbook. Pages 541 - 561

SI Units of Measurement. Page 525

Measuring in SI. Pages 558-560

Button Classification. Page 48

AIMS: “Mini Metric Olympics”, Math + Science A Solution

Bill Nye Video

Pseudoscience

Measurement

Do It Yourself Science

VA Department of Education Lessons from the Bay.

http://www.doe.virginia.gov/instruction/science/index.shtml

Journey of a Rain Drop to the Chesapeake Bay (6.1 c, d)

Does it Soak Right In? (6.1 e, f, h)

Wetlands: Here All Year? (6.1 c, e, h)

Stream Creatures (6.1 a, b, h)

Muddying the Waters (6.1 h, i)

Grasses, Grasses, Everywhere (6.1 a, b, h, i)

Succession & Forest Habitats (6.1)

Going for Water (6.1 c, i)

Standard 6.1

Grade 6 Science – Page 23

Project WET

Adventures in Density

H2O Olympics

Is There Water on Zork?

Thirsty Plants

What’s the Solution?

Hanging Together

Sparkling Water

Internet Safety If students are using online tools for written communications, address the general safety issues appropriate for this age group. Don’t be Fooled by a Photograph http://www.nationalgeographic.com/xpeditions/lessons/03/g68/hoaxphoto.html This lesson, based on a doctored photograph of a shark, can help students understand that

not all they see online is true.

Sample Lesson Plans from the VA Department of Education Science Enhanced Scope

and Sequence – 6th Grade Science.

http://www.doe.virginia.gov/testing/sol/standards_docs/science/index.shtml

Standard 6.2

Grade 6 Science – Page 24

6.2 The student will investigate and understand basic sources of energy, their origins, transformations, and uses. Key concepts include

a) potential and kinetic energy;

b) the role of the sun in the formation of most energy sources on Earth;

c) nonrenewable energy sources;

d) renewable energy sources; and

e) energy transformations.

Overview

Many sources of energy on Earth are the result of solar radiation. This can be energy Earth is currently receiving or energy that has been stored

as fossil fuels. All energy exists in two basic forms — kinetic and potential. Understanding the forms of energy and their transformations will

provide the foundation for students to investigate the transfer of energy within living and Earth systems as well as to understand chemical

reactions, force, and motion. This standard builds upon concepts of energy sources introduced in science standard 3.11. It is intended that

students will actively develop scientific investigation, reasoning, and logic skills, and an understanding of the nature of science (6.1) in the

context of the key concepts presented in this standard.

Standard 6.2

Grade 6 Science – Page 25

Essential Understandings Essential Knowledge, Skills, and Processes

The concepts developed in this standard include the following:

• Potential energy is energy that is not “in use” and available to do work.

Kinetic energy is energy that is “in use” — the energy a moving object

has due to its motion. For example, moving water and wind have kinetic

energy. The chemical energy in fossil fuels is potential energy until it is

released.

• Solar energy from the ancient past is stored in fossil fuels, such as coal,

petroleum, and natural gas. Fossil fuels are rich in the elements carbon

and hydrogen. These sources of energy take very long periods of time to

form and once depleted, are essentially nonrenewable. Nuclear power is

also a source of nonrenewable energy.

• Many of Earth’s energy resources are available on a perpetual basis.

These include solar, wind, water (hydropower, tidal and waves), biofuels

and geothermal energy. Some energy sources can be replenished over

relatively short periods of time. These include wood and other biomass.

All are considered renewable.

• Secondary sources of energy, such as electricity, are used to store,

move, and deliver energy easily in usable form. Hydrogen is also a

secondary source of energy, also called an energy carrier.

• Thermal and radiant energy can be converted into mechanical energy,

chemical energy, and electrical energy and back again.

In order to meet this standard, it is expected that students will

• compare and contrast potential and kinetic energy through common

examples found in the natural environment.

• analyze and describe the transformations of energy involved with the

formation and burning of coal and other fossil fuels.

• compare and contrast renewable (solar, wind, water [hydropower,

tidal and waves], biofuels, geothermal, and biomass) and

nonrenewable energy sources (coal, petroleum, natural gas, nuclear

power).

• explain that hydrogen is not an energy source, but a means of storing

and transporting energy.

• design an application of the use of solar and wind energy.

• chart and analyze the energy a person uses during a 24-hour period

and determine the sources.

• compare and contrast energy sources in terms of their origins, how

they are utilized, and their availability.

• analyze the advantages and disadvantages of using various energy

sources and their impact on climate and the environment.

• analyze and describe how the United States’ energy use has changed

over time.

• analyze and describe sources of energy used in Virginia related to

energy use nationally and globally.

• predict the impact of unanticipated energy shortages.

• comprehend and apply basic terminology related to energy sources

and transformations.

• create and interpret a model or diagram of an energy transformation.

• design an investigation that demonstrates how light energy (radiant

energy) can be transformed into other forms of energy (mechanical,

chemical and electrical).

Standard 6.2

Grade 6 Science – Page 26

Resources Teacher Notes LCPS Core Experience: Energy Text: Glencoe Science pp. 322 - 327 “ Kinetic & Potential Energy” Reinforcement bk. pg. 338 – 339 Reinforcement bk. pg. 46 Sun Power pp. 366 - 367 "Electricity Sources" pg. 448 – 455 Enrichment bk. pg. 61 Geothermal Energy Project WET Energetic Water Thirsty Plants Incredible Journey Water Models Geyser Guts Piece It Together VA Department of Education Lessons from the Bay.

http://www.doe.virginia.gov/instruction/science/index.shtml Succession & Forest Habitats (6.2 d) Virginia Naturally VA’s Natural Resources Education Guide

https://www.dgif.virginia.gov/education/resources-for-teachers/

Minerals & Energy -Energy in the Balance Investigations from the VA Department of Education Science Enhanced Scope and

Sequence – 6th Grade Science.

http://www.doe.virginia.gov/testing/sol/standards_docs/science/index.shtml

Standard 6.3

Grade 6 Science – Page 27

6.3 The student will investigate and understand the role of solar energy in driving most natural processes within the atmosphere, the hydrosphere,

and on Earth’s surface. Key concepts include

a) Earth’s energy budget;

b) the role of radiation and convection in the distribution of energy;

c) the motion of the atmosphere and the oceans;

d) cloud formation; and

e) the role of thermal energy in weather-related phenomena including thunderstorms and hurricanes.

Overview

The key concepts defined in this standard are intended to expand student understanding of the effects of solar radiation entering

Earth’s atmosphere on weather and ocean current patterns. The distribution of energy through convection and radiation are explored

as students study cloud formation and movement patterns of the atmosphere and the world’s oceans. This standard is closely related

to standards 6.2 and 6.6 and builds on the weather concepts developed in standard 4.6 and concepts of visible light in standard 5.3.

It is intended that students will actively develop scientific investigation, reasoning, and logic skills, and an understanding of the

nature of science (6.1) in the context of the key concepts presented in this standard.

Standard 6.3

Grade 6 Science – Page 28

Essential Understandings Essential Knowledge, Skills, and Processes

The concepts developed in this standard include the following:

• Earth receives only a very small portion of the sun’s energy, yet this

energy is responsible for powering the motion of the atmosphere, the

oceans, and many processes at Earth’s surface.

• Solar radiation is made up of different types of radiation (including

infrared, visible light, and ultraviolet).

• Incoming solar radiation is in close balance with the energy that leaves

the atmosphere; otherwise Earth would heat up or cool down. Excess

carbon dioxide and other gases may disrupt this balance, creating a

greenhouse effect.

• About one-third of the sun’s incoming energy is reflected back out to

space. About one-half of the energy striking Earth is absorbed by

Earth’s surface.

• Earth’s surface is heated unequally.

• When air or water is heated, the molecules move faster and farther apart,

reducing their density and causing them to rise. Cooler air or water

molecules move more slowly and are denser than warm air or water.

Warm air or water rising coupled with cooler air or water descending

forms a cyclic rising/falling pattern called convection.

• Radiation and convection from Earth’s surface transfer thermal energy.

This energy powers the global circulation of the atmosphere and the

oceans on our planet.

• As bodies of water (oceans, lakes, rivers, etc.) absorb thermal energy,

the water evaporates causing the air to be warm and moist. Warm, moist

air is less dense than cold, dry air, so it rises relative to colder, drier air.

As warm, moist air rises, it gives off some thermal energy as the

moisture condenses, forming clouds. Clouds are not gaseous water

vapor; rather they are minute, condensed water particles.

• Some thunderstorms are formed where the land is strongly heated.

Hurricanes form over warm, tropical water and are fed by the energy of

that water.

In order to meet this standard, it is expected that students will

• comprehend and apply basic terminology related to solar energy,

including wavelength; ultraviolet, visible, and infrared radiation; and

reflection and absorption.

• analyze and interpret a chart or diagram showing Earth’s energy

budget.

• analyze, model, and explain the greenhouse effect in terms of the

energy entering and leaving the atmosphere.

• design an investigation to determine the effect of sunlight on the

heating of a surface.

• analyze and explain how convection currents occur and how they

distribute thermal energy in the atmosphere and oceans.

• analyze the role of heating and cooling in the formation of clouds.

• order the sequence of events that takes place in the formation of a

cloud.

• describe the relationship between thermal energy and the formation of

hurricanes and thunderstorms.

Standard 6.3

Grade 6 Science – Page 29

Resources Teacher Notes LCPS Core Experience: Atmosphere Text: Glencoe Science pp. 481 - 487 “Oceans” pg. 328 - 337 “How Do You Use Thermal Energy?” pp. 338 - 340 “Sun Power” pg. 45 * Glencoe Enrichment bk. pg. 70 Greenhouse Effect Project WET Energetic Water Thirsty Plants Incredible Journey Water Models Geyser Guts Piece It Together VA Department of Education Lessons from the Bay.

http://www.doe.virginia.gov/instruction/science/index.shtml

Here All Year (6.3 b) Investigations from the VA Department of Education Science Enhanced Scope and

Sequence – 6th Grade Science.

http://www.doe.virginia.gov/testing/sol/standards_docs/science/index.shtml

Standard 6.4

Grade 6 Science – Page 30

6.4 The student will investigate and understand that all matter is made up of atoms. Key concepts include

a) atoms consist of particles, including electrons, protons, and neutrons;

b) atoms of a particular element are alike but are different from atoms of other elements;

c) elements may be represented by chemical symbols;

d) two or more atoms interact to form new substances, which are held together by electrical forces (bonds);

e) compounds may be represented by chemical formulas;

f) chemical equations can be used to model chemical changes; and

g) a limited number of elements comprise the largest portion of the solid Earth, living matter, the oceans, and the atmosphere.

Overview

Standard 6.4 focuses on an understanding of the basic structure of the atom, including electrons, protons, and neutrons. The

concepts defined in standard 6.4 build on students’ basic understanding of the concept of matter as introduced in science standards

3.3 and 5.4. Knowledge of basic chemistry concepts is fundamental to understanding the physical sciences, life processes, and Earth

and environmental science ideas. It is intended that students will actively develop scientific investigation, reasoning, and logic

skills, and the nature of science (6.1) in the context of the key concepts presented in this standard.

Standard 6.4

Grade 6 Science – Page 31

Essential Understandings Essential Knowledge, Skills, and Processes

The concepts developed in this standard include the following:

• The basic structural components of a typical atom are electrons,

protons, and neutrons. Protons and neutrons comprise the nucleus of

an atom.

• An element is a form of matter made up of one type of atom. The

atoms of an element are basically alike, though the number of

neutrons may vary.

• The atoms of one element differ from those of another element in the

number of protons.

• Elements can be represented by chemical symbols.

• Two or more atoms of different elements may combine to form a

compound.

• Compounds can be represented by chemical formulas. Each different

element in the compound is represented by its unique symbol. The

number of each type of element in the compound (other than 1) is

represented by a small number (the subscript) to the right of the

element symbol.

• Chemical equations can be used to model chemical changes,

illustrating how elements become rearranged in a chemical reaction.

• A limited number of elements, including silicon, aluminum, iron,

sodium, calcium, potassium, magnesium, hydrogen, oxygen, nitrogen,

and carbon, form the largest portion of Earth’s crust, living matter, the

oceans, and the atmosphere.

In order to meet this standard, it is expected that students will

• create and interpret a simplified modern model of the structure of an

atom.

• compare and contrast the atomic structure of two different elements.

• explain that elements are represented by symbols.

• identify the name and number of each element present in a simple

molecule or compound, such as O2, H2O, CO2, or CaCO3.

• model a simple chemical change with an equation and account for all

atoms. Distinguish the types of elements and number of each element in

the chemical equation. (Balancing equations will be further developed in

Physical Science.)

• name some of the predominant elements found in the atmosphere, the

oceans, living matter, and Earth’s crust.

Standard 6.4

Grade 6 Science – Page 32

Resources Teacher Notes

LCPS Core Experience: Properties of Matter Text: Glencoe Science pp. 211 - 216 “What is Matter?” pp. 217 - 222 “What Makes Up an Atom?” pp. 223 - 224 “Types of Matter - Elements”, Enrichment bk. pg. 30 - 31 Atoms, Periodic Table pp. 225 - 227 “Compounds” pg. 227 “Compounds- It Takes A Formula” pp. 252 - 259 “Physical & Chemical Changes” pp. 496 “What’s In the Air?” Project WET Hanging Together Molecules in Motion Virginia Naturally VA’s Natural Resources Education Guide https://www.dgif.virginia.gov/education/resources-for-teachers/

Minerals & Energy -Energy in the Balance Jefferson Lab – All About Atoms, Worksheets, Puzzles and Games related to

Atomic Structure and Matter http://education.jlab.org/index.html Investigations from the VA Department of Education Science Enhanced Scope and

Sequence – 6th Grade Science. http://www.doe.virginia.gov/testing/sol/standards_docs/science/index.shtml

Standard 6.5

Grade 6 Science – Page 33

6.5 The student will investigate and understand the unique properties and characteristics of water and its roles in the natural and human-made

environment. Key concepts include

a) water as the universal solvent;

b) the properties of water in all three phases;

c) the action of water in physical and chemical weathering;

d) the ability of large bodies of water to store thermal energy and moderate climate;

e) the importance of water for agriculture, power generation, and public health; and

f) the importance of protecting and maintaining water resources.

Overview

Standard 6.5 is intended to develop student understanding of the unique properties of water and the importance of protecting and managing

water resources. Understanding the structure, properties, and behavior of the water molecule is fundamental to understanding more complex

environmental systems. Concepts like solubility, surface tension, cohesion, adhesion, density, condensation, and evaporation can be

investigated to appreciate why the properties of water are critical to life processes and living things. This standard also introduces the concept

of the ability of large bodies of water to moderate the climate on land. The connections between water resources and agriculture, power

generation, and public health are also investigated. It is intended that students will actively develop scientific investigation, reasoning, and

logic skills, and an understanding of the nature of science (6.1) in the context of the key concepts presented in this standard.

Standard 6.5

Grade 6 Science – Page 34

Essential Understandings Essential Knowledge, Skills, and Processes

The concepts developed in this standard include the following:

• Among water’s unique properties is that one side of each water

molecule is slightly negative and the other is slightly positive.

Individual water molecules, therefore, attract other water molecules like

little magnets as the slightly positive portion of a water molecule is

attracted to the slightly negative portion of an adjacent water molecule.

In this way, water molecules “stick together.”

• Due to water’s polar nature, a large number of substances will

“dissolve” in water. For this reason, water is often called the universal

solvent.

• Water is the only compound that commonly exists in all three states

(solid, liquid, gas) on Earth. The unique properties of water are a major

factor in the ability of our planet to sustain life.

• Additional properties of water are its high surface tension and the large

range of temperature (0–100 degrees Celsius) in which it can be found

in the liquid state, as well as the fact that, unlike other substances, solid

water is less dense than liquid water.

• Water is able to absorb thermal energy without showing relatively large

changes in temperature. Large bodies of water act to moderate the

climate of surrounding areas by absorbing thermal energy in summer

and slowly releasing that energy in the winter. For this reason, the

climate near large bodies of water is slightly milder than areas without

large bodies of water.

• Water (rain, ice, snow) has shaped our environment by physically and

chemically weathering rock and soil and transporting sediments.

Freezing water can break rock without any change in the minerals that

form the rock (physical weathering). This usually produces small

particles and sand. Water with dissolved gases and other chemicals

causes the minerals in rocks to be changed, leading to the deterioration

of the rock (chemical weathering).

(continued next page)

In order to meet this standard, it is expected that students will

• comprehend and apply key terminology related to water and its

properties and uses.

• model and explain the shape and composition of a water molecule.

• design an investigation to demonstrate the ability of water to dissolve

materials.

• comprehend the adhesive and cohesive properties of water.

• compare the effects of adding thermal energy to the states of water.

• explain why ice is less dense than liquid water.

• relate the three states of water to the water cycle.

• design an investigation to model the action of freezing water on rock

material.

• design an investigation to determine the presence of water in plant

material (e.g., a fruit).

• infer how the unique properties of water are key to the life processes

of organisms.

• design an investigation to model the action of acidified water on

building materials such as concrete, limestone, or marble.

• chart, record, and describe evidence of chemical weathering in the

local environment.

• analyze and explain the difference in average winter temperatures

among areas in central and western Virginia and cities and counties

along the Chesapeake Bay and Atlantic coast.

• explain the role of water in power generation.

• describe the importance of careful management of water resources.

Standard 6.5

Grade 6 Science – Page 35

Essential Understandings Essential Knowledge, Skills, and Processes

• Most of Earth’s water is salt water in the oceans (97 percent).

Nonfrozen, fresh water makes up less than 1 percent of the water on

Earth.

• Water is essential for agriculture. Crops watered by reliable irrigation

systems are more productive and harvests more dependable.

• Water is an important resource used in power generation. Hydroelectric

power plants make use of the kinetic energy of water as it flows through

turbines. Water is also heated in power plants and turned to steam. The

steam is used to turn turbines, which generate electricity.

• In the past, streams and rivers were often used to dispose of human

waste, and open sewers were common. During the mid-1800s, public

health officials recognized the connection between disease outbreaks

and contamination of public wells and drinking water. Advances in

water treatment and sanitary sewers have helped eliminate diseases

associated with human waste.

• Due to water’s importance in power generation, agriculture, and human

health, it is important to conserve water resources.

Standard 6.5

Grade 6 Science – Page 36

Resources Teacher Notes

LCPS Core Experiences: Properties of Matter Properties of Water Resources Weathering & Erosion Text: Glencoe Science pp. 468 - 480 Water (intro) pp. 468 - 469 “Recycling Water” Bill Nye Video Water Cycle Project WET Adventures in Density H2O Olympics Is There Water on Zork? Thirsty Plants What’s the Solution? Hanging Together Incredible Journey VA Department of Education Lessons from the Bay.

http://www.doe.virginia.gov/instruction/science/index.shtml Journey of a Rain Drop to the Chesapeake Bay (6.5 g) Types of Pollution (6.5 f, g) Stream Creatures (6.5 c, g) Muddying the Waters (6.5 g) Investigations from the VA Department of Education Science Enhanced Scope and

Sequence – 6th Grade Science.

http://www.doe.virginia.gov/testing/sol/standards_docs/science/index.shtml

Standard 6.6

Grade 6 Science – Page 37

6.6 The student will investigate and understand the properties of air and the structure and dynamics of Earth’s atmosphere. Key concepts include

a) air as a mixture of gaseous elements and compounds;

b) pressure, temperature, and humidity;

c) atmospheric changes with altitude;

d) natural and human-caused changes to the atmosphere and the importance of protecting and maintaining air quality;

e) the relationship of atmospheric measures and weather conditions; and

f) basic information from weather maps, including fronts, systems, and basic measurements.

Overview

Standard 6.6 is intended to provide students with a basic understanding of the properties of air, the structure of the atmosphere, weather, and

air quality. Students need to understand there are both natural and human-caused changes to the atmosphere and that the results of these

changes are not yet fully known. A basic understanding of weather and weather prediction builds on the key concepts in standard 4.6.

Standard 6.6 also focuses on student understanding of air quality as an important parameter of human and environmental health. It is

important to make the obvious connections between this standard and the other sixth-grade standards. It is intended that students will actively

develop scientific investigation, reasoning, and logic skills, and an understanding of the nature of science (6.1) in the context of the key

concepts presented in this standard.

Standard 6.6

Grade 6 Science – Page 38

Essential Understandings Essential Knowledge, Skills, and Processes

The concepts developed in this standard include the following:

• Air is a mixture of gaseous elements and compounds. These include

nitrogen, oxygen, water, argon and carbon dioxide. Nitrogen makes up

the largest proportion of air.

• Air exerts pressure. Air pressure decreases as altitude increases.

• Moisture in the air is called humidity.

• The atmosphere is made up of layers (troposphere, stratosphere,

mesosphere, and thermosphere) that have distinct characteristics.

• Temperature decreases as altitude increases in the lowest layer of the

atmosphere.

• Most of the air that makes up the atmosphere is found in the troposphere

(the lowest layer). Virtually all weather takes place there.

• Forest fires and volcanic eruptions are two natural processes that affect

Earth’s atmosphere. Many gaseous compounds and particles are

released into the atmosphere by human activity. All of the effects of

these materials are not yet fully understood.

• The amounts of thermal energy and water vapor in the air and the

pressure of the air largely determine what the weather conditions are.

• Clouds are important indicators of atmospheric conditions. Clouds are

found at various levels within the troposphere. Three major types of

clouds are cumulus, stratus, and cirrus.

• Ozone, a form of oxygen, can form near the surface when exhaust

pollutants react with sunlight. This pollutant can cause health problems.

Naturally occurring ozone is also found in the upper atmosphere and

helps to shield Earth from ultraviolet radiation.

• Maintaining good air quality is a crucial goal for modern society, and it

is everyone’s responsibility to work toward it.

• Weather maps show much useful information about descriptive air

measurements, observations, and boundaries between air masses

(fronts). The curved lines showing areas of equal air pressure and

temperature are key features of weather maps. Weather maps are

important for understanding and predicting the weather.

In order to meet this standard, it is expected that students will

• comprehend and apply basic terminology related to air and the

atmosphere.

• identify the composition and physical characteristics of the

atmosphere.

• analyze and interpret charts and graphs of the atmosphere in terms of

temperature and pressure.

• measure and record air temperature, air pressure, and humidity, using

appropriate units of measurement and tools.

• analyze and explain some of the effects that natural events and human

activities may have on weather, atmosphere, and climate.

• evaluate their own roles in protecting air quality.

• design an investigation to relate temperature, barometric pressure, and

humidity to changing weather conditions.

• compare and contrast cloud types and relate cloud types to weather

conditions.

• compare and contrast types of precipitation.

• compare and contrast weather-related phenomena, including

thunderstorms, tornadoes, hurricanes, and drought.

• interpret basic weather maps and make forecasts based on the

information presented.

• map the movement of cold and warm fronts and interpret their effects

on observable weather conditions.

Standard 6.6

Grade 6 Science – Page 39

Resources Teacher Notes LCPS Core Experience: Atmosphere Text: Glencoe Science pg. 496 pg. 499 - 501 pg. 507, 512 - 513, Enrichment pg. 69 Meteorology & You pg. 507, 510, 518 Enrichment bk. pg. 68 Tornadoes pp. 192 - 194 “Our Impact on Air” WeatherBug Achieve – WeatherBug Classroom

Uhttp://achieve.weatherbug.com/ U Each school has a weather station reporting live weather data. The

WeatherBug Classroom internet site has lesson plans and students activities

using live and stored local and international weather data. See your Science SALT or designated Weather Bug Lead Teacher for log in

information. Investigations from the VA Department of Education Science Enhanced Scope

and Sequence – 6th Grade Science. http://www.doe.virginia.gov/testing/sol/standards_docs/science/index.shtml

Standard 6.7

Grade 6 Science – Page 40

6.7 The student will investigate and understand the natural processes and human interactions that affect watershed systems. Key concepts include

a) the health of ecosystems and the abiotic factors of a watershed;

b) the location and structure of Virginia’s regional watershed systems;

c) divides, tributaries, river systems, and river and stream processes;

d) wetlands;

e) estuaries;

f) major conservation, health, and safety issues associated with watersheds; and

g) water monitoring and analysis using field equipment including hand-held technology.

Overview

Standard 6.7 is intended to provide students with a basic understanding of how natural processes and human interactions impact watershed

systems. This includes an understanding of the physical geography of Virginia’s portions of the three major watershed systems (the

Chesapeake Bay, the North Carolina sounds, and the Gulf of Mexico) and the various features associated with moving water (surface and

groundwater). Wetlands have become an important focus of scientists as we learn their role in flood and erosion control as well as their

importance as habitat for many species of living things. Students are introduced to major safety and conservation issues associated with

watersheds and become familiar with the testing parameters and tools used in the field. It is intended that students will actively develop

scientific investigation, reasoning, and logic skills, and an understanding of the nature of science (6.1) in the context of the key concepts

presented in this standard.

Standard 6.7

Grade 6 Science – Page 41

Essential Understandings Essential Knowledge, Skills, and Processes

The concepts developed in this standard include the following:

• An ecosystem is made up of the biotic (living) community and the

abiotic (nonliving) factors that affect it. The health of an ecosystem is

directly related to water quality.

• Abiotic factors determine ecosystem type and its distribution of plants

and animals as well as the usage of land by people. Abiotic factors

include water supply, topography, landforms, geology, soils, sunlight,

and air quality/O2 availability.

• Human activities can alter abiotic components and thus accelerate or

decelerate natural processes. For example, people can affect the rate of

natural erosion. Plowing cropland can cause greater erosion, while

planting trees can prevent it. Flood protection/wetland loss is another

example.

• A watershed is the land that water flows across or through on its way to

a stream, lake, wetland, or other body of water. Areas of higher

elevations, such as ridgelines and divides, separate watersheds.

• The three major regional watershed systems in Virginia lead to the

Chesapeake Bay, the North Carolina sounds, or the Gulf of Mexico.

• River systems are made up of tributaries of smaller streams that join

along their courses. Rivers and streams generally have wide, flat,

border areas, called flood plains, onto which water spills out at times of

high flow.

• Rivers and streams carry and deposit sediment. As water flow

decreases in speed, the size of the sediment it carries decreases.

• Wetlands form the transition zone between dry land and bodies of

water such as rivers, lakes, or bays. Both tidal and nontidal wetlands

perform important water quality functions, including regulating runoff

by storing flood waters; reducing erosion by slowing down run-off;

maintaining water quality by filtering sediments, trapping nutrients,

and breaking down pollutants; and recharging groundwater. They also

provide food and shelter for wildlife and fish and nesting and resting

areas for migratory birds.

In order to meet this standard, it is expected that students will

• comprehend and apply basic terminology related to watersheds.

• use topographic maps to determine the location and size of Virginia’s

regional watershed systems.

• locate their own local watershed and the rivers and streams associated

with it.

• design an investigation to model the effects of stream flow on various

slopes.

• analyze and explain the functioning of wetlands and appraise the value

of wetlands to humans.

• explain what an estuary is and why it is important to people.

• propose ways to maintain water quality within a watershed.

• explain the factors that affect water quality in a watershed and how

those factors can affect an ecosystem.

• forecast potential water-related issues that may become important in

the future.

• locate and critique a media article or editorial (print or electronic)

concerning water use or water quality. Analyze and evaluate the

science concepts involved.

• argue for and against commercially developing a parcel of land

containing a large wetland area. Design and defend a land-use model

that minimizes negative impact.

• measure, record, and analyze a variety of water quality indicators and

describe what they mean to the health of an ecosystem.

Standard 6.7

Grade 6 Science – Page 42

Essential Understandings Essential Knowledge, Skills, and Processes

• Estuaries perform important functions, such as providing habitat for

many organisms and serving as nurseries for their young.

• The Chesapeake Bay is an estuary where fresh and salt water meet and

are mixed by tides. It is the largest estuary in the contiguous United

States and one of the most productive.

• Water quality monitoring is the collection of water samples to analyze

chemical and/or biological parameters. Simple parameters include pH,

temperature, salinity, dissolved oxygen, turbidity, and the presence of

macroinvertebrate organisms.

Standard 6.7

Grade 6 Science – Page 43

Resources Teacher Notes

Standard 6.7

Grade 6 Science – Page 44

LCPS Core Experience: Weathering & Erosion Watersheds Text: Glencoe Science pp. 148 - 159 “What is an Ecosystem?” pp. 190 - 191 “Our Impact on Water” Project WET Macroinvertebrate Mayhem Color Me a Watershed Branching Out! Capture, Store, & Release Just Passing Through Rainy Day Hike The Price is Right A-Mazing Water Nature Rules! People of the Bog Life in the Fast Lane Wetland Soils Where Are the Frogs? VA Department of Education Lessons from the Bay.

http://www.doe.virginia.gov/instruction/science/index.shtml Journey of a Rain Drop to the Chesapeake Bay (6.7 a) Types of Pollution (6.7 a, f) Stream Creatures (6.7 g) Muddying the Waters (6.7 f) Who Killed SAV (6.7 d, e, f, g) A River Runs Through It (6.7 b, c) Riparian Buffers (6.7) Going for Water (6.7) Captain John Smith’s Chesapeake (6.7 a, d, e) Succession and Forest Habitats (6.7 a)

Standard 6.7

Grade 6 Science – Page 45

Investigations from the VA Department of Education Science Enhanced Scope and

Sequence – 6th Grade Science.

http://www.doe.virginia.gov/testing/sol/standards_docs/science/index.shtml

Standard 6.8

Grade 6 Science – Page 46

6.8 The student will investigate and understand the organization of the solar system and the interactions among the various bodies that comprise it.

Key concepts include

a) the sun, moon, Earth, other planets and their moons, dwarf planets, meteors, asteroids, and comets;

b) relative size of and distance between planets;

c) the role of gravity;

d) revolution and rotation;

e) the mechanics of day and night and the phases of the moon;

f) the unique properties of Earth as a planet;

g) the relationship of Earth’s tilt and the seasons;

h) the cause of tides; and

i) the history and technology of space exploration.

Overview

Standard 6.8 is intended to provide students with a basic understanding of the solar system and the relationships among bodies

within the solar system. This standard develops an understanding of Earth as part of the solar system and builds significantly on

standards 3.8, 4.7, and 4.8. It is intended that students will actively develop scientific investigation, reasoning, and logic skills, and

an understanding of the nature of science (6.1) in the context of the key concepts presented in this standard.

Standard 6.8

Grade 6 Science – Page 47

Essential Understandings Essential Knowledge, Skills, and Processes

The concepts developed in this standard include the following:

• The solar system consists of the sun, moon, Earth, other planets and

their moons, meteors, asteroids, and comets. Each body has its own

characteristics and features.

• The distance between planets and sizes of the planets vary greatly. The

outer, “gas” planets are very large, and the four inner planets are

comparatively small and rocky.

• Gravity is a force that keeps the planets in motion around the sun.

Gravity acts everywhere in the universe.

• Planets revolve around the sun, and moons revolve around planets. A

planet rotates upon an axis.

• A dwarf planet revolves around the sun, and can maintain a nearly

round shape as planets do, but it cannot move other objects away from

its orbital neighborhood.

• As Earth rotates, different sides of Earth face toward or away from the

sun, thus causing day and night, respectively.

• The phases of the moon are caused by its position relative to Earth and

the sun.

• Earth is a rocky planet, extensively covered with large oceans of liquid

water and having frozen ice caps in its polar regions. Earth has a

protective atmosphere consisting predominantly of nitrogen and oxygen

and has a magnetic field. The atmosphere and the magnetic field help

shield Earth’s surface from harmful solar radiation. Scientific evidence

indicates that Earth is about 4.5 billion years old.

• Seasons are caused by a combination of the tilt of Earth on its axis, the

curvature of Earth’s surface and, thus, the angle at which sunlight

strikes the surface of Earth during its annual revolution around the sun.

• Tides are the result of the gravitational pull of the moon and sun on the

surface waters of Earth.

In order to meet this standard, it is expected that students will

• describe the planets and their relative positions from the sun.

• compare the characteristics of Pluto to the planets and explain its

designation as a dwarf planet.

• design and interpret a scale model of the solar system. (A scale model

may be a physical representation of an object or concept. It can also

be a mathematical representation that uses factors such as ratios,

proportions, and percentages.)

• explain the role of gravity in the solar system.

• compare and contrast revolution and rotation and apply these terms to

the relative movements of planets and their moons.

• model and describe how day and night and the phases of the moon

occur.

• model and describe how Earth’s axial tilt and its annual orbit around

the sun cause the seasons.

• describe the unique characteristics of planet Earth.

• discuss the relationship between the gravitational pull of the moon and

the cycle of tides.

• compare and contrast the ideas of Ptolemy, Aristotle, Copernicus, and

Galileo related to the solar system.

• create and interpret a timeline highlighting the advancements in solar

system exploration over the past half century. This should include

information on the first modern rockets, artificial satellites, orbital

missions, missions to the moon, Mars robotic explorers, and

exploration of the outer planets.

Standard 6.8

Grade 6 Science – Page 48

Essential Understandings Essential Knowledge, Skills, and Processes

• The ideas of Ptolemy, Aristotle, Copernicus, and Galileo contributed to

the development of our understanding of the solar system.

• With the development of new technology over the last half-century, our

knowledge of the solar system has increased substantially.

Standard 6.8

Grade 6 Science – Page 49

Resources Teacher Notes LCPS Core Experience: Space Text: Glencoe Science pg. 384 - 392 “The Solar System”; Enrichment bk. pg. 54 Life in Other

Planets Enrichment. pg. 378 - 383 Benchmark Assessment 3 by February 25, 2005 Enrichment bk. pg. 51 More Hours in a Day pg. 380 - 381 “Movements of the Moon” pg. 379 “Seasons” pp. 394 - 395 “Space Exploration : Boom or Bust?” Enrichment bk. pg. 53 International Space Station Bill Nye Video Seasons Phases of the Moon Outer Space Investigations from the VA Department of Education Science Enhanced

Scope and Sequence – 6th Grade Science.

http://www.doe.virginia.gov/testing/sol/standards_docs/science/index.shtml

Standard 6.9

Grade 6 Science – Page 50

6.9 The student will investigate and understand public policy decisions relating to the environment. Key concepts include

a) management of renewable resources;

b) management of nonrenewable resources;

c) the mitigation of land-use and environmental hazards through preventive measures; and

d) cost/benefit tradeoffs in conservation policies.

Overview

Standard 6.9 is intended to develop student understanding of the importance of Earth’s natural resources, the need to manage them,

how they are managed, and the analysis of costs and benefits in making decisions about those resources. It applies and builds on the

concepts described in several lower grades, especially science standard 4.9. Knowledge gained from this standard will be important

to understanding numerous concepts in Life Science and Earth Science. It is intended that students will actively develop scientific

investigation, reasoning, and logic skills, and an understanding of the nature of science (6.1) in the context of the key concepts

presented in this standard.

Standard 6.9

Grade 6 Science – Page 51

Essential Understandings Essential Knowledge, Skills, and Processes

The concepts developed in this standard include the following:

• People, as well as other living organisms, are dependent upon the

availability of clean water and air and a healthy environment.

• Local, state, and federal governments have significant roles in managing

and protecting air, water, plant, and wildlife resources.

• Modern industrial society is dependent upon energy. Fossil fuels are the

major sources of energy in developed and industrialized nations and

should be managed to minimize adverse impacts.

• Many renewable and nonrenewable resources are managed by the

private sector (private individuals and corporations).

• Renewable resources should be managed so that they produce

continuously. Sustainable development makes decisions about long-

term use of the land and natural resources for maximum community

benefit for the longest time and with the least environmental damage.

• Regulations, incentives, and voluntary efforts help conserve resources

and protect environmental quality.

• Conservation of resources and environmental protection begin with

individual acts of stewardship.

• Use of renewable (water, air, soil, plant life, animal life) and

nonrenewable resources (coal, oil, natural gas, nuclear power, and

mineral resources) must be considered in terms of their cost/benefit

tradeoffs.

• Preventive measures, such as pollution prevention or thoughtfully

planned and enforced land-use restrictions, can reduce the impact of

potential problems in the future.

• Pollution prevention and waste management are less costly than

cleanup.

In order to meet this standard, it is expected that students will

• differentiate between renewable and nonrenewable resources.

• describe the role of local and state conservation professionals in

managing natural resources. These include wildlife protection;

forestry and waste management; and air, water, and soil conservation.

• analyze resource-use options in everyday activities and determine how

personal choices have costs and benefits related to the generation of

waste.

• analyze how renewable and nonrenewable resources are used and

managed within the home, school, and community.

• analyze reports, media articles, and other narrative materials related to

waste management and resource use to determine various perspectives

concerning the costs/benefits in real-life situations.

• evaluate the impact of resource use, waste management, and pollution

prevention in the school and home environment.

Standard 6.9

Grade 6 Science – Page 52

Resources Teacher Notes

Standard 6.9

Grade 6 Science – Page 53

LCPS Core Experiences: Resources Watersheds Text: Glencoe Science pp. 176 - 182 “Natural Resource Use” pg. 195 - 199 Enrichment bk. pg. 28 Using & Caring for Resources pg. 176 - 184 ; Enrichment bk. pg. 26 Petroleum pp. 185 - 189 "People & the Environment" Project WET Money Down the Drain The Long Haul Sparkling Water Sum of the Parts Every Drop Counts Common Water The Price Is Right Back to the Future AfterMath Dust Bowls and Failed Levees The Pucker Effect Reaching Your Limits A Grave Mistake Dilemma Derby VA Department of Education Lessons from the Bay.

http://www.doe.virginia.gov/instruction/science/index.shtml

Journey of a Rain Drop to the Chesapeake Bay (6.9 a) Does it Soak Right In? (6.9 a)

Standard 6.9

Grade 6 Science – Page 54

Virginia Naturally VA’s Natural Resources Education Guide https://www.dgif.virginia.gov/education/resources-for-teachers/

Water – What’s Your Watershed Address; Easy Ways to Demonstrate How Water Flows

Through a Watershed VA’s Open Spaces and Public Lands – No Limits; An Activity About Invasive Species Public Policy & Environmental Management – Pollution Prevention Audit Activity Waste Management & Pollution Prevention – Waste Stream Analysis Wildlife Resources – Counting Critters Internet Safety Students doing research must explore the difference between fact and opinion and

recognize techniques used to persuade others of a certain point of view.

Investigations from the VA Department of Education Science Enhanced Scope and

Sequence – 6th Grade Science.

http://www.doe.virginia.gov/testing/sol/standards_docs/science/index.shtml

Appendix A - 6th Grade Science – LCPS Focal Points

Grade 6 Science – Page 55

Nature of Science – 6.1

• Observations and Inferences

• Measurement –approximate and exact

• Metric system – meter, liter, gram, Celsius

• Experimental design – hypothesis,

variables, recording and analyzing data,

repeated trials

• Reading, interpreting and creating graphs,

charts, tables

• Models to explain sequence

Matter – 6.4

• Atoms – proton, neutron, electron

• Elements and chemical symbols

• Periodic Table

• Common Earth elements

• Compounds and chemical formulas

• Chemical and physical changes

• Chemical equations

• Chemical and physical properties

Water – 6.5

• Structure of molecule – polarity

• Phases of water

• Adhesion, cohesion, surface tension

• Universal solvent

• Solid, liquid, gas densities

Atmosphere & Weather – 6.3, 5, 6

• Mixture of gases/ composition

• Layers of the atmosphere

• Air pressure, temperature, humidity

• Fronts, systems, and air masses

• Clouds and formation

• T-storms, hurricanes, and tornados

• Weather instruments

• Reading weather maps

• Water moderates climate

• Water cycle

Space – 6.8

• Components of solar system – sun, moons,

Earth, planets, dwarf planets, asteroids,

meteors, comets

• Rotation – days/ nights

• Revolution - years

• Gravity

• Moon phases

• Cause of seasons

• Tides – spring and neap

• Scale model of planets and solar system

• Space exploration history

• Unique properties of Earth

• Early Astronomers

Energy – 6.2, 3

• Potential and kinetic

• Forms of energy-chemical, thermal,

radiant, mechanical, electrical

• Energy transformations

• Earth’s energy budget

• Radiation, conduction, convection

Resources – 6.2, 6, 9

• Renewable resources -Solar, wind, water,

geothermal and biomass

• Nonrenewable resources-fossil fuels,

nuclear

• Management/tradeoffs

• Conservation

• Pollution - air quality, prevention

• Greenhouse effect

Watersheds – 6.5, 7

• Weathering and erosion

• Water on Earth

• Protecting water resources

• Ecosystems – abiotic and biotic factors

• VA watersheds

• Wetlands and estuaries

• Watershed issues

• Water quality analysis

Appendix B – 6th Grade Science Concept Map and Course Questions

Grade 6 Science – Page 56

COURSE QUESTIONS: 1. How do scientists study our world? How does the scientific process work?

2. What are characteristics and structure of matter? How does matter change?

3. What is the structure of water and how does it relate to the unique properties of water?

4. What are the characteristics of air and Earth’s atmosphere? How is weather measured? What factors influence weather?

5. How does Earth’s position and relationship with the sun and moon affect the surface of the planet?

6. What are the different forms of energy? How is energy transferred and transformed?

7. What resources do humans depend upon?

8. Why are watersheds an important natural resource?

Matter

Properties of

Water

Atmosphere

& Weather

Space

Energy

Resources

Watersheds

Nature of Science

(Scientific Investigation)

6th Grade Science Concept Map

Systems, order and organization Change, constancy and measurement

Evidence, models and explanation Form and function