Loss of Nitrogen Compounds During Composting

10
Bioresource Technology 42 (1992) 103-111 Loss of Nitrogenous Compound s duri ng Composting of Animal Wastes O. Martins Holzm ann Umwelttechnik GmbH, A n der Gehespits, 6078 Neu-Isenburg, Germany & T. Dewes* Institut fiir Mikrobio logie und Landeskultur, -Mikrobiolog ie-, der Justus-Liebig-Universit~it, Senckenbergstrasse 3, 6300 Giessen, Germany (Received 10 November 1991; accepted 23 Decembe r 1991 ) Abstract The nitrogen losses occurring during composting of mixtures of straw and different liquid manures (poultry, pig, cattle, and mixtures thereof) over a period of 98 to 114 days have been determined. During the composting period between 9"6 and 19.6% of the initial total nitrogen was lost as leachates. Most of the leaching (> 70%) occurred within the first 10 days of the composting period. Consequently, large amounts of nitrogen are carried out of the compost with the leachate over this period largely as a result of the high nitrogen concentrations. The greatest proportion of nitrogen in the leachate (76.5-97.8%) was ammonium- nitrogen. The greatest nitrogen losses, between 46.8 and 77"4% of the initial total nitrogen content, were caused by gaseous emissions in the form of NH3 as well as small amounts (< 5%) of NO x. The main factors which influenced the level of gaseous emis- sions were the total nitrogen content at the begin- ning of the composting period, the temperature of the compost material and heap rotation (turning). The greatest nitrogen losses were found in the N-rich poultry- and pig-straw mixtures which showed obvious temperature increases up to 40°C during the first few days of the composting period. A high pH value (pH> 8) promoted the gaseous *To whom correspondence should be addressed at Macken- ser Stral3e 36, 3354 Dassel, Germany. 1 03 NH 3 emission which is important from an environ- mental perspective. Key words: Animal wastes, decomposition, nitro- gen emissions , nitrogen leaching. INTRODUCTION Losses of nitrogenous compounds during decom- position of animal wastes occur on the one hand through emission of gases such as NH 3 and NOx and on the other hand as liquid in the form of bound nitrogen, NH~- and small amounts of NO 3. Although both are of ecological relevance, the economics should also be taken into considera- tion, at least when the processing of the animal wastes occurs on the farm. In this case the farmer should take into account the nutrients contained within the m anure when fertilizers ar e applied. Loss of N H 3 start s immediately after the animal wastes are excreted. Consequently the air within the stall as well as the vapour plume rising from storage, as well as from the fertilized fields, all contain NH 3 (Kowalewsky, 1981; D6hler, 1987; Oldenburg, 1989 ). The amount of NH 3 emissions is by no means negligible. Buijsm an et al. (1987) estimated that each year in Europe 6-4 × 106 t NH 3 are emitted, of which 81% is produced as a based on updated data suggest even greater amounts (Isermann, 1990). It is held to be almost Bioresource Technology 0960-8524/92/S05.00 © 1992 Elsevier Science Publishers Ltd, England. Printed in Great Britain

Transcript of Loss of Nitrogen Compounds During Composting

Page 1: Loss of Nitrogen Compounds During Composting

8/8/2019 Loss of Nitrogen Compounds During Composting

http://slidepdf.com/reader/full/loss-of-nitrogen-compounds-during-composting 1/9

Bioresource Technology4 2 (1992) 103-111

Loss of Nitrogenous C om pou nd s during Com posting

of A nim al W astesO. M a r t in s

Holzm ann Um wel t t echn ik Gm bH, A n der Gehesp i t s, 6078 Neu- I senburg , Germ any

&

T . D e w e s *

Institut f iir Mik robio logie un d L ande skultur, -M ikrobiolog ie-, der Justus-Liebig-Universit~it , Sen cken bergstrasse 3,

6300 G ies sen , Germ any(Rece ived 10 Novem ber 1991 ; accep ted 23 Dec em be r 1991 )

Abs t ra c t

The ni trogen losses occurring during comp osting o f

mix tures o f s t raw and d i f fe ren t l iqu id manures

(poultry, pig, cattle, and m ixtur es thereof) over a

per iod o f 98 to 114 days have been de termined .

Dur ing the compos t ing per iod be tween 9"6 and

19.6% of the in i t ia l to tal n i trogen was lost asleachates . M ost o f the leaching (> 7 0%) occurred

wi th in the f ir s t 10 days o f the compo s t ing per iod .Consequently , large am oun ts o f n i trogen are

carr ied ou t o f the co mp os t wi th the leacha te over

this per iod largely as a result o f the high n i trogen

concentrations. The greatest pro por tion o f nitrogen

in the leachate (76.5-97.8%) was ammonium-nitrogen.

The greatest n i trogen lo sses , betwe en 46.8 and

77"4% o f the initial total nitrogen con tent, were

caused by gaseous em iss ions in the form o f NH3 as

we l l a s s m a l l a m o u n t s ( < 5 % ) o f NO x. The main

fac tors wh ich in f luenced the leve l o f gaseous em is -s ions were the to tal n i trogen content a t the begin-

n ing o f the com pos t ing per iod , the tempera ture o f

the compost material and heap rotat ion ( turning) .The greatest n i trogen losses w ere fo un d in the

N-r ich pou l t ry - and p ig -s t raw mix tures wh ich

showed obvious temperature increases up to 40°Cdur ing the f ir s t f ew days o f the c ompos t ing per iod .

A h igh pH va lue (pH > 8) pro m oted the gaseous

* T o w h o m c o r r e s p o n d e n c e s h o u ld b e a d d r e s s e d a t M a c k e n -ser S t ral3e 36 , 3354 Dassel , Germany.

103

N H 3 emiss ion w h ich i s impor tan t f rom an env iron-

m en tal perspective.

Ke y wo rd s: A n im a l w a s te s , d e c o m p o s i t i o n , n i t ro -

g e n e m i s s i o n s, n i t r o g e n l e a c h in g .

I N T R O D U C T I O N

L o s s e s o f n i t ro g e n o u s c o m p o u n d s d u r i n g d e c o m -p o s i t i o n o f a n i m a l w a s t e s o c c u r o n t h e o n e h a n d

t h r o u g h e m i s s i o n o f g a s es s u c h a s N H 3 a n d N O x

a n d o n t h e o t h e r h a n d a s l i q u i d i n t h e f o r m o f

b o u n d n i t r o g e n , N H ~- a n d s m a l l a m o u n t s o f N O 3 .

A l t h o u g h b o t h a r e o f e c o l o g i c a l r e l e v a n c e , t h e

e c o n o m i c s s h o u l d a l s o b e t a k e n i n t o c o n s i d e r a -

t i o n , a t l e a s t w h e n t h e p r o c e s s i n g o f t h e a n i m a l

w a s t e s o c c u r s o n t h e f a r m . I n th i s c a s e t h e f a r m e r

s h o u l d t a k e i n t o a c c o u n t t h e n u t r i e n t s c o n t a i n e dw i t h i n th e m a n u r e w h e n f e r t il i ze r s a re a p p l i e d .

L o s s o f N H 3 s ta r ts i m m e d i a t e l y a ft e r t h e a n i m a l

w a s t es a r e e x c r e t e d . C o n s e q u e n t l y t h e a i r w i t h i n

t h e s t a ll a s w e l l a s t h e v a p o u r p l u m e r i s i n g f r o m

s t o r a g e , a s w e l l a s f r o m t h e f e r t i l i z e d f i e l d s , a l l

c o n t a i n N H 3 ( K o w a l e w s k y , 1 9 8 1 ; D 6 h l e r , 1 9 8 7 ;

O l d e n b u r g , 1 9 8 9) . T h e a m o u n t o f N H 3 e m i s si o n s

i s b y n o m e a n s n e g l i g i b le . B u i j s m a n et al. ( 1 9 8 7 )

e s t i m a t e d t h a t e a c h y e a r i n E u r o p e 6 - 4 × 1 0 6 t

N H 3 a r e e m i t t e d , o f w h i c h 8 1 % i s p r o d u c e d a s a

r e s u l t o f a n i m a l h u s b a n d r y . N e w i n v e s t i g a t i o n s

b a s e d o n u p d a t e d d a t a s u g g e s t e v e n g r e a t e ra m o u n t s ( I s e r m a n n , 1 9 9 0 ). I t is h e l d t o b e a l m o s t

Bioresource Technology 096 0-85 24/9 2/S0 5.00 © 1 992 Elsevier Science Publ ishers L td , England. Pr in ted inGrea t Br i ta in

Page 2: Loss of Nitrogen Compounds During Composting

8/8/2019 Loss of Nitrogen Compounds During Composting

http://slidepdf.com/reader/full/loss-of-nitrogen-compounds-during-composting 2/9

104 O . M a r t in s , T . D e w e s

certain that these place terrestrial and aquatic

ecosystems under stress (Roelofs, 1986;

Schuurkes, 1986; Van der Ee rde n e t a l . , 1990).

The most important factors which influence the

emission of NH3 from animal excrements are pH

value, NH~-/NH 3 equilibrium, mineralisations

intensity of organic N-compounds, C/N ratio,

temperature, dry matter content and wind speed.

Therefore differences can be expected in the level

of the NH 3 emissions from both solid and liquid

manure systems which are dependent on the tech-

nical system available for handling the manure as

well as on the kind of animal, feeding, etc.

In the case of liquid manure, NH 3 losses of the

order of 1.4% to 56"3% were measured during

storage (35 to 180 days) alone (Dewes e t a l . ,

1990). Further losses occur during the spreading

of the manure. According to D/Shier (1990) theselosses amount to 3-67% of the total amount of

NHJ- applied (i.e., the amount still present at the

end of the storage period). Investigations con-ducted by Kirchmann and Witter (1989) based on

models using solid manure showed that, depend-

ing on the addition of straw and the C/N ratio,

gaseous N-losses amounted to 9- 44% of the N t o t a 1

over 200 days. The degree of variation in the NH 3

emission rates for both solid and liquid manures

are unusually large. It is generally assumed, how-

ever, that losses over comparable storage times

are greater for solid than for liquid manure.The aerobic decomposition of solid manure,

which generally aims to achieve a rapid break-

down of organic substances and a hygienic effect

from self-heating, is promoted by heap rotation

and should lead to the fastest NH 3 emission rates.

Additionally leaching always occurs, which also

carries nitrogen out of the compost. Owing to a

law passed in 1986 ( W a s s e r h a u s h a l t s g e s e t z - - a

German law for the protection of water bodies) it

is becoming increasingly common in Germany to

discuss the question of whether or not the

nitrogen content, in particular the NO 3 portion,

of manure leachate poses a danger to the ground

water supply.

From an ecological view point liquid and solid

manure must be seen in a new light. Althoughbasically solid manure is useful for the fertilization

of farmland it is necessary to improve estimates of

the nitrogen losses from storage and spreading ofmanure.

This investigation is considered to be a step inthis direction. The NH3/NO x emission rates from

different combinations of cattle, pig and poultrydung heaps were determined under semi-tech-

nical conditions, as well as quantifying the amount

of nitrogen lost through leaching. With theseresults it is intended to produce a nitrogen

balance sheet for the aerobic decomposition of

animal excrement over a period from 98 to 114

days.

METHOD S

Procedure

Two pig, three cattle and three poultry liquid

manures, with dry matter (DM) contents of 7-4 to17.2%, as well as a mixture of all three in the ratio

of 1:1:1 (DM 12.2%) were separately placed intoa stirrer (500 litres) and mixed, together with

chopped straw (length c. 5-1 0 cm, 80% DM), for

8 min to produce a homogenous manure-strawmixture. The amount of straw added depend ed on

the DM content of each manure slurry and

totalled 2.1-4.7% (w/w). The mixtures (CM =

cattle manure, PM = pig manure, PoM = poultry

manure, MM = mixed manure) were placed into a

composter in triangular heaps with a height of

0.6-0.8 m. Self heating then occurred in these

containers. As the heaps were placed into the

composter layers of chopped straw totaling c. 2%

(w/w) were added. The total amounts of manure

slurry and straw-DM as well as the amount of

manure-straw mixture set out as compost aregiven in Table 1.

The heaps were turned between three andseven limes during the composting period. This

occurred whenever the majority of the five

measurement sites indicated that the composttempera ture had fallen below 30°C. Samples were

taken for analysis at the beginning and end of the

composting period. In order to prevent the outer

edges of the compost from drying out and to test

the possibility of recycling leachate, the leachateswere regularly spayed back over the compost dur-

ing the composting period (Fig. 2). The applica-

tion times were dependent upon compost

temperature as well as on the water content of the

outer edges of the heap. When insufficient

leachate was available, additional dung slurriesfrom the same kind of animal (DM < 4.2%) were

used to irrigate the compost. For the pig, poultryand mixture composts the first irrigation occurred

after 9 to 14 days of composting, but only after 26

to 41 days for the cattle compost. The total

amount of leached water and dung slurries used

for irrigation ranged between 193 and 507 litres/tonne initial weight.

Page 3: Loss of Nitrogen Compounds During Composting

8/8/2019 Loss of Nitrogen Compounds During Composting

http://slidepdf.com/reader/full/loss-of-nitrogen-compounds-during-composting 3/9

Loss o f N during composting of animal wastes

Table 1. Compositionof the manure-straw mixtures and the frequencyof turning (rotation)

105

T r ea t m en t A m o u n t D M A d d i t i o n a l s tr a w F M o f t h e m a n u r e - s t ra w N u m b e r o fof o f (DM) in % of mix tures at s tar t o f rotat ions

m anur e m anu r e m anu r e ( FM ) com pos t i ng(kg) (%) (kg)

PoM 1 2075 13"9 5'7 221 9 6PoM 2 1350 8"2 7'0 1468 6

PoM 6 1751 17.2 4.2 1842 7

CM 3 2 041 12.3 5.2 217 3 6

CM 7 1770 10.9 5.6 1894 5

CM 8 1539 8.5 6.1 1657 6PM 4 1729 12.8 5.6 1849 4

PM 9 1205 7.4 7.8 1322 4

MM 10 1466 12.2 6.7 1588 3

DM = dry matter; F M = fresh matter; PoM = poultry manure; CM = cattle manur e; PM = pig manure ; MM = mixed manure.

P E - t e n t

c e i l i n g f o r to x i d f a n

g a s e o u s e m i s s io n s

P V C - ~ e n t i o t i o n p i p e

t e m p e r o t u re m e o s u r in g p o i n ts

I f o ,- o n o l y z e r

d r o i n p i p e

c o n t o i n e rf o r c o l l e c t i n gl e o c h o t e

Fig. 1.

P E - f o i

Experimentalset-up.

c o m p o s t i n g bas in

C on st r uc t ion o f t he c omp os t e r and t e n t ( F ig . 1 )

The composter was constructed from crossed

wooden slats with a base area of 3.76 m × 2.40 m.

The base and sides of the composter were lined

with polyethylene plastic to prevent waterseepage. A drain pipe was built into the lowest

point so that the leachate could be collected in a

container and measured and from which samples

for analysis could be taken. In order to be able to

calculate the N-balance the compos t material wasweighed at the beginning and at the end of the

composting period.

The gases released from the compost weretrapped in tents (of polyethylene plastic) erected

over the composter. With the aid of an axial fan

the air was pumped through a PVC pipe at an

initial flow rate of 174 Nm3/h at the beginning ofthe composting period and later increased to 289

Nm3/h due to formation of condensation on the

inside tent walls caused by a high relative humid-

ity. Ceiling fans provided a steady air circulation

within the tent.

M e a s u r e m e n t a n d a n a l y s is m e t h o d s

Temperature

The heap temperature was measured at hourly

intervals at five sites using thermoelements (Fig.

1). The data were recorded on a datalogger for

later transfer to a PC.

NH3/NOx emissions

The gas emission samples from each heap were

collected by drawing samples through a small

perforated plastic tube inserted into the ventila-tion pipe. The NH 3 and NOx con tent were deter-

Page 4: Loss of Nitrogen Compounds During Composting

8/8/2019 Loss of Nitrogen Compounds During Composting

http://slidepdf.com/reader/full/loss-of-nitrogen-compounds-during-composting 4/9

10 6 O. Martins, T. Dewes

mined a t leas t twice da i ly us ing a

c h e m i lu m in e s c e n c e a n a ly s e r ( m o d e l P N - 1 H ,

I M E S , W ie s lo c h , G e r m a n y ) . Ba c k g r o u n d c o n -c e n t r a t i o n s w h ic h h a d t o b e t a k e n i n to a c c o u n t

b e c a u s e o f t h e n e ig h b o u r in g st a ll s a n d c o m p o s t e r s

w e r e d e t e r m in e d i n s id e a t e n t p l a c e d o v e r a n

e m p ty c o m p o s t e r . T h e d a t a f o r e a c h s e r i e s o fm e a s u r e m e n t s w e r e t h e n c o r r e c t e d u s in g t h e s e

back groun d leve ls .

Compost and leachate analysis

T h e s a m p les w e r e d e e p f r o z e n im m e d ia t e ly a f t e r

c o l l e c ti o n a n d t r a n s p o r t e d t o t h e l a b o r a to r y i n a n

ice ches t. Befo re the fo l lowing ana lyses were ca r -

r ied ou t the leacha te samples were a l lowed tom e l t, w h i l e t h e c o m p o s t s a m p le s w e r e g r o u n d i n a

froze n s ta te :

- - Dry m at te r con ten t (DM): a t 105°C to con-s tan t we igh t

- - T o t a l n i t r o g e n (Ntotal): Kje ldah l , modi f ied byCo p e ( Br e m n e r & M u lv a n e y , 1 9 8 2 )

- - A m m o n i u m - n i t ro g e n ( N H ; - N ) : D i s ti ll a ti o n

in to H 2 S O 4 a n d t i t r a t i o n w i th N a O Ha c c o r d in g t o Br e m n e r ( 1 9 6 5) .

- - N i t r a t e - n i tr o g e n ( N O 3 - N ) : Co lo r im e t r i c

d e t e r m in a t i o n u s in g U V a b s o r p t i o n a s

D e w e s a n d S c h m i t t ( 1 9 9 0 ) . Co m p o s t

samples w ere mixed in to d is t i l l ed wa te r a t a

ra t io o f 1 :10 . The o rgan ic con ten t was p re -

c ip i ta ted ou t us ing ZnSO4 so lu t ion (7 .2%)

and Na2B407"10 H=O s o lu t ion (5%) an dsepara ted us ing cen t r ifuga t ion .

- - Organ ic ca rbo n com pou nds (Corg): Co lo r i -

met r ic a f te r we t a sh ing wi th K z C r 2 0 7

(Sch l ich t ing & Blume, 1966) .

R E S U L T S A N D D I S C U S S I O N

D u r in g t h e c o m p o s t i n g p e r io d n i t r o g e n l o s s e s

o c c u r r e d n o t o n ly t h r o u g h l e a c h in g b u t a l s o a s

g a s e o us e m i s s io n s i n th e f o r m o f N H 3 a n d N O x .A d d i t i o n o f n i t r o g e n i n to t h e c o m p o s t m a te r i a l

occu r red as a resu l t o f the regu la r i r r iga t ion o f the

heaps us ing leacha te and dung s lu rr ie s.

A n a r r a y o f i n t e r d e p e n d e n c i e s e x i s t b e tw e e n ,

f i r s t ly , the amount o f leacha te , i t s n i t rogen con-t e n t , a n d t h e p r o p o r t i o n s o f d i f f e r e n t n i t r o g e n

f rac t ions and second ly , the type o f m ate r ia l used ,

the compos t ing pe r iod , the degree o f i r r iga t ion ,

a n d t h e f r e q u e n c y o f r o t a t i o n . S e v e r a l o f t h e s e

in te rdepe ndenc ies a re i l lu s t ra ted us ing heap PoM2 in F ig . 2 as an example . Here , a s in a l l o the r

2 0 0 .

7 s :

5 o .

u 2 5 -

8

,I, ¢ ¢ $ J, ¢

'~ '~ ' '"~LS U U '

$ = r o t a t e d

~ ' ' I 5 , "~oo

2 5 ~

50 ~

odded l iqu id

leached l iqu id

1 5 0 0 -

300~

2 0 0

1 0 0

Z

0

, i i i i9"

I,

0 2 0 40

L-2;- -;L;; .',_:,.'

60 8 0

d o y s

I i0 0 o .

2 0 0

[ ~ ] N-oddition

I ~ N - N

N H 4 - N

111111111NO3-N

100

Fig . 2 . Am oun t o f l e ach ing and n i t rogen r e l ea se du r i ng thed e c o m p o s i t i o n o f p o u l t r y m a n u r e ( P o M 2 ) a s a f u n c t i o n o fi r r iga t i on deg ree , n i t rogen ad d i t i on and r o t a t i on f r equ ency .

cases inves t iga ted , mos t o f the leach ing (> 70%)

had a l ready occur red wi th in the f i r s t t en days ,

be fo re the s ta r t o f i r r iga t ion , and i s independen t

o f t h e a d d i t i o n o f w a t e r. T h i s a g r ee s w i th o u r o w ninves t iga tions wi th ca t t le man ure heaps in the f ie ld

as we l l a s wi th the exper iences o f K6hn le in and

Vet te r (1953). W i th inc reas ing leng th o f the co rn -pos t ing pe r iod , leach ing genera l ly on ly occur red

af te r the heap was ro ta ted . Leacha tes were no

longer de tec tab le a f te r on ly 34 days (PoM 6) and

fo r up to 72 days (PoM 1 and PoM 2) . A la rge

a m o u n t o f n i t r o g e n w a s r e m o v e d d u e t o l e ac h ing ,

pa r t icu la r ly in the f i r s t few days whi le the ra te o f

leach ing was h igh . The h ighes t N to ta I c o n c e n t r a -

t i o n , a v e ra g in g 9 0 8 -8 m g /1 0 0 m l , w a s m e a s u r e d

f o r p o u l tr y m a n u r e ( 8 0 8 - 1 0 5 4 m g /1 0 0 m l) , f o l-

l o w e d b y t h e p o u l t r y /p ig / c a tt l e m ix tu r e w i th 7 4 5

m g /1 0 0 m l , p ig m a n u r e w i th a n a v e r a g e o f 5 6 1 .2r a g /1 0 0 m l ( 5 5 7 - 5 6 5 r a g /1 0 0 m l ) a n d c a t t l e

m a n u r e w i th 38 4" 4 m g / 1 0 0 m l ( 3 5 2 - 4 3 3 m g / 1 0 0

ml , c f . Tab le 2 ) . I t i s the re fo re apparen t tha t the

Ntota I con ten t in the in i t ia l ma te r ia l de te rmines th e

m a x i m u m Nto ta c o n c e n t r a t i o n o f t h e l e a c h a t e a n d

th e r e f o r e to a l a rg e e x t e n t t h e a m o u n t o f Ntota I i tca r r ie s wi th i t . Th is va r ied f rom 741 g / t to 2815

g / t ( T a b l e 3 ) . D u r in g a 9 8 - 1 1 4 - d a y c o m p o s t i n g

per iod be tw een 9"6% (MM 10) and 19-6% (PoM2) o f the sum of the in i t ia l n i t roge n con ten t an d

Page 5: Loss of Nitrogen Compounds During Composting

8/8/2019 Loss of Nitrogen Compounds During Composting

http://slidepdf.com/reader/full/loss-of-nitrogen-compounds-during-composting 5/9

L o s s o f N d u r i n g c o r n p o st i n g o f a n i m a l w a s t es

T a b l e 2 . A m o u n t o f l e a c h a t e a n d i r r i g a t i o n w a t e r a n d c o n c e n t r a t i o n s o f t o ta l n i t r o g e n , a m m o n i a a n d n i t r a t e n i t r o g e n

1 0 7

T r e a t m e n t L e a c h a t e N to t, N H ~ - N N O £ - N I r r ig a t i o n N to ta( l it r e t o n n e ) ~ ( m g / l O 0 m l ) ( m g / l O 0 m l ) ( m g / l O 0 m l ) w a t e r ( m g / l O 0 m l )

M a x . M i n . M a x . M i n . M a x . M i n . ( l it r e /t o n n e ) ~

P o M 1 2 9 2 . 9 8 6 3 - 9 1 5 5 . 5 7 7 2 . 3 7 0 - 7 7 - 3 0 " 6 2 9 2 " 9 8 2 4 . 0P o M 2 3 2 4 . 9 8 0 8 . 3 3 8 6 ' 2 7 0 5 "5 2 1 0 " 9 6 - 2 0 "8 4 2 5 " 7 6 8 5 . 2

P o M 6 2 7 8 - 5 1 0 5 4 - 2 8 1 8 . 2 9 5 9 " 5 7 1 9 " 8 2 " 7 1 . 0 3 0 2 - 9 1 0 1 0 . 9

C M 3 2 2 5 . 0 3 5 2 " 3 2 7 5 . 8 2 6 0 " 3 1 4 8" 5 3 " 9 0 - 6 2 2 5 " 0 2 6 9 " 7

C M 7 2 7 8 . 2 4 3 3 . 3 2 6 7 . 3 3 6 9 " 7 1 2 1 . 0 6 . 2 0 " 5 1 9 2 " 7 3 9 8 " 9

C M 8 2 6 6 . 7 3 6 7 . 5 2 4 1 . 1 2 7 7 . 2 8 5 . 4 5 . 7 0 ' 7 2 0 2 . 2 3 4 8 " 0

P M 4 2 9 5 - 3 5 5 7 " 4 2 3 5 - 3 4 6 2 . 1 7 ' 9 7 6 " 6 0 " 9 4 0 5 . 6 4 3 9 . 5

P M 9 3 1 3 . 9 5 6 4 . 9 2 8 8 . 0 4 7 9 . 2 1 6 1 "0 4 . 9 0 - 7 5 0 6 ' 8 5 1 1 . 0

M M 1 0 1 6 5 . 0 7 4 4 . 9 4 5 0 . 5 6 4 9 . 4 1 9 1 . 9 7 . 8 0 . 3 3 5 2 "6 6 6 4 ' 7

" l i t r e / t o n n e i n i t i a l m a s s .

Tabl e 3 . T o t a l n i t r o g e n ( N t, ,t al ) b a l a n c e

Tr ea tm en t N, , ,, , / in co m po st Nr,, tu/ in Nt, ,r , l in N~ot~1e m i t t e d E r r o r '( g / t o n n e ) " l e a c h a t e i r r ig a t i o n w a t e r ( g / t o n n e ) ~ ( % )

( g / o n n e ) " ( g / o n n e ) ~S t a rt E n d M e a s u r e d C a l c u la t e d b

P o M 1 1 0 6 5 7 3 4 5 2 2 3 5 4 2 5 0 8 7 3 7 1 7 3 5 9 0 . 2

P o M 2 9 2 7 2 2 5 6 9 2 3 8 4 2 9 1 8 7 5 8 7 7 2 3 7 4 .8

P o M 6 1 1 6 8 4 2 8 5 4 2 8 1 5 3 0 6 2 7 3 9 9 9 0 7 7 1 8.5

C M 3 5 6 0 1 1 8 5 9 7 4 1 6 0 7 2 5 5 6 3 6 0 8 2 9 - 2

C M 7 5 6 7 9 2 4 4 8 1 1 1 0 7 6 9 2 9 6 1 2 8 9 0 2 . 5

C M 8 5 1 1 2 1 9 3 2 9 2 8 6 0 9 2 4 8 5 2 8 6 1 1 3 .1

P M 4 8 0 3 8 3 4 9 3 1 5 3 2 1 7 8 3 4 2 6 3 4 7 9 6 11 .1

P M 9 7 6 6 3 3 5 7 0 1 6 7 9 2 5 9 0 4 1 6 3 5 0 0 4 1 6 . 8

M M 1 0 9 7 2 7 3 0 3 3 1 1 5 5 2 3 4 4 6 5 0 9 7 8 8 3 1 7 . 4

" g / t o n n e i n i t ia l m a s s ./ 'N tota em i t te d = N t o t a I i n c o m p o s t a t s t a rt + N t o t a I i r r i g a ti o n w a t e r - N t o t a I l e a c h a t e - N t o t a I i n c o m p o s t a t t h e e n d .' D i f f e r e n c e N t , , t ,, i - m e a s u r e d a n d N l , , t a t- c a l c u l a t e d i n % o f N t , , a r c a l c u l a t e d .

t h e a m o u n t a d d e d b y i r ri g a t io n w a s d r a i n e d o f f as

leachate .

In i ti a lly , the com pos i t io n o f the n i t rogen con -

ten t o f the l e acha te w as s imi la r to tha t o f the l iqu id

m a n u r e s u s e d f o r p r e p a r i n g t h e c o m p o s t m i x -t u re s . T h e l a r g e st p r o p o r t i o n ( 7 6 . 5 - 9 7 . 8 % o f

N t o t a l ) w a s N H ~ - - N . T h e m a x i m u m N H ~ - - N c o n -

cent ra t ion va r ied be tween 260-3 and 959"5 mg/100 ml (Table 2) whe reas poul t ry l e acha te s

s h o w e d t h e h i g h e s t N H ~ - - N c o n t e n t d u e t o t h e

h i g h a m m o n i u m c o n c e n t r a t i o n i n t h e i n i t i a l

poul t ry s lur r i e s , fo l lowed in dec rea s ing orde r by

the mix ture , p ig , and ca t t l e l e acha te s . The second

la rges t f r ac t ion was organica l ly -bound n i t rogen .

I n v ie w o f t h e c u r re n t d i s c u s si o n i n G e r m a n y o v e r

t h e r i s k o f c o n t a m i n a t i o n o f g r o u n d - w a t e r s u p -p l ie s by manure l eacha te s i t i s pa r t i cu la r ly no te -

w o r t h y t h a t t h e N O y - N f r a c t i o n o f t h e t o t a ln i t r o g e n c o n t e n t o f t h e l e a c h a t e a t a n y t i m e w a s

e x t r e m e l y s m a l l ( 0 . 1 - 2 . 2 % ) a n d , i n d e p e n d e n t o fthe type of an ima l dung . This r e su l t agree s w i th a

s imi la r f ind ing by Ot t e t a l . (1983) as wel l as with

o u r o w n i n v e s ti g a ti o n s u n d e r f a r m c o n d i t i o n s

(Dewes e t a l . , 1991) . The l a t t e r a l so showed tha t

w i t h a n i n c r e a s i n g c o m p o s t i n g p e r i o d t h e N t o t a 1

conte n t o f the l e acha te d ec rea sed s ign if i can t ly . In

th i s s tudy the N t o t a I concent ra t ion a l so f e l l by2 2 - 8 2 % w i t hi n 2 4 - 4 9 d a y s f o r ea c h t re a tm e n t .

Th e NH ~--N concent ra t io n a l so s tead i ly sank , ins o m e c a s e s, t o 9 % o f t h e m a x i m u m c o n c e n t r a ti o n .

A f t e r a l o n g e r c o m p o s t i n g p e r i o d t h e m e a s u r e d

ni t rogen conten t s o f the l e acha te s show ed no c lea r

d i f f e rences be tween the d i f f e ren t types of manure

rega rd le s s of the N t o t a I conten t o f the in i t i a l

ma te r ia l . A t the same t ime a sma l l , ins ign i f i can t

e n r i c h m e n t o f N O 3 - N i n t h e l e a c h a t e w a s

m e a s u r e d , u p t o a m a x i m u m o f 2 .2 % o f t h e N t o t a 1

c o n t e n t ( C M 7 a f t e r 2 2 c o m p o s t i n g d a y s ) . A s

c o u l d b e e x p e c t e d , t h e c h a n g e s i n t h e N H ; - a n d

N O 3 - N c o n c e n t r a t i o n s i n t h e l e a c h a t e r e f l e c t e d

t h e c o r r e s p o n d i n g v a l u es o f t h e c o m p o s t m a t e ri a l.W i t h i n c r e a s i n g d u r a t i o n o f t h e c o m p o s t i n g

Page 6: Loss of Nitrogen Compounds During Composting

8/8/2019 Loss of Nitrogen Compounds During Composting

http://slidepdf.com/reader/full/loss-of-nitrogen-compounds-during-composting 6/9

10 8 O . M a r t i n s , T . D e w e s

Tab l e 4 . D r y m a t t e r ( D M ) c o n t e n t , n i t ro g e n c o n c e n t r a t i o n ( N to ta l, N O 3 - N , N H ~ - N ) a n d C / N r a t i o fo r t h e m a n u r e - s t r a w

m i x t u r e s a t t h e s t a r t a n d t h e e n d o f c o m p o s t i n g p e r i o d

Treatment Durat ion of DM Ntot~ NH ~- N N O ~- N C/Ncomposting (%) (mg] O0g FM)

period

P o M 1 0 2 0 . 5 1 0 6 5 . 7 7 6 0 . 7 a 8 - 6

1 1 4 5 2 . 2 1 4 9 3 . 3 2 9 8 - 9 4 3 - 6 9 - 5

P o M 2 0 1 7 .2 9 2 7 . 2 6 7 2 - 8 - - a 9 . 9

1 0 7 4 0 . 2 1 2 2 8 . 5 2 5 2 . 3 3 6 . 9 1 1. 1

P o M 6 0 2 1 . 5 1 1 6 8 . 4 8 4 1 . 5 1 . 3 7 . 1

1 0 5 6 1 . 2 1 4 6 8 . 5 3 4 8 . 1 3 0 . 6 1 0 .6

C M 3 0 1 6 . 5 5 6 0 . 1 3 1 1 . 9 2 . 1 1 4 . 4

1 0 3 2 9 . 4 8 3 2 . 7 1 0 2 . 0 3 1 . 4 1 3 . 4

C M 7 0 1 6 . 1 5 6 7 . 9 3 1 3 . 9 2 . 3 1 2 . 9

1 0 7 3 3 . 9 9 1 4 . 6 1 7 7 . 3 2 9 . 4 1 2 . 3

C M 8 0 1 4 .1 5 1 1 . 2 3 2 1 . 2 - - " 1 3 . 2

1 0 9 3 1 . 6 8 4 2 . 6 1 2 4 . 4 2 9 . 3 1 4 . 7

P M 4 0 1 8 . 8 8 0 3 . 8 5 4 3 . 7 - - " 1 2 . 2

1 0 6 3 4 . 9 1 1 4 9 . 1 2 2 4 . 1 8 5 . 1 1 0 -6

P M 9 0 1 6 . 6 7 6 6 . 3 5 2 4 . 5 - - " 1 0 . 0

1 0 4 3 3 . 1 1 1 3 1 . 7 2 3 9 . 4 7 5 . 9 1 0 . 9

M M 1 0 0 2 1 .1 9 7 2 . 7 6 3 3 . 8 - - ~ 9 "5

9 8 3 2 . 1 9 1 5 . 5 2 0 8 . 7 1 3 . 5 1 1 . 4

F M = F r e s h m a t t e r.

a N o t d e t e c t a b l e .

pe r iod a dec rea se in the NH~--N concent ra t ion

t o g e t h e r w i t h a n i n c r e as e i n t h e N O 3 c o n t e n t

could be obse rved (Table 4) which is an ind ica t ion

of a r egulated , a e robic , com pos t ing process .Through the r e turn of the l e acha te s for i r r iga -

t ion purposes i t was poss ib le to to ta l ly d i spose o f

a l l the l e acha te for a l l the manure types w i th the

e x c e p t io n o f th e c a tt l e c o m p o s t s C M 7 a n d C M 8

( c f . Table 2) . Th i s p rac t i ce pu t s l e ss s t r es s on the

e n v i r o n m e n t a n d m a k e s g o o d u s e o f th e l e ac h a te s .

In seve ra l c a se s (PoM 2 , PoM 6 , PM 4 , PM 9 , M M

10) insuf f i c ien t l e ach ing occur red and due to h igh

c o m p o s t t e m p e r a t u r e s a n d h i g h e v a p o r a ti o n r a t es

addi t iona l s lu r r i e s had to b e used for i r r iga tion to

prevent the ou te r edges of the heap f rom dry ingo u t . F o r t h e t w o c a se s ( C M 7 a n d C M 8 ) w h e r e a

comple te r e turn of a l l the dra ined l eacha te s ove r

t h e p e r i o d o f t h e e x p e r i m e n t w a s n o t p o s s ib l e t h e

w a t e r c o n t e n t a t t h e b e g i n n i n g o f th e c o m p o s t i n g

pe r iod was a l r eady h igh wi th va lues of8 3 . 9 - 8 5 -9 % . T h i s d e c r e a se d o n l y s lo w l y d u e t o a nin i t ia l ly low d egree of s e l f hea t ing an d a s low ra te

o f d e h y d r a t i o n . D u e t o t h e s e f a c t o r s t h e h e a p s

were i r r iga ted r e la tive ly l a te ( af t e r 28 to 40 tom -p o s t i n g d a y s ) a n d w i t h o n l y s m a l l a m o u n t s o f

l iquid.

The prev ious ly washed-out conten t s , in pa r t i -cu la r n i t rogen and ca rbon , we re r e turned to the

c o m p o s t w i t h t h e l e ac h a te s . W h e n l iq u i d m a n u r e s

were addi t iona l ly used for i r r iga t ion , the amount

o f n i t r o g e n a n d c a r b o n a d d e d e x c e e d e d t h a t l os t.

To th i s ex ten t i t cou ld be show n tha t i t i s poss ib leto r ecyc le organica l ly -contamina ted l eacha te s ,

which i s a pa r t i cu la r ly in te re st ing a l t e rna t ive w i th

no fur the r d i sposa l me th ods r equi red . A t the same

t ime , the r e turn of the l e acha te s inc rea sed the

concent ra t ion of subs tances w i th in the compos t .

T h i s c a n b e s e e n fo r n i t r o g e n a n d c a r b o n i n T a b le

4 w hich f is ts the Ntota~ con tents and the C /N ra t ios .

A n u t r i e n t e n r i c h m e n t l i k e th i s d u r in g d e c o m p o s i -

t ion of o rganic ma t te r i s o f ten to be found (e .g . ,

L e v i - M i n z i e t a l . , 1986) . Howeve r , i t should no t

be ov e r looked tha t th i s enr ichmen t is due in pa r t i -cu la r to the los s of wa te r dur ing the compos t ing

pe r iod which l eads to an inc rea se in the r e la t ive

concent ra t ions and nut r i en t s .

The grea te s t n i t rogen los se s a re caused nott h r o u g h l e a c h i n g b u t r a t h e r t h r o u g h g a s e o u s e m i s-

s ions. From the d a ta pre sen ted in Table 3 i t c an beca lcu la ted tha t be tween 46 .8% (CM 3) and 77-4%

(PoM 2) of the in i t i a l n i t rogen ( inc lud ing tha t

a d d e d b y i r r i g at i o n d u r i n g t h e c o m p o s t i n g p e r i o d )

is e m i t te d i n t h e f o r m o f N H 3 a n d N O x a n d b y f a r

the grea te s t am oun t cons i s t s o f N H 3 (F ig . 3 ). The

gaseous n i t rogen los s i s the re fore of the sameo r d e r a s th a t s h o w n b y S c h u c h a r d t ( 1 9 9 0 ) , V og t -

Page 7: Loss of Nitrogen Compounds During Composting

8/8/2019 Loss of Nitrogen Compounds During Composting

http://slidepdf.com/reader/full/loss-of-nitrogen-compounds-during-composting 7/9

Loss o f N during composting of animal wastes 109

~ .

~ 4 0 0 -

v

I 200 -Z

" ~ " 4 0 0 -

v

~ 2 0 0 -Z

O -

H e o p 6 , p o u l t ry m a n u re ( P o M 6 )

$i $ $ $ $ $

~. ~ i! : " ::

d Q l ~

I I

c~|

30

-- - TilmperotureN H - N~ x 3 - N

Heop 4, p ig m o n u r e ( P M 4 )

'!...' ' ' I ,' , ° , , ,

" " ' : ' " t

, I, r o t ~

° - ° T ~ t u c et - - ' - i N PI -N

i i i ~ ,0 2 0 4 0 6 0 8 0 ' $ 0 0

doys

600 -

500 -

4 0 0 -

2 1 0 0 .

I 2 0 0 ,Z

1 0 0 .

H e o p 3 , c o t t le m o n u r e ( C M 3 )

i " " ' " I, °

: " ' . . . : " , : ' . ,

. , f ° ' " , .. j

- _ ~ - m m ; - .

6 " ' ' ~ ' ' " 4 " " ' ~ " " ' ~ " ' ' , 6 0 ' "

d o y s

F i g . 3 . G a s e o u s n i t r o g e n l o s s e s ( N H 3 - N , N O x - N ) d u r i n g

t h e d e c o m p o s i t i o n o f p i g, p o u l t r y a n d c a t t l e m a n u r e s w i t h

d e p e n d e n c e o n t im e a n d r o t a t i o n fr e q u e n c y .

m a n n a n d O t t ( 1 9 8 0 ) a s w e l l a s B a a d e r et al .( 1 9 76 ) , a l t h o u g h m u c h h i g h e r t h a n i n t h e s t u d y b y

K i r c h m a n n a n d W i t t e r ( 1 98 9 ) .

T h e m o s t i m p o r t a n t f ac t o rs w h i c h a p p e a r e d t o

inf luence gaseous n i t rogen los se s we re the N t o t a !

concent ra t ion a t the s t a r t o f the compos t ing

p e r i o d , t h e c o m p o s t t e m p e r a t u r e a n d h e a p r o t a -t ion (F ig . 3 ) .The poul t ry manure s had an ave rage

ini t ia l N t o t a I c o n t e n t o f 1 0 5 3 8 g / t (9 2 7 2 - 1 1 6 8 4g/ t) , whi le the mix ture had an ave rage of 972 7 g / t

w h i c h r e s u l t e d i n c o r r e s p o n d i n g l y h i g h N - e m i s -

s i o n r a t e s a v e r a g i n g 7 4 5 2 g / t a n d 6 5 0 9 g / t

r e spec tive ly ; the se cor re sp ond to N- los se s ave rag-ing 69 .2% and 59"6% re spec t ive ly (Table 3). F rom

the r e la t ive ly n i t rogen-poo r p ig an d ca t t le manu re s

wi th N t o t a I conten t s ave rag ing 7851 g / t

( 7 6 6 3 - 8 0 3 8 g /t ) a n d 5 4 6 4 g / t ( 5 1 1 2 - 5 6 7 9 g / t)d i s p r o p o r t i o n a l ly s m a l l a m o u n t s o f 4 2 1 3 g / t a n d

3120 g / t we re emi t t ed . Howeve r , the r e la t ive los s

was s t i l l ve ry h igh , w i th ave rage va lues of 53 .6%

and 57 .1% re spec t ive ly . The d i f f e rence be tween

the n i t rogen los se s meas ured wi th the ga s ana lyse r

and those e s t ima ted on the bas i s o f chemica l

a n a l y s e s o f t h e c o m p o s t a m o u n t e d t o 0 . 2 - 2 9 - 2 %

(Table 3) . Thi s d i sc repancy can be expla ined by

unavoidable e r ror s occur r ing dur ing the ana lyse s ,

bu t pa r t i cu la r ly th rough the d i f f i cu l t i e s o f ma in-

ta in ing a r e l i ab ly cons tan t f low- ra te w i th the ax ia l

f an . S ince th i s f an was ins ta l l ed on th e ou t s ide wa l l

the f low ra te was a f fec ted by the w ind and th i s

re su l ted in cons ide rab le va r ia t ion for w hich i t was

o n l y p o s si b l e t o m a k e m a n u a l c o r r e ct i o n s d u r i n gthe day . I t mus t a l so be borne in mind tha t th i s

expe r iment was ca r r i ed ou t on a s emi- technica l

sca le which crea tes much grea ter dif f icul t ies in

ma in ta in ing cont ro l l ed condi t ions than in the

labora tory .

As wi th the n i t rogen los s th rough leaching , the

gaseous n i t rogen emis s ions we re a l so i r r egula r

o v e r t i m e . M o r e o v e r f o r t h e n i t r o g e n - r i c h p o u l t ry -a n d p i g - m a n u r e s t h e r e w a s a c le a r d e p e n d e n c e o n

the heap t empera ture , which in tu rn was in -

f luenced by heap ro ta t ion (F ig . 3 ) . The f i r s t c lea r

N H 3 / N O x l o s se s o c c u r r e d w i t h p o u l t r y m a n u r ea f te r four or f ive days and ran pa ra l l e l to the

inc rea se in t emp era ture which , e spec ia l ly in the

oute r edges of the heap , r eached 40°C. These

r e s u l t s a g r e e w i t h t h o s e o f M u c k a n d R i c h a r d s

(1983) who, th rough a somewha t d i f f e ren t

approach , w e re ab le to de te rmine tha t the leve l o f

N H 3 e m i s s io n s f r o m a n i m a l e x c r e m e n t w i t h i n th e

r a n g e o f 5 - 2 5 ° C i s s t ro n g l y t e m p e r a t u r e d e p e n -

dent . Af te r the f i r st ro ta t ion , which occ ur red a f te r

7- 10 days , r e la t ive ly h igh gaseous -N los se s f rom

t h e p i g m a n u r e w e r e a l s o d e t e c t e d . R o t a t i o nc a u s e d a h o m o g e n i z a t i o n o f t h e c o m p o s t , b u t

m o r e i m p o r t a n t l y l o o s e n e d u p t h e h e a p w h i c h

a l lowed a be t t e r a e ra t ion . This l ed to a s t imula t ion

of the ae robic mic roorganisms which r a i sed the

t e m p e r a t u r e a t s o m e m e a s u r e m e n t s it e s u p t o

60°C. A lso the addi t ion of uns tab i l i z ed C- and

N - c o m p o u n d s t h r o u g h i r r i g at i o n m a y h a v e s t im u -

la ted the mic robio logica l decompos i t ion . For the

ca t t l e manure a s low tempera ture inc rea seoccur red , and on ly a f te r r epea ted ro ta t ions d id

the t em pera tu re r i s e suf f i cien t ly h igh to prov ide a

hygien ic e f fec t. Thi s g rad ua l t em pera tu re inc rea sewas prob ably a r e su l t o f the h ig h in it i a l wa te r con-

Page 8: Loss of Nitrogen Compounds During Composting

8/8/2019 Loss of Nitrogen Compounds During Composting

http://slidepdf.com/reader/full/loss-of-nitrogen-compounds-during-composting 8/9

110 O . Mart ins , T . Dew es

t en t (Table 4) . The n i t rogen emis s ions which d id

occur , a l though in comparably sma l l amounts ,

we re probably the r e su l t o f inc rea sed gas

exchange caused by ro ta t ion .Pro te in degrada t ion a l so inc rea sed , p re sumably

as a r e su l t o f m ic robia l s t imula t ion which

inc rea sed the NH~- conce nt ra t ion in the comp os t .

T h i s i n t u r n e x p l a i n s t h e h i g h p H v a l u e w h i c h

in i ti a lly was grea te r than pH 8 .0 in a l l t r e a tments

wi th no apprec iab le d i f f e rences . H igh pH va lues

a n d h i g h t e m p e r a t u r e s a c c o r d i n g t o L o e h r e t a l .

(1973) a l t e r the so lu t ion equi l ib r ium be tween

N H ~ - a n d N H 3 i n f a v o u r o f N H 3. T h e r e f o r e c o m -

pos t s which a re in a s t a te o f s t rongly ae robic

d e c o m p o s i t i o n a n d w h i c h a re v e r y N - r i c h s h o u l d

h a v e h i g h e m i s s io n s i n t h e f o r m o f N H 3. T h e p r o -

p o r t i o n o f N O x re m a i n e d u n d e r 5 % ( c f i Fig. 3)

throughout th i s s tudy and i s the re fore r e la t ive lyu n i m p o r t a n t .

Due to the dec rea s ing concent ra t ion of NH~-

and an inc rea se in n i t r i f i c a t ion wi th t ime , the

gaseous N-losses in a l l t rea tmen ts c lear ly fe l l wi thinc rea s ing compos t ing pe r iod . In pa r t i cu la r for

poul t ry and p ig manure i t was appa ren t tha t heapro ta t ion in the more advanced com pos t s t ages l ed

to more obvious t empera ture inc rea se s bu t on ly

ba re ly inc rea sed the N-emiss ions . Af te r a com-

pos t ing pe r iod of 3 months in each t r ea tment the

choking sme l l o f NH3 was r ep laced by the typ ica l

ea r thy sme l l o f r ipe com pos t (geosmine ) . Ho wev e rthe c lumpy s t ruc ture of the compos t was unsa t i s -

f ac tory a s a r e su l t o f the co mp ara t ive ly h igh wa te rconten t s t il l p re sen t a t the end of the expe r iment .

A s o m e w h a t w e a k e r i r r i g a t i o n w o u l d p r o b a b l y

have had a pos i t ive e ffec t in this respec t . In tota l

the wa te r conten t was r educed f rom an in i t i a l

78-5-85 .9% to 38"8-70-6% (Table 4) . G iven tha t

in th i s expe r iment the l e acha te s we re r e turned to

the compos t , w a te r los s could on ly occur th rough

evapora t ion . Th is had a con s ide rab le e f f ec t on thereduc t ion in mass , which on ave rage amounted to

79 .6% (76"9-81-0%) for the poul t ry compos t s ,

74 .6% (70-7-77 .7%) for the ca t t l e compos t s , and72 .8% (72 .1-73 .6%) for the p ig and mixed-

m a n u r e c o m p o s t s.

From the r e su l t s p re sen ted i t i s obvious tha t

dur ing the compos t ing of an ima l exc rements the

grea te s t am oun t of N i s los t a s N H 3 emis s ions

( h e r e 4 6 . 8 - 7 7 . 4 % o f N t o t a I w i t h i n 9 8 - 1 1 4 d a y s) .

Th e N - los se s occur r ing th rou gh leaching a re of

c o n s i d e r a b ly l e ss im p o r t a n c e ( h e re 9 . 6 - 1 9 . 6 % o f

N,ot~ ). In add i t ion for this s ourc e of N -losses th ere

i s the poss ib i l i ty of com ple te r ecyc l ing since i t i sposs ib le to cap ture the l e acha te s and e i ther , in the

case whe re the heaps a re pro tec ted f rom ra in

wa te r , pu t i t to use for r ewe t t ing the compos t , o ra l t e rna t ive ly , a s w i th l iqu id manure and ur ine , i t

can be used as fe r t i lizer . Al tho ug h i t is poss ib le to

t r ea t such w as tewa te r th i s i s no t pa r t i cu la r ly use -

fu l a s long a s the re a re o the r more envi ron-

men ta l ly - sound a l t e rna t ive s .

H o w e v e r , N H 3 e m i s s i o n s o f t h e o r d e r

m e a s u r e d h e r e p r o b a b l y h a v e a m u c h g r e a t e r

eco logical r e levance . From the da ta i t appea r s tha th igh pr ior i ty should b e g iven to the formula t ion o f

prevent ion s t r a teg ie s . Wi thout doubt the va lue of

animal wastes as fe r t i l izers can be inf luenced

wi th in l im i t s th rough su i t ab le prepa ra t ion t ech-

n iques . S ince on the f a rm , in pa r t i cu la r , pos -

s ibi l it ies exis t for the m eanin gful and a lso bas ica l ly

ecologica l ly acceptab le use of an ima l was te s a s

fe rt il i ze r , an appea l should be m ade to the l eg is la -t u r e n o t t o h i n d e r t h e a p p r o p r i a t e h a n d l i n g o f

an ima l exc rements . T his in tu rn ob l ige s sc ien t is t s

and fa rmers no t on ly to show e f fec t ive pos -

s ibi li t ies for the redu ct ion of , in par t icular , N H 3

emiss ions bu t a l so to br ing them in to prac t i ce . In

these mus t be counted , amongs t o the r s , those

p r e p a r a t i o n t e c h n i q u e s t h at n o t s o m u c h p r o m o t e

ae robic compos t ing and humif ica t ion of themanure bu t , r a the r , work a t lower t empera ture s .

Howeve r , the addi t ion of na tura l ma te r ia l s w i th

la rge adsorp t ive sur faces ( e .g . , ben toni te ) a l so

appea r s to be use fu l . A su i t ab le r educ t ion in theuse of p ro te in- r i ch an ima l f eeds could a l so be

expec ted to l e ad to a r educ t ion in the amount of

N H 3 r e le a se d . W h e n t h e p r o c e s si n g o f a n i m a l

was te s occur s in a cen t ra l p lan t i t i s abso lu te ly

n e c e s sa r y to r e m o v e t h e a m m o n i a f r o m t h e w a s t e

gase s in orde r to r educe the impac t on the

envi ronment . Phys ico-chemica l , a s we l l a s b io-

log ica l me tho ds a re no w av a i lab le to ach ieve th i s

and the se a re now be ing t e s ted unde r prac t i ca l

condi t ions .

A C K N O W L E D G E M E N T

T h e a u t h o r s w o u l d l i k e t o t h a n k M e s s r s D y c k e r -

h o f f & W i d m a n , M u n i c ; P r e u s s a g A G , H a n n o v e r

a n d H o l z m a n n U m w e l tt e c h n ik G m b H , N e u - I s en -

b u r g f o r t h e i r s u p p o r t a n d a l s o D r G r a n d , M rH e i n l a n d M r M e i e r.

R E F E R E N C E S

Baader, W., Schuchardt, F. & Sonnenberg, H. (1976). Unter-suchungen zur Entwicklung eines technischen Verfahrens

Page 9: Loss of Nitrogen Compounds During Composting

8/8/2019 Loss of Nitrogen Compounds During Composting

http://slidepdf.com/reader/full/loss-of-nitrogen-compounds-during-composting 9/9

L o s s o f N d u r i n g c o m p o s t i n g o f a n i m a l w a s t e s 1 1 1

zu r Gewin n u n g v o n F es t s t o f f en au s t i e r i sch en Ex k re -men ten I I. Grundlagen derLan dtechnik , 2 6 (6 ), 2 3 4 -4 4 .

Bremn er , J . M . (1 9 6 5 ) . I n o rg an i c fo rms o f n i t ro g en . InMethods of Soil Analysis II, ed . C . A . B l ack . Amer i canS o c i e ty o f Ag ro n o m ics Inc ., M ad i so n , W I . p p . 1 1 4 9 -7 8 .

Brem n er , J. M . & M u lv an ey , C . S . ( 1 9 8 2 ) . N i t ro g en - - To t a l .In Methods of Soil Analysis II, ed . A . L . P ag e . Amer i can

S o c i e ty o f Ag ro n o m ics Inc ., M ad i so n , W I , p p . 5 9 5 -6 2 4 .Bui jsman, E. , Maas, H. F . M. & Asman, W. A. H. (1987) .A n t r o p o g e n i c N H 3 e m i ss i on s i n E u r o p e . AtmosphericEnvironment, 2 1 , 1 0 0 9 - 2 2 .

Dewes , T . & S ch m i t t, L . ( 1 9 9 0 ) . N i t r a t -Bes t imm u n g i n M is t -S ickersaf t mi t tels UV-Absorp t ion . Z. Pflanzenerniihr.Bodenk., 1 5 3 , 3 6 5 - 7 .

Dewes, T . , Ahrens, E . & Wil l ing , O. (1991) . S ickersaf t -Au s t r ag u n d S t i ck s to f f -F rach t au s M is tmie t en . J .Agron omy & Crop Science, 1 6 6 , 1 4 5 - 5 1 .

Dewes, T. , Schmit t , L . , Valen t in , U. & Ahrens, E . (1990) .Ni t ro g en l o s ses d u r in g t h e s t o rag e o f l i q u id l i v es to ckman u res . Biological Wastes, 3 1 , 2 4 1 - 5 0 .

D6 h le r , H . (1 9 8 7 ) . Ammo n ia v o l a t i l i za t i o n f ro m l i q u idman u re a f t e r ap p l i ca ti o n t o t h e f i el d . Proc. 4th Int . Symp.

ofC1EC, Brau n sch weig , Germ an y , Vo l. II , p p. 3 0 5 - 1 3 .D6 h le r , H . (1 9 9 0 ) . Ammo n iak v er lu s t e n ach d er F l i i s s i g -

mi s t au sb r in g u n g - - E f f as su n g u n d M in d eru n g sm6 g l i ch -kei ten . In Kuratorium ricer Technik u nd Bauw esen in derLandwirtschaft & Verein Deutscher Ingenieure. A m m o n i a kin d e r Um wel t . Sy ru p . Brau n sch weig , German y , 1 -1 0 .

l se rman n , K . (1 9 9 0 ) . Ammo n iak emiss io n en d er Lan d wi r t -schaf t a l s Bes tand tei l ih rer S t ickstoffb i lanz und L6sun gs-an s~ it ze zu r h in re i ch en d en M in d eru n g . In Kuratorium fue rTechnik und Bauwesen in der Landwirtschaft & VereinDeutscher lngenieure. Ammo n iak i n d e r Umwel t . S y ru p .Brau n sch weig , German y , 1 -7 6 .

Ki rch m an n , H . & Wi t t e r , E . (1 9 8 9 ) . Amm o n ia v o l a t i l iza t i o nd u r in g ae ro b i c an d an aero b i c man u re d eco mp o s i t i o n .Plan t&Soi l , 1 1 5 , 3 5 - 4 1 .

K6hnlein , J . & Vet ter , H. (1953) . Die S tal ld i ingerro t te beis t e i g en d er S t ro h e in s t r eu . Z. Pflanzenerniihr., Diingung,Bodenkunde, 6 3 (2 ), 1 1 9 -4 1 .

Ko walewsk y , H . H . (1 9 8 1 ) . Ch emisch e u n d sen so r i sch e

Bes t imm u n g d es Ge ru ch e s i n d e r Um g eb u n g v o n S t~ iUen,offe nen Gi i llebeh~il tern und beg i i l lten Feldern . P hD thesis ,Un iv er s i t y o f Go e t t i n g en , Go e t t i n g en , Germ an y .

Levi -M inzi , Ri f faldi , R . & Saviozzi , A. (1986) . O rganicmat t e r an d n u t r i en t s i n f r esh an d matu re f a rmy ardm a n u r e . Agricultural Wastes, 1 6 , 2 2 5 - 3 6 .

Loehr , J . R. , Prakasam, T. B. S . , Sr inath , E . G. & Joo , Y. D.

(1 9 7 3 ) . Dev e lo p men t an d d emo n s t r a t i o n o f n u t r i en tr emo v a l f ro m an imal was t es, Rep o r t No . EP A-R 2 -7 3 -0 9 5 ,En v i ro n men ta l P ro t ec t i o n Ag en cy , Wash in g to n , DC, 3 4 0

S.M u ck , R . E . & Rich ard s , B . K . (1 9 8 3 ) . Lo sses o f man u r i a l

n i t rogen in f ree-s tal l barns . Agricultural Wastes, 7 , 6 5 - 7 9 .O l d e n b u r g, J . ( 1 9 89 ) . G e r u c h s - u n d A m m o n i a k - E m i s s i o n e n

a u s d e r T i e r h a l tu n g , K T B L , D a r m s t a d t , G e r m a n y .Ot t , P . , Hansen , S . & Vogtmann, H. (1983) . Ni t rates in rela-

t i o n t o co mp o s t i n g an d u se o f f a rmy a rd man u res . I nEnvironmentally S oun d Agriculture, ed . W. Lo ck ere t z .P raeg er P u b l i sh er s , New Yo rk .

Ro e lo f s , J . G . M . (1 9 8 6 ) . Th e e f f ec t o f a i rb o rn e su lp h u r an dn i t ro g en d ep o s i t i o n o n aq u a t i c an d t e r r es t r i a l h ea th l an dvegetat ion . Experientia, 4 2 , 3 7 2 - 7 .

Sch l ich t ing , E . & Blume, H. P . (1966) . BodenkundlichesPraktikurn, Verlag P . Paray , Ber l in .S ch u ch ard t , F . ( 1 9 9 0 ) . Ammo n iak v er lu s t e b e i d e r Ko m-

p o s t i e ru n g t i e r i sch er Ex k remen te . I n Kuratorium fuerTechnik u nd Bauw esan in der Landwirtschaft & VereinDeutscher Ingenieure. Ammo n iak i n d e r Umwel t . S y ru p .Brau n sch weig , German y , 1 -1 4 .

S ch u u rk es , J . A . A . R . (1 9 8 6 ) . A tmo sp h er i c ammo n iu msulphate deposi t ion and i t s ro le in the acid i f icat ion andn i t ro g en en r i ch men t o f p o o r ly b u f f e r ed aq u a t i c sy s t ems .Experientia, 4 2 , 3 5 1 - 7 .

Van d er Eerd en , L . J . , Van Do b b en , H . F . , Du eck , T . A . &Berd o wsk i , J . M . (1 9 9 0 ) . E f f ec t s o f a tmo sp h e r i c amm o n iaan d am mo n iu m o n v eg e t a t i o n . In Kuratorium fuer Technikund Bauwesen in der Landwirtschaft & Verein Deutscher

Ingenieure. A m m o n i a k i n d e r U m w e l t . S y m p . B r a u n s c h -weig , Germ an y . 1 -1 9 .Vogtmann, H. & Ot t , P . (1980) . Zur Frage der S tal lmist -

Ko mp o s t i e ru n g . IFOAM-BulI., 3 2 , 1 -3 .