Log Interpretation

181
Gen Basic Material Symbols Used in Log Interpretation Schlumberger Gen-3 1-1 d h Hole diameter d i d j h r j (Invasion diameters) Adjacent bed Zone of transition or annulus Flushed zone Adjacent bed (Bed thickness) Mud h mc d h R m R s R s Resistivity of the zone Resistivity of the water in the zone Water saturation in the zone R mc Mudcake R mf S xo R xo R w S w R t Uninvaded zone © Schlumberger

Transcript of Log Interpretation

Page 1: Log Interpretation

Gen

Basic Material

Symbols Used in Log InterpretationSchlumberger

Gen-3

1-1

dhHole

diameter

di

dj

h

∆rj

(Invasion diameters)

Adjacent bed

Zone of transition

or annulus

Flushed zone

Adjacent bed

(Bed thickness)

Mud

hmc

dh

Rm

Rs

Rs

Resistivity of the zone

Resistivity of the water in the zoneWater saturation in the zone

Rmc

Mudcake

Rmf

Sxo

Rxo

Rw

Sw

Rt

Uninvaded zone

© Schlumberger

Page 2: Log Interpretation

Gen

Example: Bottomhole temperature (BHT) at 11,000 ft = 200°F(Point A)

Temperature at 8000 ft = 167°F (Point B)

Basic Material

Estimation of Formation TemperatureLinear gradient assumed

?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e

Gen-6

© Schlumberger

Page 3: Log Interpretation

Gen

Basic Material

Estimation of Rmf and Rmc

Schlumberger

Gen-7

1-3

Direct measurements of filtrate and mudcake samples are pre-ferred. When not available, filtrate resistivity, Rmf, and mudcakeresistivity, Rmc, may be estimated from one of the followingmethods.

Method 1

Lowe and Dunlap (Reference 36)

For freshwater muds with mud resistivity, Rm, in the range from0.1 to 2.0 ohm-m at 75°F [24°C], and measured values of Rm

and mud density, ρm, in pounds per gallon:

Method 2

Overton and Lipson (Reference 1)

For drilling muds with mud resistivity, Rm, in the range from 0.1to 10.0 ohm-m at 75°F [24°C], where Km is given as a functionof mud weight in the table below:

Example: Rm = 3.5 ohm-m at 75°F [24°C]

Mud weight = 12 lbm/gal [1440 kg/m3]

Therefore, Km = 0.584

Rmf = (0.584)(3.5)1.07= 2.23 ohm-m at 75°F

Rmc = 0.69(2.23)(3.5/2.23)2.65= 5.07 ohm-m at 75°F

The calculated value of Rmf is more reliable than that of Rmc.

Method 3

A statistical approximation, for predominantly NaCl muds, is Rmc = 1.5 Rm, and Rmf = 0.75 Rm.

R K R

R RR

R

mf m m

mc mfm

mf

=

=

( )

. ( )

.

.

1 07

2 65

0 69

log . .R

Rmf

mm

= −0 396 0 0475 ρ

Mud Weight

lbm/gal kg/m3 K m

10 1200 0.84711 1320 0.70812 1440 0.58413 1560 0.48814 1680 0.41216 1920 0.38018 2160 0.350

Page 4: Log Interpretation

GenActual resistivity measurements are always preferred, but ifnecessary, the chart on the opposite page may be used to estimatethe resistivity of a water sample at a given temperature when thesalinity (NaCl concentration) is known, or to estimate the salinitywhen resistivity and temperature are known. It may also be usedto convert resistivity from one temperature to another tempera-ture.

Example: Resistivity of a water sample is 0.3 ohm-m at 25°C;what is the resistivity at 85°C?

Enter the chart with 25°C and 0.3 ohm-m. Theirintersection indicates a salinity of approximately20,000 ppm. Moving along this constant salinity lineyields awater sample resistivity of 0.13 ohm-m at85°C.

The resistivity of a water sample can be estimated from its chem-ical analysis. An equivalent NaCl concentration determined byuse of the chart below is entered into Chart Gen-9 to estimate theresistivity of the sample.

The chart is entered in abscissa with the total solids concen-tration of the sample in ppm (mg/kg) to find weighting multi-pliers for the various ions present. The concentration of each

ion is multiplied by its weighting multiplier, and the productsfor all ions are summed to obtain equivalent NaCl concentration.Concentrations are expressed in ppm or mg/kg, both by weight.These units are numerically equal.

For more information see Reference 2.

Example: A formation-water sample analysis shows 460 ppmCa, 1400 ppm SO4 and 19,000 ppm Na plus Cl.

Total solids concentration is 460 + 1400 + 19,000 =20,860 ppm.

Entering the chart below with this total solids concen-tration, we find 0.81 as the Ca multiplier and 0.45 asthe SO4 multiplier. Multiplying the concentration bythe corresponding multipliers, the equivalent NaClconcentration is found as approximately

460 × 0.81 + 1400 × 0.45 + 19,000 × 1 ≈ 20,000 ppm.

Entering the NaCl resistivity-salinity nomograph(Gen-9) with 20,000 ppm and 75°F (24°C), the resis-tivity is found to be 0.3 at 75°F.

Basic Material

Resistivities of Solutions

?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e

Gen-8

© Schlumberger

Page 5: Log Interpretation

Gen

Basic Material

Resistivity of NaCl SolutionsSchlumberger

Gen-9

1-5

°F 50 75 100 125 150 200 250 300 350 400 °C 10 20 30 40 50 60 70 80 90 100 120 140 160 180 200

Temperature (°F or °C)

Res

istiv

ity o

f sol

utio

n (o

hm-m

)

ppm

10

8

6

5

4

3

2

1

0.8

0.6

0.5

0.4

0.3

0.2

0.1

0.08

0.06

0.05

0.04

0.03

0.02

0.01

200

300

400

500600700800

10001200140017002000

3000

4000500060007000800010,00012,00014,00017,00020,000

30,000

40,00050,00060,00070,00080,000100,000120,000140,000170,000200,000250,000280,000

Conversion approximated by R2 = R1 [(T1 + 6.77)/(T2 + 6.77)]°F or R2 = R1 [(T1 + 21.5)/(T2 + 21.5)]°C

300,000

NaC

l con

cent

ratio

n (p

pm o

r gr

ains

/gal

)

Gra

ins/

gal a

t 75°

F

10

15

20

25

30

40

50

100

150

200

250

300

400

500

1000

1500

2000

2500

3000

4000

5000

10,000

15,000

20,000

© Schlumberger

Page 6: Log Interpretation

Gamma Ray and Spontaneous PotentialSchlumberger

2-1

GR

Gamma Ray Corrections for Hole Size and Mud WeightFor 33⁄8-in. and 111⁄16-in. SGT wireline gamma ray tools GR-1

0 5 10 15 20 25 30 35 40

10.0

7.0

5.0

3.0

2.0

1.0

0.7

0.5

0.3

t (g/cm2)

Cor

rect

ion

fact

or

33 ⁄8-in. to

ol, centered

111⁄16-in. tool, centered

111⁄16-in. tool, eccentered

33⁄8-in. tool, eccentered

© Schlumberger

Log interpretation Charts GR-1 and GR-2, replacing Chart Por-7,are based on laboratory work and Monte Carlo calculations toprovide improved corrections for 33⁄8- and 111⁄16-in. SGT gammaray tools. The corrections normalize the response of both tools toeccentered positions in an 8-in. borehole with 10-lbm mud. ChartGR-2 provides a correction for barite mud in small boreholes.

Although these charts are more difficult to use than the onesthey replaced, the results are more exact since they are normal-ized to current tools, no interpolation is required, and the rangesare extended.

The input parameter, t, in g/cm2, is calculated as follows:

The correction for standoff is

CF′m is the correction factor for centered tools, while CF′o is thecorrection factor for eccentered tools. Both are corrected forbarite if it is present in the borehole. S is the actual standoff, andSm is the standoff with the tool centered.

Example: GR reads 36 API units, dh is 12 in., and mud weightis 12 lbm/gal. The tool is 33⁄8 in. and centered.

Therefore, t = 15.8 g/cm2, resulting in a correction factor of 1.6.

The corrected GR = 58 API units.

CF CF CF CF′ = ′ + − ′−

m o m

m

m

S S

S( ) .

2

tW d dmud hole sonde= −

8 345

2 54

2

2 54

2.

. ( ) . ( ).

Page 7: Log Interpretation

Gamma Ray and Spontaneous PotentialSchlumberger

2-2

GR

Gamma Ray Corrections for Barite Mud in Small BoreholesGR-2

7 8 9 10 11 12 13 14 15 16 17 18 19 20

Mud weight (lbm/gal)

0 1 2 3 4 5 6 7 8 9 10

dh– dsonde (in.)

Bmud

111 ⁄16-in

. tool, c

entered

111⁄16-in. tool, eccentered

33⁄8-in. tool, centered

33⁄8-in. tool, eccentered

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Fbh

1.2

1.0

0.8

0.6

0.4

0.2

0.0

111 ⁄16

-in. t

ool3

3 ⁄8-in

. too

l

© Schlumberger

These charts correct for the barite mud effect in hole sizessmaller and larger than the 8-in. standard. In these cases, thecorrection factor from Chart GR-1 is multiplied by the boreholecorrection factor 1 + Bmud × Fbh.

Example: With the same conditions shown in the example onChart GR-1 except for a 6-in. hole, t = 4.8 g/cm2,resulting in a correction factor of 0.95. Using ChartGR-2, Bmud = 0.15 and Fbh = 0.81 for a borehole cor-rection of 1.12 and a revised correction factor of 1.06.The corrected GR = 38 API units.

Page 8: Log Interpretation

Gamma Ray and Spontaneous PotentialSchlumberger

2-3

GR

Gamma Ray Correction for Cased HolesGR-3

0 5 10 15 20 25 30 35 40

t (g/cm2)

Cor

rect

ion

fact

or

10.0

7.0

5.0

3.0

2.0

1.0

0.7

0.5

0.3

111⁄16-in. tool

33 ⁄8-in. to

ol

© Schlumberger

Log interpretation Chart GR-3 is based on laboratory work andMonte Carlo calculations to provide gamma ray corrections in cased holes. This chart is based on the openhole model inChart GR-1. In this case, t, in g/cm2, is calculated as the sumof density-thickness products for the casing, cement sheath andborehole fluid. The density of J-55 casing is 7.96 g/cm3, and thedensity of cement is typically 2.0 g/cm3.

The chart correction factor provides a corrected gamma ray tothe standard reference condition of an eccentered 33⁄8-in. tool inan 8-in. borehole with 10-lbm mud.

Example: GR reads 19 API units; dh is 12 in.; casing is 95⁄8 in.,43.50 lbm/ft; GR tool is 33⁄8 in.; Wm = 8.345 lbm/gal;and t = 21.7 g/cm2 for a correction factor of 2.1. Thecorrected GR = 40 API units.

tW

d dmcsg sonde csg csg csg cement h csg= − + − + −

2 54

2 8 345

.

.( ) ( ) ( )ID OD ID ODρ ρ

tW

d dmcsg sonde csg csg csg cement h csg= − + − + −

2 54

2 8 345

.

.( ) ( ) ( )ID OD ID ODρ ρ

Page 9: Log Interpretation

Gamma Ray and Spontaneous PotentialSchlumberger

2-4

GR

LWD Gamma Ray Correction for Hole Size and Mud WeightFor gamma ray with CDR* Compensated Dual Resistivity tools GR-4

9.5-in. tool

8-in. tool

8.25-in. tool

6.5-in. tool6.75-in. tool

0 4 8 12 16 20 24 28 32 36 40 t (g/cm2)

Cor

rect

ion

fact

or

10

7.0

5.0

3.0

2.0

1.0

0.7

0.5

0.3

*Mark of Schlumberger© Schlumberger

Chart GR-4 can be used to normalize gamma ray readings of the9.5-, 8.25-, 8-, 6.75- and 6.5-in. CDR tools to the 6.5-in. tool in10-lbm/gal mud.

The corrections illustrated by this chart are routinely applied

to LWD data before delivery; therefore, be careful not to dupli-cate the correction. The input parameter, t, in g/cm2, is calculatedfrom

where ST varies with tool size as follows:

tW

d STmhole= − −

8 3453 5

.( . )

Tool size (in.) ST

6.5 2.1256.75 2.0318.0 3.1568.25 2.6569.5 3.937

Page 10: Log Interpretation

Gamma Ray and Spontaneous PotentialSchlumberger

2-5

SP

0.01

0.02

0.040.06

0.1

0.2

0.4

0.6

1

2

4

6

10

20

40

60

100

0.001

0.005

0.01

0.02

0.05

0.1

0.2

0.5

1.0

2.0

Rmfeq

(ohm-m)

Rmfeq /Rweq

aw/a

mf or

Rm

fe /R

we

Rweq

(ohm-m)

+50 0 –50 –100 –150 –200

ESSP, static spontaneous potential (mV)

250°C200°C150°C

100°C

50°C

0°C

500°F400°F300°F

200°F

100°F

Formation temperature

0.3

0.4

0.6

0.8

1

2

4

6

8

10

20

40

0.3

0.4

0.50.6

0.8

1

2

3

4

6

8

10

20

30

40

50

5

Rweq Determination from ESSPClean formations SP-1

© Schlumberger

This chart and nomograph calculate the equivalent forma-tion water resistivity, Rweq, from the static spontaneouspotential, ESSP, measurement in clean formations.

Enter the nomograph with ESSPin mV, turning throughthe reservoir temperature in °F or °C to define theRmfeq/Rweq ratio. From this value, pass through the Rmfeq

value to define Rweq.For predominantly NaCl muds, determine Rmfeq as

follows:

a. If Rmf at 75°F (24°C) is greater than 0.1 ohm-m,correct Rmf to formation temperature using ChartGen-9, and use Rmfeq = 0.85 Rmf.

b. If Rmf at 75°F (24°C) is less than 0.1 ohm-m, useChart SP-2 to derive a value of Rmfeq at formationtemperature.

Example: SSP = 100 mV at 250°F

Rmf = 0.70 ohm-m at 100°F or 0.33 ohm-m at 250°F

Therefore, Rmfeq = 0.85 × 0.33 = 0.28 ohm-m at 250°F

Rweq = 0.025 ohm-m at 250°F

ESSP= –Kclog(Rmfeq/Rweq)

KC = 61 + 0.133 T°F

KC = 65 + 0.24 T°C

Page 11: Log Interpretation

Gamma Ray and Spontaneous PotentialSchlumberger

2-6

SP

Rw versus Rweq and Formation TemperatureSP-2

(English)

0.005 0.01 0.02 0.03 0.05 0.1 0.2 0.3 0.5 1.0 2 3 4 5

0.001

0.002

0.005

0.01

0.02

0.05

0.1

0.2

0.5

1.0

2.0

Rw or Rmf (ohm-m)

Rw

eq o

r R

mfe

q (o

hm-m

)

500°F400°F

300°F

200°F

150°F

100°F

75°F

Saturation

400°F300°F200°F150°F100°F75°F

500°F

NaCl at 75°F

© Schlumberger

These charts convert equivalent water resistivity, Rweq, fromChart SP-1 to actual water resistivity, Rw. They may also be usedto convert Rmf to Rmfeq in saline muds.

Use the solid lines for predominantly NaCl waters. Thedashed lines are approximate for “average” fresh formationwaters (where effects of salts other than NaCl become signifi-cant). The dashed portions may also be used for gyp-base mudfiltrates.

Example: Rweq = 0.025 ohm-m at 120°C

From chart, Rw = 0.031 ohm-m at 120°C

Special procedures for muds containing Ca or Mg in solutionare discussed in Reference 3. Lime-base muds usually have anegligible amount of Ca in solution; they may be treated asregular mud types.

Page 12: Log Interpretation

Gamma Ray and Spontaneous PotentialSchlumberger

2-7

SP

Rw versus Rweq and Formation TemperatureSP-2m

(Metric)

0.005 0.01 0.02 0.03 0.05 0.1 0.2 0.3 0.5 1.0 2 3 4 5

0.001

0.002

0.005

0.01

0.02

0.05

0.1

0.2

0.5

1.0

2.0

Rw or Rmf (ohm-m)

Rw

eq o

r R

mfe

q (o

hm-m

)

250°C200°C

150°C

100°C

75°C

50°C

25°C

Saturation

200°C150°C100°C75°C50°C25°C

250°C

NaCl at 25°C

© Schlumberger

Page 13: Log Interpretation

Gamma Ray and Spontaneous PotentialSchlumberger

2-8

SP

SP Correction ChartsFor representative cases SP-3

40 30 20 15 10 7.5 5

1.0

0.8

0.6

0.4

0.2

40 30 20 15 10 7.5 5

1.0

0.8

0.6

0.4

0.2

40 30 20 15 10 7.5 5

1.0

0.8

0.6

0.4

0.2

40 30 20 15 10 7.5 5

1.0

0.8

0.6

0.4

0.2

40 30 20 15 10 7.5 5

1.0

0.8

0.6

0.4

0.2

40 30 20 15 10 7.5 5

1.0

0.8

0.6

0.4

0.2

40 30 20 15 10 7.5 5

1.0

0.8

0.6

0.4

0.2

40 30 20 15 10 7.5 5

1.0

0.8

0.6

0.4

0.2

40 30 20 15 10 7.5 5

1.0

0.8

0.6

0.4

0.2

40 30 20 15 10 7.5 5

1.0

0.8

0.6

0.4

0.2

40 30 20 15 10 7.5 5

1.0

0.8

0.6

0.4

0.2

40 30 20 15 10 7.5 5

1.0

0.8

0.6

0.4

0.2

ES

P/E

SP

cor

ES

P/E

SP

cor

ES

P/E

SP

cor

Rs

Rm= 1

Rs

Rm= 5

Rs

Rm= 20

Rxo = 0.2 Rt Rxo = Rt

h/dh h/dh

h/dh h/dh

h/dh h/dh

Rxo = 5 Rt

Invasion, di /dh = 5No invasion

10 5 2

20

50

100

200

500

10 5 2

20

50

100

200

500 1000

10

5

2

1

20

50

100 200 500

10

5 2 1

20

50

100

200

500 1000

10 5

2

20

50

100

200

500

1000

10

5

2 1 0.5

20

50

100

200 500

10

5 2

1

20

50

100

200

500

10

5

2

1 0.5

20

50

100

200

10

5 2 1 0.5

20

50

100

200

Rxo/Rm Rxo/Rm Rxo/Rm

Rxo/Rm Rxo/Rm Rxo/Rm

Rxo/Rm Rxo/Rm Rxo/Rm

Rt /Rm

Rt /Rm

Rt /Rm

2 1

1

2

50

10 20

5

0.5

0.2

0.1

100

10

20

50

100

200

5

10

5

2

1

0.5

0.2

20

50

100 200

© Schlumberger

1. Select row of charts for most appropriate value of Rs/Rm.

2. Select chart for No Invasion or for Invasion of di /dh = 5,whichever is appropriate.

3. Enter abscissa with value of h/dh (ratio of bed thickness tohole diameter).

4. Go vertically up to curve for appropriate Rt/Rm (for noinvasion) or Rxo/Rm (for invaded cases), interpolatingbetween curves if necessary.

5. Read ESP/ESPcorin ordinate scale. Calculate ESPcor=ESP/(ESP/ESPcor). (ESPis SP from log.)

For more detail on SP corrections, see References 4 and 33.

Page 14: Log Interpretation

Gamma Ray and Spontaneous PotentialSchlumberger

2-9

SP

SP Correction Chart (Empirical)SP-4

(English)

70 50 40 30 20 15 10 9 8 7 6 5 4 3

Bed thickness, h (ft)

% E

SS

P

Cor

rect

ion

fact

or

1.0

1.5

2.0

2.5

3.0

3.5

4.0

5.0

5

20

50

100

200

di (in.)

30

3535

4040

3030

3030

20

8-in. hole; 33⁄8-in. tool, centered

Ri

Rm

100

90

80

70

60

50

40

30

20

© Schlumberger

This chart provides an empirical correction to the SP for theeffects of invasion and bed thickness obtained by averagingaseries of thin-bed corrections in Reference 37. This chartconsiders only h, bed thickness, as variable, and Ri /Rm and di asparameters of fixed value. Hole diameter is set at 8 in.

Enter the chart with bed thickness, h; go to the appropriateinvasion diameter, di, and invaded zone resistivity/mud resis-tivity ratio, Ri / Rm. The recorded SP measurement is thencorrected by the resulting correction factor.

Continued on next page

Page 15: Log Interpretation

Gamma Ray and Spontaneous PotentialSchlumberger

2-10

SP

SP Correction Chart (Empirical)SP-4m

(Metric)

% E

SS

P

20 15 10 5 3 2 1

100

90

80

70

60

50

40

30

20

Bed thickness, h (m)C

orre

ctio

n fa

ctor

1.0

1.5

2.0

2.5

3.0

3.5

4.0

5.0

5

20

50

100

200

di (m)

200-mm hole; 86-mm tool, centered

Ri

Rm

1.00.75

0.750.75

0.75

0.5

1.0

0.8

0.88

0.75

© Schlumberger

Example: SP = –80 mV in a 3-m bed

Rm = 0.5 ohm-m, and Ri (invaded zone resistivity) =10 ohm-m (both at formation temperature)

Invasion diameter = 0.80 m

Therefore, Ri /Rm = 10/0.5 = 20

SP correction factor = 1.1

Corrected SP, ESSP= –80 (1.1) = –88 mV

Page 16: Log Interpretation

PorositySchlumberger

3-1

Por

Formation Resistivity Factor Versus PorosityPor-1

2.5 5 10 20 50 100 200 500 1000 2000 5000 10,000

2.5 5 10 20 50 100 200 500 1000 2000 5000 10,00050

40

30

25

20

15

10987

6

5

4

3

2

1

FR, formation resistivity factor

φ, p

oros

ity (

p.u.

)

1.4

1.6

1.82.0

2.2

2.5

2.8

FR = 0.81 φ2

FR = 1 φ2

FR = 0.62 φ2.15

FR = 1 φm

m

Vugs or spherical pores

Fractures

© Schlumberger

This chart gives a variety of formation resistivity factor-to-porosity conversions. The proper choice is best determined bylaboratory measurement or experience in the area. In the absenceof this knowledge, recommended relationships are the following:

For soft formations (Humble formula):

For hard formations:

with appropriate cementation factor, m.

Example: φ= 6% in a carbonate in which a cementation factor,m, of 2 is appropriate

Therefore, from chart,

FR = 280

FR m= 1

φ,

F FR R= =0 62 0 812 15 2.

,.

..φ φ

or

Page 17: Log Interpretation

PorositySchlumberger

3-2

Por

Isolated and Fracture PorosityPor-1a

0.5 0.8 1 2 4 6 8 10 20 30 40 50

φ, porosity

3.0

2.5

2.0

1.5

1.0

m, c

emen

tatio

n ex

pone

nt

Fra

ctur

es

Isol

ated

por

es

φ fr = 0.1

0.2

2.5

10.0

0.5

1.01.5

2.0

5.0

φiso = 0.5

1.0

1.5

2.55.0

7.510.0

12.5

2.0

© Schlumberger

Chart Por-1a is based on a simplified model that assumes thereis no contribution to formation conductivity from vugs andmoldic porosity, and that the cementation exponent, m, offractures is 1.0.

When the pores of a porous formation have an aspect ratioclose to 1 (e.g., vugs or moldic porosity), the cementation expo-nent, m, of the formation will usually be greater than 2, whilefractured formations generally have a cementation exponent lessthan 2.

If a value of m is available (from the interpretation of alog suite including a microresistivity measurement, such as aMicroSFL* log, and a dielectric measurement, such as an EPT*log, for example), Chart Por-1a can be used to estimate howmuch of the measured porosity is isolated porosity. In fractured

formations, the apparent m obtained from a microresistivitymeasurement assumes total flushing and provides an upper limitfor the amount of fracture porosity in the rock.

Entering the chart with the porosity, φ, and cementation expo-nent, m, gives an estimate of either φiso, the amount of isolatedporosity, or φfr, the porosity resulting from fractures.

Example: φ= 10 p.u.

m = 2.5

Therefore,φiso = 4.5 p.u.

and intergranular porosity = 10 – 4.5 = 5.5 p.u.

See Reference 39 for more information about the use of thischart, and Reference 40 for a discussion of spherical pores.

*Mark of Schlumberger

Page 18: Log Interpretation

PorositySchlumberger

3-3

Por

Porosity Evaluation from SonicPor-3

(English)

30 40 50 60 70 80 90 100 110 120 130

t , interval transit time (µsec/ft)

vf = 5300 ft/sec

50

40

30

20

10

0

50

40

30

20

10

0

φ, p

oros

ity (

p.u.

)

φ, p

oros

ity (

p.u.

)

Time average Field observation

1.1

1.2

1.3

1.4

1.5

1.6

Dolom

iteCalc

ite(lim

eston

e)

Quartz

sandsto

ne

26,0

0023

,000

21,0

0018

,00019,5

00

vma(ft/sec)

Bcp

© Schlumberger

These two charts (Por-3) convert sonic log interval transit time,t , into porosity, φ. Two sets of curves are shown. The blue setemploys a weighted-average transform. The red set is based onempirical observation (see Reference 20). For both, the saturat-ing fluid is assumed to be water with a velocity of 5300 ft/sec(1615 m/sec).

To use, enter the chart with the interval transit time from thesonic log. Go to the appropriate matrix velocity or lithologycurve and read the porosity on the ordinate.

For rock mixtures such as limy sandstones or chertydolomites, intermediate matrix lines may be required. Whenusing the weighted-average transform in unconsolidated sand,a lack-of-compaction correction, Bcp, must be made. To accom-plish this, enter the chart with the interval transit time; go to theappropriate compaction correction line, and read the porosity onthe ordinate. If the compaction correction is unknown, it can bedetermined by working backward from a nearby clean watersand whose porosity is known.

Continued on next page

Page 19: Log Interpretation

PorositySchlumberger

3-4

Por

Porosity Evaluation from SonicPor-3m(Metric)

100 150 200 250 300 350 400

t, interval transit time (µsec/m)

vf = 1615 m/sec50

40

30

20

10

0

50

40

30

20

10

0

φ, p

oros

ity (

p.u.

)

φ, p

oros

ity (

p.u.

)

Time average Field observation

1.1

1.2

1.3

1.4

1.5

1.6Dolo

mite

Calcite

Quartz

sandsto

ne

8000

7000

6400

5500

5950

vma(ft/sec)

Bcp

Dol

omite

Cal

cite

Qua

rtzsa

ndst

one

Cem

ente

dqu

artz

sand

ston

e

© Schlumberger

Example: t = 76 µsec/ft [249 µsec/m]

vma = 19,500 ft/sec [5950 m/sec]—sandstone

Therefore,φ= 18% (by either weighted average or empirical transform)

For more information see References 18, 19 and 20.

Lithology vma (ft/sec) t ma (µsec/ft) vma (m/sec) t ma (µsec/m)

Sandstones 18,000–19,500 55.5–51.3 5486–5944 182–168

Limestones 21,000–23,000 47.6–43.5 6400–7010 156–143

Dolomites 23,000–26,000 43.5–38.5 7010–7925 143–126

Page 20: Log Interpretation

PorositySchlumberger

3-5

Por

Formation Density Log Determination of PorosityPor-5

40

30

20

10

02.8 2.6 2.4 2.2 2.0

2.31

1.0 0.9 0.8

1.1

1.2

φ, p

oros

ity, (

p.u.

)

ρb, bulk density (g/cm3)

ρ ma

=2.

87(d

olom

ite)

ρ ma

=2.

71(c

alcite

)

ρ ma

=2.

65(q

uartz

sand

ston

e)

ρ ma

=2.

83ρ m

a=

2.68

ρma – ρb

ρma – ρfφ =

ρf

*Mark of Schlumberger© Schlumberger

Bulk density, ρb, as recorded with the FDC* CompensatedFormation Density or Litho-Density* logs, is converted to poros-ity with this chart. To use, enter bulk density, corrected for bore-hole size, in abscissa; go to the appropriate reservoir rock typeand read porosity on the appropriate fluid density, ρf , scale inordinate. (ρf is the density of the fluid saturating the rock imme-diately surrounding the borehole—usually mud filtrate.)

Example: ρb = 2.31 g/cm3 in limestone lithology

ρma = 2.71 (calcite)

ρf = 1.1 (salt mud)

Therefore,φD = 25 p.u.

Page 21: Log Interpretation

PorositySchlumberger

3-6

Por

Environmental Corrections to Formation Density Log,Litho-Density* Log and Sidewall Neutron Porosity Log Por-15a

Under some circumstances, the FDC* Compensated Formation Densitylog and Litho-Density log must be corrected for borehole size, and theSNP sidewall neutron log must be corrected for mudcake thickness.These charts provide those corrections.

For the FDC log, enter the chart with borehole diameter, dh. Go tothe apparent formation density, ρb (FDC log density reading), and read,in ordinate, the correction to be added to the FDC log density reading.

Gas-filled holes

Mud-filled holes

0.06

0.05

0.04

0.03

0.02

0.01

10 11 12 13 14 15

150– 225 250 275 300 325 350 375

6–9

dh, borehole diameter (mm)

FDC Borehole Correction

dh, borehole diameter (in.)

g/cm

3 to b

e ad

ded

to F

DC

den

sity

2.6 2.4 2.2

2.6 2.4 2.2

Apparent formation density

0.04

0.03

0.02

0.01

0

–0.01

–0.02

–0.03–5 0 5 10 15 20 25

–125 0 125 250 375 500 625

(dh – 200)(ρb – ρm) in metric units

Litho-Density Borehole Correction

(dh – 8)(ρb – ρm) in English units

g/cm

3 to b

e ad

ded

to L

DT

den

sity

SNP Mudcake Correction

0 5 10 15 20 25 30 35 40

0 5 10 15 20 25 30 35 40

φSNPcor (p.u.)

φSNP (p.u.)

0

10

20

0 1⁄41⁄23⁄4

Mud

cake

thic

knes

s (b

it si

ze m

inus

ca

liper

rea

ding

) (m

m)

(

in.)

*Mark of Schlumberger© Schlumberger

Example: dh = 12 in.

ρb = 2.20 g/cm3 (mud-filled borehole)

Therefore, correction = 0.02 g/cm3

ρbcor = 2.20 + 0.02 = 2.22 g/cm3

For the LDT log, enter the chart abscissa with theproduct of the borehole diameter, dh, less 8 in. [200 mm]and the LDT density reading, ρb, less mud density, ρm.Read, in ordinate, the correction to be added to the Litho-Density bulk density reading.

Example: dh = 325 mm

ρb = 2.45 g/cm3

ρm = 1.05 g/cm3

giving (dh – 200)(ρb – ρm) =

(325 – 200)(2.45 – 1.05) = 175

Therefore, correction = 0.014 g/cm3

ρbcor = 2.45 + 0.014 = 2.464 g/cm3

Note: If the borehole diameter from the FDC or LDTcaliper is less than bit size, use the bit size in the abovecharts.

For the SNP log, enter the bottom of the chart with theSNP apparent porosity, φSNP; go vertically to the bit sizeminus caliper reading value; then, follow the diagonalcurves to the top edge of the chart to obtain the correctedSNP apparent porosity.

Example: φSNP= 13 p.u.

Caliper = 75⁄8 in.

Bit size = 77⁄8 in.

giving Bit size – caliper = 77⁄8 – 73⁄8 = 1⁄4 in.

Therefore,φSNPcor= 11.3 p.u.

Note: The full borehole diameter reduction shown on theSNP caliper is used as mudcake thickness, since the SNPbackup shoe usually cuts through the mudcake.

Page 22: Log Interpretation

PorositySchlumberger

3-7

Por

Environmental Corrections to FGT Density LogFGT borehole correction Por-15b

50 100 150 200 250 300 350 4002.15 1.9 1.65 1.4

2 3 4 5 6 7 8 9 10 11 12 13 14 15 1618 16 14 12

0.00 –0.01 –0.02 –0.03

–0.04

–0.05

–0.06

–0.07

–0.08

–0.09

–0.10

0.00

–0.01

–0.02

–0.03

–0.04

–0.05

–0.06

–0.07

–0.08

–0.09

0.00

–0.01

–0.02

–0.03

–0.04

–0.05

–0.06

–0.07

–0.08

0.00

–0.01

–0.02

–0.03

–0.04

–0.05

–0.06

g/cm

3 to

be

subt

ract

ed

from

FG

T d

ensi

ty

dh, borehole diameter (mm)Mud density (g/cm3)

dh, borehole diameter (in.)Mud weight (lbm/gal)

2.0

2.25

2.5

2.75

Apparent formation density

*Mark of Schlumberger© Schlumberger

Borehole corrections of the slimhole 23⁄4-in. FGT formationdensity log can be made automatically by the logging unit. Todetermine if corrections have been made, refer to the log.“ALLO” (for allowed) following the constant “MWCO” indi-cates the FGT log was recorded with borehole correction.“DISA” (for disallowed) indicates that no borehole correctionswere made.

In case the FGT log was recorded without automatic boreholecorrection, this chart provides the correction. Enter the chartabscissa with borehole diameter. Go to the apparent formation

density and read in ordinate, asa function of mud weight,thecorrection to be subtracted from theFGT log bulk densityreading.

Example: ρb = 2.53 g/cm3

dh = 260 mm

Mud density = 1.65 g/cm3

Therefore, correction = –0.040 g/cm3

ρbcor = 2.53 – 0.040 = 2.49 g/cm3

Page 23: Log Interpretation

PorositySchlumberger

3-8

Por

Dual-Spacing CNL* Compensated Neutron Log Charts

This section contains interpretation charts to cover the latestdevelopments in CNL Compensated Neutron Log porosity trans-forms, environmental corrections, and porosity and lithologydetermination.

CSU software (versions CP-30 and later) and MAXIS*software compute three thermal porosities: NPHI, TNPH andNPOR.

NPHI is our “classic NPHI,” computed from instantaneousnear and far count rates, using “Mod-8” ratio-to-porosity trans-form with a caliper correction.

TNPH is computed from deadtime-corrected, depth- andresolution-matched count rates, using an improved ratio-to-porosity transform and performing a complete set of environ-mental corrections in real time. These corrections may be turnedon or off by the field engineer at the wellsite. For more informa-tion see Reference 32.

NPOR is computed from the near-detector count rate andTNPH to give an enhanced resolution porosity. The accuracy ofNPOR is equivalent to the accuracy of TNPH if the environmen-tal effects on the near detector change less rapidly than the for-mation porosity. For more information on enhanced resolutionprocessing, see Reference 35.

Cased hole CNL logs are recorded on NPHI, computed frominstantaneous near and far count rates, with a cased hole ratio-to-porosity transform. Chart Por-14a should be used for environ-mental corrections.

Using the neutron correction charts

For logs labeled NPHI:

1. Enter Chart Por-14e with NPHI and caliper reading to convertto uncorrected neutron porosity.

2. Enter Charts Por-14c and -14d to obtain corrections for eachenvironmental effect. Corrections are summed with the uncor-rected porosity to give a corrected value.

3. Enter corrected porosity in Chart Por-13b for conversion tosandstone or dolomite.

4. Use Crossplots CP-1e, -1f, -2c and -2cm for porosity andlithology determination.

For logs labeled TNPH or NPOR, the CSU/MAXIS softwarehas applied environmental corrections as indicated on the logheading. Refer to Charts Por-14c and -14d to gain an apprecia-tion for the relative importance of each correction prior to usingcrossplot charts. If the CSU/MAXIS software has applied allcorrections, TNPH or NPOR can be used directly with the cross-plot charts. In this case, follow these steps:

1. Enter TNPH or NPOR in Chart Por-13b for conversionto sandstone or dolomite.

2. Use Crossplots CP-1e, -1f, -2c and -2cm to determineporosity and lithology.

*Mark of Schlumberger

Page 24: Log Interpretation

PorositySchlumberger

3-9

Por

When the APS or SNP log is recorded in limestone porosityunits, this chart is used to find porosity in sandstones or dolo-mites. First, correct the SNP log for mudcake thickness (ChartPor-15a).

This chart can also be used to find apparent limestoneporosity (needed for entering the various CP crossplot charts) ifthe APS or SNP recording is in sandstone or dolomite porosityunits.

Example: Sandstone bed

φSNP= 13 p.u. (apparent limestone porosity)

Bit size = 77⁄8 in.

SNP caliper = 75⁄8 in.

giving hmc = 1⁄4 in.

φSNP= 11.3 p.u. (corrected for mudcake)

and φSNP(sandstone) = 14.5 p.u.

Epithermal Neutron Porosity Equivalence CurvesSidewall Neutron Porosity (SNP) log;Accelerator Porosity Sonde (APS) Near-to-Array (APLC) and Near-to-Far (FPLC) logs

Por-13a

40

30

20

10

00 10 20 30 40

φSNPcor, apparent limestone neutron porosity (p.u.) φAPScor, apparent limestone neutron porosity (p.u.)

φ, tr

ue p

oros

ity fo

r in

dica

ted

mat

rix m

ater

ial

APLC FPLC SNP

Quartz

sand

stone

Calcite

(limes

tone

)

Dolomite

*Mark of Schlumberger© Schlumberger

Page 25: Log Interpretation

PorositySchlumberger

3-10

Por

Thermal Neutron Porosity Equivalence CurvesCNL* Compensated Neutron Log; TNPH and NPHI porosity logs Por-13b

40

30

20

10

00 10 20 30 40

φCNLcor, apparent limestone neutron porosity (p.u.)

φ, tr

ue p

oros

ity fo

r in

dica

ted

mat

rix m

ater

ial

Qua

rtzsa

ndst

one

Calcite

(limes

tone

)

Dolomite

Formation salinity

TNPH

NPHI

0 kppm

250 kppm

*Mark of Schlumberger© Schlumberger

Chart Por-13b can be used in the same way as Chart Por-13a,on the previous page, to convert CNL porosity logs (TNPH orNPHI) from one lithology to another. If a log is recorded in lime-stone porosity units in a pure quartz sandstone formation, thetrue porosity can be derived.

Example: Quartz sandstone formation

TNPH = 18 p.u. (apparent limestone porosity)

Formation salinity = 250 kppm

giving True porosity in sandstone = 24 p.u.

Page 26: Log Interpretation

PorositySchlumberger

3-11

Por

LWD Neutron Porosity Equivalence Curves6.5-in. CDN* Compensated Density Neutron and 6.75-in. ADN* Azimuthal Density Neutron tools Por-21

–5 0 10 20 30 40

40

35

30

25

20

15

10

5

0

φCDNcor, apparent limestone porosity (p.u.)

φ, tr

ue p

oros

ity fo

r in

dica

ted

mat

rix m

ater

ial

Quartz

sand

stone

Calcite (li

mestone)

Dolomite

*Mark of Schlumberger© Schlumberger

Page 27: Log Interpretation

PorositySchlumberger

3-12

Por

–5 0 5 10 15 20 25 30 35 40

40

35

30

25

20

15

10

5

0

φCDNcor, apparent limestone porosity (p.u.)

φ, tr

ue p

oros

ity fo

r in

dica

ted

mat

rix m

ater

ial

Quartz sa

ndstone

Calcite (li

mestone)

Dolomite

*Mark of Schlumberger© Schlumberger

LWD Neutron Porosity Equivalence Curves8-in. CDN* Compensated Density Neutron tool Por-25

Page 28: Log Interpretation

PorositySchlumberger

3-13

Por

–5 0 5 10 15 20 25 30 35 40

40

35

30

25

20

15

10

5

0

φADNcor, apparent limestone porosity (p.u.)

φ, tr

ue p

oros

ity fo

r in

dica

ted

mat

rix m

ater

ial

Quartz sa

ndstone

Calcite (li

mestone)

Dolomite

*Mark of Schlumberger© Schlumberger

LWD Neutron Porosity Equivalence Curves6.75-in. ADN* Azimuthal Density Neutron tool Por-27

Page 29: Log Interpretation

PorositySchlumberger

3-14

Por

The nomographs of Charts Por-14 provide environmental correc-tions for the CNL Compensated Neutron Log when run in casedhole or openhole. Before using the nomographs, CNL log valuesmust be corrected for matrix effect (Chart Por-13b).

Cased hole (Chart Por-14a)

For cased hole logs, enter the appropriate Chart Por-14a with thematrix-corrected CNL reading; draw a vertical line through thechart blocks. Find the corrections, relative to the reference lines(dashed lines indicated with asterisks), for each block. Then, goto Chart Por-14c, and starting with the borehole salinity block,continue through the remaining blocks. Algebraically sum all thecorrections to obtain the correction to the CNL reading.

Example: φCNL = 27 p.u. (matrix corrected)

Borehole size = 10 in.

Casing thickness = 0.255 in.

Cement thickness = 1.4 in.

giving Σ∆φ= –1.0 + 0.3 + 0.5 + . . .

This provides casing, cement and borehole corrections for thecased hole CNL log. Continue to Chart Por-14c for salinity,borehole fluid, pressure and temperature corrections.

*Mark of Schlumberger

Dual-Spacing CNL* Compensated Neutron LogEnvironmental Corrections for Cased Hole

Page 30: Log Interpretation

PorositySchlumberger

3-15

Por

Dual-Spacing CNL* Compensated Neutron LogCorrection Nomograph for Cased Hole Por-14a

0 10 20 30 40 50

4 6 8

10 12 14 160.2

0.3

0.4

0.5

0

1

2

3

+0.3

+0.5Net correction = –1.0 + 0.3 + 0.5 + …

–1.0

1.62 in.

0.304 in.

83⁄4 in.

Neutron log porosity index

Diameter of borehole before running casing

(in.)

Cement thickness (in.)

Casing thickness (in.)9.5

11.6 13.5 15.1

14

17 20 23

20

26

32

29

40

47

41⁄2 51⁄2 7 95⁄8OD (in.)

Casing weight (lbm/ft)

English

0 10 20 30 40 50

0 10 20 30 40 50

0 10 20 30 40 50

0 10 20 30 40 50

0 10 20 30

100

200

300

4005 7 9

11 13

0

25

50

75

41 mm

7.7 mm

222 mm

Neutron log porosity index

Diameter of borehole before running casing

(mm)

Cement thickness (mm)

Casing thickness (mm)14 17 20 23

21.0

25.5 30.0 34.5

30

39

48

43

60

70

114 140 178 245OD (mm)

Casing weight (kg/m)

Metric

• Reference lines indicated by bullets

Calcite (limestone)

Quartz sandstone

Dolomite

Neutron porosity equivalence

*Mark of Schlumberger© Schlumberger

Page 31: Log Interpretation

PorositySchlumberger

3-16

Por

The CNL tool is normally run with only a caliper correctionapplied. Refer to the CNL log heading to determine whether thelog was run with or without automatic caliper correction. To useCharts Por-14c and -14d, this borehole correction must beremoved.

The way the “automatic” borehole correction is “backedout” depends on whether the NPHI or TNPH and NPOR curvesare used. With NPHI, the correction is backed out with ChartPor-14e. For TNPH or NPOR, follow these steps:

1. Enter the top block of Chart Por-14c or -14d, labeled “actualborehole size,” with the matrix-corrected CNL porosity.

2. Go to the 8-in. standard condition borehole size indicated bythe bullet (•).

3. Follow the trend lines to the borehole size used to correct thelog—usually the caliper reading. This value is the uncorrectedTNPH value, which should be used to determine the rest ofthe environmental corrections.

Example: Assume TNPH on the log was 32 p.u. (apparentlimestone units) in a 12-in. borehole. This gives anuncorrected TNPH of 34 p.u.

The rest of the example assumes the following:

Uncorrected neutron porosity = 34 p.u. (apparent limestone units)

12-in. borehole1⁄4-in. thick mudcake

100-kppm borehole salinity

11-lbm/gal mud weight (natural mud)

150°F borehole temperature

5-kpsi pressure (water-base mud)

100-kppm formation salinity1⁄2-in. standoff

Enter Charts Por-14c, -14cm, -14d and -14dm at the top withthe uncorrected log reading in apparent limestone units, andproject a linedownward through all the correction nomographs.For each correction, enter the environmental parameter at the left

of the nomograph and project a line to the right. Then, follow thetrend lines from the intersection of the uncorrected porosity read-ing and the environmental parameter to the intersection of thetrend line and the standard condition (for example, for the bore-hole size correction, the trend line would be followed downwardfrom 12 in. and 34 p.u. to intersect the 8-in. line at 32 p.u.).

The porosity reading where the trend line intersects the stan-dard conditions is the corrected porosity considering only thateffect; the difference between the corrected and uncorrectedporosity values, or ∆φ, represents the magnitude of the correc-tion for each environmental effect. Since several environmentaleffects are usually made, a net correction to the uncorrected logreading is computed by summing the individual ∆φ’s for alleffects. Once the net correction has been determined, it is addedto the uncorrected log value to obtain the environmentally cor-rected neutron porosity in apparent limestone units.

For the conditions listed above, the corrections are

∆φBorehole size –23⁄4 p.u.

Mudcake thickness ≈0

Borehole salinity +1

Mud weight +11⁄2

Borehole temperature +4

Pressure –1

Formation salinity –3

Standoff –2

Net correction –21⁄4

Corrected porosity 34 p.u. – 21⁄4 p.u. = 313⁄4 p.u.(apparent limestone units)

The “oil mud” curves in the pressure correction panel areappropriate for liquid components whose compressibility is fourtimes that of water. The correction for other cases can beobtained by multiplying the WBM correction by the ratio of theOBM/WBM compressibilities.

*Mark of Schlumberger

Dual-Spacing CNL* Compensated Neutron LogCorrection Nomograph for Openhole

Page 32: Log Interpretation

PorositySchlumberger

3-17

Por

0 10 20 30 40 50

0 10 20 30 40 50

• Standard conditions

Actual borehole size (in.)

1.0

0.5

0.0

Mudcake thickness (in.)

250

0

Borehole salinity (kppm)

Mud weight (lbm/gal)

Nat

ural

300

50

Borehole temperature (°F)

25

0

Pressure (kpsi)

18 16 14 12 10 8

Bar

ite

Water-base mud Oil mud

250

0

Limestone formation salinity

(kppm)

Neutron log porosity index (apparent limestone porosity)

24 20 16 12 8 4 •

13 12 11 10 9 8

Dual-Spacing CNL* Compensated Neutron LogCorrection Nomograph for OpenholeFor CNL curves without environmental corrections

Por-14c(English)

*Mark of Schlumberger© Schlumberger

Page 33: Log Interpretation

PorositySchlumberger

3-18

Por

0 10 20 30 40 50

0 10 20 30 40 50

600 500 400 300 200 100

Actual borehole size (mm)

25

12.5

0.0

Mudcake thickness (mm)

250

0

Borehole salinity (g/kg)

149 121 93 66 38 10

Borehole temperature (°C)

250

0

Limestone formation salinity

(g/kg)

172 138 103 69 34 0

Pressure (MPa)

Water-base mud Oil mud

1.5

1.0Mud density (g/cm3)

Nat

ural

2.0

1.0

Bar

ite

• Standard conditions

Neutron log porosity index (apparent limestone porosity)

*Mark of Schlumberger© Schlumberger

Dual-Spacing CNL* Compensated Neutron LogCorrection Nomograph for OpenholeFor CNL curves without environmental corrections

Por-14cm(Metric)

Page 34: Log Interpretation

PorositySchlumberger

3-19

Por

0 10 20 30 40 50

0 10 20 30 40 50

10

9

8

7

6

5

4

3

2

1

0

7

6

5

4

3

2

1

0

4

3

2

1

0

3

2

1

0

2

1

0

1

0

Actual borehole size

6 in.

8 in.

10 in.

12 in.

18 in.

24 in.

Sta

ndof

f (in

.)

• Standard conditions

Neutron log porosity index (apparent limestone porosity)

*Mark of Schlumberger© Schlumberger

Dual-Spacing CNL* Compensated Neutron LogStandoff Correction Nomograph for OpenholeFor CNL curves without environmental corrections

Por-14d(English)

Page 35: Log Interpretation

PorositySchlumberger

3-20

Por

0 10 20 30 40 50

0 10 20 30 40 50

250

225

200

175

150

125

100

75

50

25

0

175

150

125

100

75

50

25

0

100

75

50

25

0

75

50

25

0

50

25

0

25

0

Actual borehole size

150 mm

200 mm

250 mm

300 mm

450 mm

600 mm

Sta

ndof

f (m

m)

• Standard conditions

Neutron log porosity index (apparent limestone porosity)

*Mark of Schlumberger© Schlumberger

Dual-Spacing CNL* Compensated Neutron LogStandoff Correction Nomograph for OpenholeFor CNL curves without environmental corrections

Por-14dm(Metric)

Page 36: Log Interpretation

PorositySchlumberger

3-21

Por

TNPH porosity index (apparent limestone porosity)

24 20 16 12 8 4

Borehole size (in.)

–5 0 10 20 30 40 50

0 10 20 30 40 50

NPHI porosity index (apparent limestone porosity)

• Standard conditions*Mark of Schlumberger© Schlumberger

Dual-Spacing CNL* Compensated Neutron LogNPHI-TNPH Conversion Nomograph for Openhole Por-14e

Example: NPHI = 12.5 p.u.

Caliper = 16 in.

Enter the chart from the top at 12.5 p.u.; drop down to 77⁄8-in.hole size, labeled with a bullet (•) for standard conditions.Follow the trend lines upward to 16 in. From that point dropstraight down to the TNPH scale and read the uncorrected TNPH = 17.25 p.u.

If NPHI is recorded in units other than limestone units, itmust be converted using Chart Por-13 before it can be used inthis chart. The NPHI scale is for use with logs recorded afterJanuary 1976.

Page 37: Log Interpretation

PorositySchlumberger

3-22

Por

Accelerator Porosity Sonde (APS) CorrectionsOpenhole APLU and FPLU logs

Epithermal neutron detection with borehole-shielded detectorsconsiderably reduces the environmental effects on the APSresponse and simplifies their correction.

The near-to-array porosity measurement (APLU in apparentlimestone porosity units) and the near-to-far porosity measure-ment (FPLU in apparent limestone porosity units) requiredifferent mud weight and borehole size corrections, so there areindividual sets of correction nomographs for each measurement.Formation temperature, pressure and salinity effects are, how-ever, the same on each measurement, so there is only one setof nomographs for these corrections.

Chart Por-23a includes corrections for mud weight and bore-hole size for near-to-array and near-to-far porosity measurementsin both English and metric units.

The borehole size correction is slightly mudweight depen-dent, even with natural muds, so there are two sets of splines—solid lines for light muds (8.345 lbm/gal) and dashed lines forheavy muds (16 lbm/gal). Intermediate mud weights can beinterpolated.

The nomograph for formation temperature, pressure and for-mation salinity correction of both APLU and FPLU curvesappears in Chart Por-23b. The formation salinity correction isdependent on the amount of salt (NaCl) in the formation. This isa function of both the salinity of fluid in the formation and itsvolume. The last part of the nomograph, therefore, applies to thecorrection a multiplier proportional to the true porosity of theformation.

Standoff between the APS detectors and the formation iscomputed from measurements acquired while logging. This real-time standoff measurement allows realistic standoff correctionsto be made to the porosity measurements for the first time.

The standoff correction is automatically applied during acqui-sition but is difficult to represent accurately on two-dimensionalcharts. No standoff correction charts are currently available, sothe automatic correction should be used.

Continued on next page

Page 38: Log Interpretation

PorositySchlumberger

3-23

Por

APS near-to-far apparent limestone porosity uncorrected (FPLU)

0 10 20 30 40 50

Mud weight

Actual borehole size

18 16 14 12 10 8

16 14 12 10 8 6

2.0 1.8 1.6 1.4 1.2 1.0

400 350 300 250 200

(lbm

/gal

)(in

.)

(g/c

m3 )

(mm

)

APS near-to-array apparent limestone porosity uncorrected (APLU)

0 10 20 30 40 50

Mud weight

Actual borehole size

18 16 14 12 10 8

16 14 12 10 8 6

2.0 1.8 1.6 1.4 1.2 1.0

400 350 300 250 200

(lbm

/gal

)(in

.)

(g/c

m3 )

(mm

)

© Schlumberger

Openhole APS Corrections for Mud Weight and Borehole SizeFor APLU and FPLU curves without environmental correction Por-23a

Charts Por-23a and -23b are used to apply environmentalcorrections to APLU and FPLU measurements.

Enter at the top of each nomograph on Chart Por-23a with therelevant uncorrected log reading in apparent limestone units andproject a line down through the nomographs. For each correctionto be applied, enter the environmental parameter at the left of thenomograph if using English units or at the right if using metricunits. Draw a horizontal line to meet the uncorrected log reading,then follow the direction of the trend lines downward to meetthestandard condition (for example, 8 in. for the borehole size

correction). At this point, you will have moved to the left(minus) or the right (plus) by a distance readable on the porosityscale. Make a note of this correction, ∆φ, to be applied to theuncorrected log reading for that environmental effect.

Since several small corrections are usually made for differentenvironmental effects, including mud weight and borehole sizeusing Chart Por-23a, and formation temperature, pressure andformation salinity using Chart Por 23b, the small corrections,∆φ, for each relevant environmental effect are added together.

Continued on next page

Page 39: Log Interpretation

PorositySchlumberger

3-24

Por

50 100 150 200 250 300 350 50 150 250

Formation salinity (ppk or g/kg)

Formation porosity (p.u.)

50 30 10 0

Formation temperature

10 38 66 93 121 149 177(°F)(°C)

12

11

10

9

8

7

6

5

4

3

2

1

0

–1

Por

osity

cor

rect

ion

(p.u

.)12

11

10

9

8

7

6

5

4

3

2

1

0

–1

Por

osity

cor

rect

ion

(p.u

.)

(psi) (MPa) 0 0

25005000 34 7500

10,000 69 12,50015,000 103 17,500 20,000 138

Pressure

© Schlumberger

Openhole APS Corrections for Temperature,Pressure and Formation SalinityFor APLU and FPLU curves without environmental corrections

Por-23b

For pressure, temperature and salinity corrections, enter thebottom of the left-hand part of Chart Por-23b with formationtemperature, and project a line up to the relevant pressure curve.Draw a horizontal line to the left-hand edge of the formationsalinity part of the nomograph, then follow the trend lines to thecorrect formation salinity. Draw another horizontal line to theleft-hand edge of the porosity part of the nomograph, and followthe trend lines to the approximate porosity. A horizontal linefrom here to the right-hand scale gives the porosity correction,∆φ, to be applied for temperature, pressure and salinity effects.If the correction, ∆φ, given by Chart Por-23b is large and the firstestimate of porosity is incorrect, it may be necessary to reiteratethis correction with an improved porosity estimate.

Example: Assume an uncorrected APLU = 34 p.u.(apparent limestone porosity)

Borehole size = 12 in.

Mud weight = 11 lbm/gal

Borehole temperature = 150°F

Pressure = 5 kpsi

Formation salinity = 100 kppm

∆φThen, using Chart Por-23a,

Mud weight correction (none) –0.7

Borehole size (interpolate mud weight) –1

and using Chart Por-23b,

Temperature/pressure/salinity +1.6

Net correction –0.1

Corrected porosity 34 p.u. – 0.1 p.u. = 33.9 p.u.(apparent limestone units)

The overall correction is small. If this is a limestone forma-tion, the first estimate of porosity used in Chart Por-23b is goodand no reiteration is required.

Page 40: Log Interpretation

PorositySchlumberger

3-25

Por

When measured formation Σ data are available, Chart Por-16may be used for correcting thermal neutron porosity from theCNL log for the effect of total formation capture cross section.At the bottom of the chart, an additional nomograph is providedto correct the resulting porosity for salt displacement in caseswhere elevation of formation Σ is due to salinity. This chart canbe used instead of the salinity correction on Chart Por-14c orPor-14cm. Do not use both charts.

In each of the lithology panels, the nominal situation forfreshwater pore fluid is drawn to correspond to the values ofΣma of the formations used to calibrate the porosity response. Forreference, the sloping dashed line indicates the value of Σ for theformations filled with salt-saturated water.

To use Chart Por-16, enter the apparent porosity and mea-sured Σ into the appropriate lithology box. Follow the equiporos-ity trend lines down to the nominal Σ line, and read the correctedporosity there. If at least some of the Σ reading is caused by saltwater, a correction for salt displacement is made as follows:

1. Enter the top of the formation salinity box at 0 ppm with thecorrected porosity from the previous step.

2. Follow the equiporosity trend lines down to the known watersalinity value, and read the final corrected porosity there.

If other environmental corrections are required, the amountof correction for formation Σ and formation salinity should be

calculated by taking the difference between the final correctedand apparent porosity values. This difference can then besummed with corrections for other environmental effects todetermine the total correction for all effects.

Example:

Given: Apparent neutron porosity 37.9 p.u. (sandstone)Formation Σ from log 32.7 c.u.Formation water salinity 160.0 kppm

Results: Porosity corrected for Σ 32.9 p.u. (sandstone)Final corrected porosity 35.0 p.u. (sandstone)

The total formation Σ and salinity effect in this example is2.9 p.u.

As an alternate approach, with Chart Por-17 it is possible tocorrect the neutron porosity for the matrix capture cross sectionin freshwater-filled formations if matrix Σ is known fromauxiliary measurements. Chart Por-18 provides corrections forCNL thermal neutron porosity for Σ of the formation fluid and,optionally, for hydrogen displacement in saltwater-filledformations.

For more information see Reference 38.

*Mark of Schlumberger

Dual-Spacing CNL* Compensated Neutron LogFormation Σ Correction Nomograph for Openhole

Page 41: Log Interpretation

PorositySchlumberger

3-26

Por

0 10 20 30 40 50

0 10 20 30 40 50

0

250

70

60

50

40

30

20

10

0

70

60

50

40

30

20

10

0

Neutron log porosity index

Sandstone formations

Formation Σ (c.u.)

Fresh water

250-kppm water

Limestone formations

Formation Σ (c.u.)

Fresh water

250-kppm water

Dolomite formations

Formation Σ (c.u.)

Formation salinity (kppm)

Fresh water

250-kppm water

70

60

50

40

30

20

10

0

*Mark of Schlumberger© Schlumberger

Dual-Spacing CNL* Compensated Neutron LogFormation Σ Correction Nomograph for Openhole Por-16

Page 42: Log Interpretation

PorositySchlumberger

3-28

Por

0 10 20 30 40 50

0 10 20 30 40 50

Neutron log porosity index

Sandstone formations

Fluid Σ (c.u.)

Limestone formations

Fluid Σ (c.u.)

Dolomite formations

Fluid Σ (c.u.)

Formation salinity (kppm)

160

140

120

100

80

60

40

20160

140

120

100

80

60

40

20160

140

120

100

80

60

40

20

Fresh water

250-kppm water

0

250

Fresh water

250-kppm water

Fresh water

250-kppm water

Fresh water

250-kppm water

*Mark of Schlumberger© Schlumberger

Dual-Spacing CNL* Compensated Neutron LogFluid Σ Correction Nomograph for Openhole Por-18

Page 43: Log Interpretation

PorositySchlumberger

3-29

Por

CDN* Compensated Density NeutronLog Correction Nomographs

This section contains log interpretation charts for the logging-while-drilling CDN neutron porosity measurement. CorrectionNomographs Por-19 through Por-21 provide an environmentallycorrected neutron porosity referenced to the appropriate lithol-ogy matrix. The neutron-density crossplot, Chart CP-22, pro-vides insight into the formation lithology and permits the deter-mination of porosity. The following example illustrates theprocedure for using the charts.

Assume the following:

Uncorrected neutron log porosity40 p.u.(apparent limestone units)

Tool size 6.5 in.Borehole size 10 in.Mud weight 14 lbm/gal (barite mud)Mud salinity 100 kppmMud temperature 150°FMud pressure 5 kpsiFormation salinity 100 kppm

First, determine the temperature and pressure-correctedhydrogen index of the mud (Hm). Enter the left of the bottomchart of Nomograph Por-19 at the 14-lbm/gal mud weight.Project a line to the right until it intersects the line for barite mud(point A). From this point, draw a line straight up until it inter-sects the bottom of the middle chart (point B). Follow the trendlines up to the mud temperature of 150°F (point C), then gostraight up to the bottom of the top chart (point D). Follow thetrend lines up to the line for 5-kpsi mud pressure (point E) andthen straight up to the top of the chart to read the value of 0.78—the corrected hydrogen index of the mud.

Second, determine the environmental corrections with theappropriate Por-20 or -24 chart. Since the hydrogen index of the

mud, mud salinity and formation salinity effects is stronglydependent on the hole size, correction nomographs are providedfor 8-, 10-, 12-, 14- and 16-in. borehole sizes and for 6.5- and 8-in. tools.

Since the borehole size in the example is 10 in. and the toolsize is 6.5 in., Chart Por-20b is selected for the corrections. Enterthe top of the chart with the uncorrected CDN neutron porosityof 40 p.u. and drop aline straight down to the 10-in. boreholesize (point B). Follow the sloping trend lines down to the stan-dard conditions (8-in. borehole), and then drop straight down tothe Hm value of 0.78, as determined from Chart Por-19. Fromhere (point D), follow the trend lines to the standard conditionsof Hm = 1.0 (point E). Then, drop straight down to the mudsalinity value of 100 kppm (point F). Follow the trend lines tothe standard conditions of 0kppm. Drop straight down to the100-kppm value for formation salinity (point H) and follow thetrend lines down to 0kppm—the standard condition value (pointI). There, read the environmentally corrected apparent limestoneporosity of 31 p.u. for this example.

The porosity equivalence curves in Chart Por-21 are used tofind the porosity of sandstones or dolomites. Enter the chart inabscissa with the environmentally corrected apparent limestoneporosity as determined from Chart Por-20, go up to the appro-priate matrix line, and read true porosity on the ordinate.

If the lithology is unknown, the neutron-density crossplot,Chart CP-22, can provide insight into lithology and permit thedetermination of porosity. To use this chart, enter the abscissawith the environmentally corrected apparent limestone porosityand the ordinate with the bulk density. The point of intersectiondefines the lithology (mineralogy) and the porosity.

*Mark of Schlumberger

Page 44: Log Interpretation

PorositySchlumberger

3-30

Por

CDN* Compensated Density Neutron Log andADN* Azimuthal Density Neutron Log Correction NomographMud hydrogen index determination

Por-19

0.70 0.75 0.80 0.85 0.90 0.95 1

0.70 0.75 0.80 0.85 0.90 0.95 1

25

20

15

10

5

0

Mud pressure

(kpsi)

300

250

200

150

100

50

Mud temperature

(°F)

16

15

14

13

12

11

10

9

8

Mud weight

(lbm/gal)

Hm, mud hydrogen index

F

E

D

C

B

A

Barite

Bentonite

*Mark of Schlumberger© Schlumberger

Page 45: Log Interpretation

PorositySchlumberger

3-31

Por

CDN* Compensated Density Neutron LogCorrection Nomograph for 6.5-in. Tool8-in. borehole

Por-20a

16

14

12

10

8

Borehole size (in.)

0.7

0.8

0.9

1.0

Hm, mud hydrogen

index

CDN neutron porosity index (apparent limestone porosity)

0 10 20 30 40 50

0 10 20 30 40 50

Mud salinity (kppm)

Formation salinity (kppm)

• Standard conditions

250

200

150

100

50

0

250

200

150

100

50

0

*Mark of Schlumberger© Schlumberger

Page 46: Log Interpretation

PorositySchlumberger

3-32

Por

CDN* Compensated Density Neutron LogCorrection Nomograph for 6.5-in. Tool10-in. borehole

Por-20b

16

14

12

10

8

Borehole size (in.)

0.7

0.8

0.9

1.0

Hm, mud hydrogen

index

CDN neutron porosity index (apparent limestone porosity)

0 10 20 30 40 50

0 10 20 30 40 50

Mud salinity (kppm)

Formation salinity (kppm)

• Standard conditions

250

200

150

100

50

0

250

200

150

100

50

0

A

B

C

D

E

F

G

H

I

*Mark of Schlumberger© Schlumberger

Page 47: Log Interpretation

PorositySchlumberger

3-33

Por

CDN* Compensated Density Neutron LogCorrection Nomograph for 6.5-in. Tool12-in. borehole

Por-20c

16

14

12

10

8

Borehole size (in.)

0.7

0.8

0.9

1.0

Hm, mud hydrogen

index

CDN neutron porosity index (apparent limestone porosity)

0 10 20 30 40 50

0 10 20 30 40 50

Mud salinity (kppm)

Formation salinity (kppm)

• Standard conditions

250

200

150

100

50

0

250

200

150

100

50

0

*Mark of Schlumberger© Schlumberger

Page 48: Log Interpretation

PorositySchlumberger

3-34

Por

CDN* Compensated Density Neutron LogCorrection Nomograph for 6.5-in. Tool14-in. borehole

Por-20d

16

14

12

10

8

Borehole size (in.)

0.7

0.8

0.9

1.0

Hm, mud hydrogen

index

CDN neutron porosity index (apparent limestone porosity)

0 10 20 30 40 50

0 10 20 30 40 50

Mud salinity (kppm)

Formation salinity (kppm)

• Standard conditions

250

200

150

100

50

0

250

200

150

100

50

0

*Mark of Schlumberger© Schlumberger

Page 49: Log Interpretation

PorositySchlumberger

3-35

Por

CDN* Compensated Density Neutron LogCorrection Nomograph for 8-in. Tool12-in. borehole

Por-24c

18

17

16

15

14

13

12

Borehole size (in.)

0.7

0.8

0.9

1.0

Hm, mud hydrogen

index

CDN neutron porosity index (apparent limestone porosity)

0 10 20 30 40 50

0 10 20 30 40 50

Mud salinity (kppm)

Formation salinity (kppm)

• Standard conditions

250

200

150

100

50

0

250

200

150

100

50

0

*Mark of Schlumberger© Schlumberger

Page 50: Log Interpretation

PorositySchlumberger

3-36

Por

CDN* Compensated Density Neutron LogCorrection Nomograph for 8-in. Tool14-in. borehole

Por-24d

18

17

16

15

14

13

12

Borehole size (in.)

0.7

0.8

0.9

1.0

Hm, mud hydrogen

index

CDN neutron porosity index (apparent limestone porosity)

0 10 20 30 40 50

0 10 20 30 40 50

Mud salinity (kppm)

Formation salinity (kppm)

• Standard conditions

250

200

150

100

50

0

250

200

150

100

50

0

A

B

C

D

E

F

G

H

I

*Mark of Schlumberger© Schlumberger

Page 51: Log Interpretation

PorositySchlumberger

3-37

Por

CDN* Compensated Density Neutron LogCorrection Nomograph for 8-in. Tool16-in. borehole

Por-24e

18

17

16

15

14

13

12

Borehole size (in.)

0.7

0.8

0.9

1.0

Hm, mud hydrogen

index

CDN neutron porosity index (apparent limestone porosity)

0 10 20 30 40 50

0 10 20 30 40 50

Mud salinity (kppm)

Formation salinity (kppm)

• Standard conditions

250

200

150

100

50

0

250

200

150

100

50

0

*Mark of Schlumberger© Schlumberger

Page 52: Log Interpretation

Porosity?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e

Por

ADN* Azimuthal Density NeutronLog Correction Nomographs

This section contains log interpretation charts for the logging-while-drilling ADN azimuthal neutron porosity measurement. Itis assumed that the tool is stabilized in the borehole. CorrectionNomographs Por-19, Por-26a and Por-26b provide an environ-mentally corrected neutron porosity referenced to the appropriatelithology matrix. The neutron-density crossplot, Chart CP-24,provides insight into the formation lithology and permits thedetermination of porosity. The following example illustrates theprocedure for using the charts.

Assume the following:

Uncorrected neutron log porosity40 p.u.(apparent limestone units)

Borehole size 10 in.Mud weight 14 lbm/gal (barite mud)Mud salinity 100 kppmMud temperature 150°FMud pressure 5 kpsiFormation salinity 100 kppm

First, determine the temperature and pressure-correctedhydrogen index of the mud (Hm). Enter the left of the bottomchart of Nomograph Por-19 at the 14-lbm/gal mud weight.Project a line to the right until it intersects the line for barite mud(point A). From this point, draw a line straight up until it inter-sects the bottom of the middle chart (point B). Follow the trendlines up to the mud temperature of 150°F (point C), then gostraight up to the bottom of the top chart (point D). Follow thetrend lines up to the line for 5-kpsi mud pressure (point E) andthen straight up to the top of the chart to read the value of 0.78—the corrected hydrogen index of the mud.

Second, determine the environmental corrections with theappropriate Por-26 chart. Since the hydrogen index of the mud,

mud salinity and formation salinity effects is strongly dependenton the hole size, correction nomographs are provided for 8- and10-in. borehole sizes.

Since the borehole size in the example is 10 in. and the toolsize is 6.5 in., Chart Por-26b is selected for the corrections. Enterthe top of the chart with the uncorrected CDN neutron porosityof 40 p.u. and drop aline straight down to the 10-in. boreholesize (point B). Follow the sloping trend lines down to the stan-dard conditions (8-in. borehole), and then drop straight down tothe Hm value of 0.78, as determined from Chart Por-19. Fromhere (point D), follow the trend lines to the standard conditionsof Hm = 1.0 (point E). Then, drop straight down to the mudsalinity value of 100 kppm (point F). Follow the trend lines tothe standard conditions of 0kppm. Drop straight down to the100-kppm value for formation salinity (point H) and follow thetrend lines down to 0kppm—the standard condition value (pointI). There, read the environmentally corrected apparent limestoneporosity of 31 p.u. for this example.

The porosity equivalence curves in Chart Por-27 are used tofind the porosity of sandstones or dolomites. Enter the chart inabscissa with the environmentally corrected apparent limestoneporosity as determined from Chart Por-26b, go up to the appro-priate matrix line, and read true porosity on the ordinate.

If the lithology is unknown, the neutron-density crossplot,Chart CP-24, can provide insight into lithology and permit thedetermination of porosity. To use this chart, enter the abscissawith the environmentally corrected apparent limestone porosityand the ordinate with the bulk density. The point of intersectiondefines the lithology (mineralogy) and the porosity.

*Mark of Schlumberger

Page 53: Log Interpretation

Porosity?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e

Por

ADN* Azimuthal Density NeutronLog Correction Nomographs

This section contains log interpretation charts for the logging-while-drilling ADN azimuthal neutron porosity measurement. Itis assumed that the tool is stabilized in the borehole. CorrectionNomographs Por-19, Por-26a and Por-26b provide an environ-mentally corrected neutron porosity referenced to the appropriatelithology matrix. The neutron-density crossplot, Chart CP-24,provides insight into the formation lithology and permits thedetermination of porosity. The following example illustrates theprocedure for using the charts.

Assume the following:

Uncorrected neutron log porosity40 p.u.(apparent limestone units)

Borehole size 10 in.Mud weight 14 lbm/gal (barite mud)Mud salinity 100 kppmMud temperature 150°FMud pressure 5 kpsiFormation salinity 100 kppm

First, determine the temperature and pressure-correctedhydrogen index of the mud (Hm). Enter the left of the bottomchart of Nomograph Por-19 at the 14-lbm/gal mud weight.Project a line to the right until it intersects the line for barite mud(point A). From this point, draw a line straight up until it inter-sects the bottom of the middle chart (point B). Follow the trendlines up to the mud temperature of 150°F (point C), then gostraight up to the bottom of the top chart (point D). Follow thetrend lines up to the line for 5-kpsi mud pressure (point E) andthen straight up to the top of the chart to read the value of 0.78—the corrected hydrogen index of the mud.

Second, determine the environmental corrections with theappropriate Por-26 chart. Since the hydrogen index of the mud,

mud salinity and formation salinity effects is strongly dependenton the hole size, correction nomographs are provided for 8- and10-in. borehole sizes.

Since the borehole size in the example is 10 in. and the toolsize is 6.5 in., Chart Por-26b is selected for the corrections. Enterthe top of the chart with the uncorrected CDN neutron porosityof 40 p.u. and drop aline straight down to the 10-in. boreholesize (point B). Follow the sloping trend lines down to the stan-dard conditions (8-in. borehole), and then drop straight down tothe Hm value of 0.78, as determined from Chart Por-19. Fromhere (point D), follow the trend lines to the standard conditionsof Hm = 1.0 (point E). Then, drop straight down to the mudsalinity value of 100 kppm (point F). Follow the trend lines tothe standard conditions of 0kppm. Drop straight down to the100-kppm value for formation salinity (point H) and follow thetrend lines down to 0kppm—the standard condition value (pointI). There, read the environmentally corrected apparent limestoneporosity of 31 p.u. for this example.

The porosity equivalence curves in Chart Por-27 are used tofind the porosity of sandstones or dolomites. Enter the chart inabscissa with the environmentally corrected apparent limestoneporosity as determined from Chart Por-26b, go up to the appro-priate matrix line, and read true porosity on the ordinate.

If the lithology is unknown, the neutron-density crossplot,Chart CP-24, can provide insight into lithology and permit thedetermination of porosity. To use this chart, enter the abscissawith the environmentally corrected apparent limestone porosityand the ordinate with the bulk density. The point of intersectiondefines the lithology (mineralogy) and the porosity.

*Mark of Schlumberger

Page 54: Log Interpretation

PorositySchlumberger

Por

ADN* Azimuthal Density Neutron LogCorrection Nomograph for 6.75-in. Tool8-in. borehole

Por-26a

250

200

150

100

50

0

Formation salinity (kppm)

250

200

150

100

50

0

Mud salinity (kppm)

300

250

200

150

100

50

Mud temperature

(°F)

0.7

0.8

0.9

1.0

Hm, mud hydrogen

index

• Standard conditions

ADN neutron porosity index (apparent limestone porosity)

0 10 20 30 40 50

0 10 20 30 40 50

16 15141312111098

Borehole size (in.)

*Mark of Schlumberger© Schlumberger

Page 55: Log Interpretation

PorositySchlumberger

Por

ADN* Azimuthal Density Neutron LogCorrection Nomograph for 6.75-in. Tool10-in. borehole

Por-26b

250

200

150

100

50

0

Formation salinity (kppm)

250

200

150

100

50

0

Mud salinity (kppm)

300

250

200

150

100

50

Mud temperature

(°F)

0.7

0.8

0.9

1.0

Hm, mud hydrogen

index

ADN neutron porosity index (apparent limestone porosity)

0 10 20 30 40 50

0 10 20 30 40 50

16 15141312111098

Borehole size (in.)

I

A

G

C

J

K

• Standard conditions

F

B

D

E

H

*Mark of Schlumberger© Schlumberger

Page 56: Log Interpretation

Crossplots for Porosity, Lithology and SaturationSchlumberger

4-1

CP

The neutron-density-sonic crossplot charts (Charts CP-1, CP-2and CP-7) provide insight into lithology and permit the determi-nation of porosity. Chart selection depends on the anticipatedmineralogy. Neutron-density can be used to differentiate betweenthe common reservoir rocks [quartz sandstone, calcite (lime-stone) and dolomite] and shale and some evaporites.

Sonic-neutron can be used to differentiate between the commonreservoir rocks when clay content is negligible. Sonic-densitycan be used to differentiate between a single known reservoirrock and shale and to identify evaporate minerals.

Continued on next page

Porosity and Lithology Determination fromFormation Density Log and SNP Sidewall Neutron Porosity Log CP-1a

0 10 20 30 40

φSNPcor, neutron porosity index (p.u.) (apparent limestone porosity)

1.9

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3.0

ρ b, b

ulk

dens

ity (

g/cm

3 )

φ D, d

ensi

ty p

oros

ity (

p.u.

) (ρ

ma

= 2

.71,

ρf =

1.0

)

45

40

35

30

25

20

15

10

5

0

–5

–10

–15

Sulfur Salt

Trona

Polyhalite

Langbeinite

Approximategascorrection

Anhyd

rite

0

Dolomite

0

5

10

15

20

25

30

35

Quartz sa

ndstone

Porosity

0

5

10

15

20

25

30

35

40

Calcite (li

mestone)

0

5

10

15

20

25

30

35

40

45

Fresh water, liquid-filled holes (ρf = 1.0)

© Schlumberger

Page 57: Log Interpretation

Crossplots for Porosity, Lithology and SaturationSchlumberger

4-2

CP

0 10 20 30 40

φSNPcor, neutron porosity index (p.u.) (apparent limestone porosity)

1.9

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3.0

ρ b, b

ulk

dens

ity (

g/cm

3 )

φ D, d

ensi

ty p

oros

ity (

p.u.

) (ρ

ma

= 2

.71,

ρf =

1.1

)

45

40

35

30

25

20

15

10

5

0

–5

–10

–15

Sulfur Salt

Trona

Polyhalite

Dolomite

Calcite (li

mestone)

Quartz sa

ndstone

Langbeinite

Approximategascorrection

Porosity

Anhyd

rite

0

0

5

10

15

20

25

30

35

0

5

10

15

20

25

30

35

40

0

5

10

15

20

25

30

35

40

45

40

45

Salt water, liquid-filled holes (ρf = 1.1)

Porosity and Lithology Determination fromFormation Density Log and SNP Sidewall Neutron Porosity Log CP-1b

To use any of these charts, enter the abscissa and ordinatewith the required neutron, density or sonic value. The pointof intersection defines the lithology (mineralogy) and theporosity, φ.

Note that all neutron input is in apparent limestone porosity,that charts for fresh water (ρf = 1.0 g/cm3) and saline water (ρf = 1.1 g/cm3) invasion exist, and that the sonic charts containcurves assuming weighted average response (blue) and empiricalobservation response (red).

© Schlumberger

Page 58: Log Interpretation

Crossplots for Porosity, Lithology and SaturationSchlumberger

4-3

CP

Porosity and Lithology Determination fromLitho-Density* Log and CNL* Compensated Neutron LogFor CNL curves after 1986 labeled TNPH

CP-1e

0 10 20 30 40

φCNLcor, neutron porosity index (p.u.) (apparent limestone porosity)

1.9

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3.0

ρ b, b

ulk

dens

ity (

g/cm

3 )

φ D, d

ensi

ty p

oros

ity (

p.u.

) (ρ

ma

= 2

.71;

ρf =

1.0

)

45

40

35

30

25

20

15

10

5

0

–5

–10

–15Anhydrite

Sulfur Salt

ApproximategascorrectionPor

osity

Calcite (li

mestone)

0

5

10

15

20

25

30

35

40

45

Quartz sa

ndstone

0

5

10

15

20

25

30

35

40

Dolomite

0

5

10

15

20

25

30

35

Liquid-filled holes (ρf = 1.000 g/cm3; Cf = 0 ppm)

*Mark of Schlumberger© Schlumberger

Page 59: Log Interpretation

Crossplots for Porosity, Lithology and SaturationSchlumberger

4-4

CP

Porosity and Lithology Determination fromLitho-Density* Log and CNL* Compensated Neutron LogFor CNL curves after 1986 labeled TNPH

CP-1f

0 10 20 30 40

φCNLcor, neutron porosity index (p.u.) (apparent limestone porosity)

1.9

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3.0

ρ b, b

ulk

dens

ity (

g/cm

3 )

φ D, d

ensi

ty p

oros

ity (

p.u.

) (ρ

ma

= 2

.71,

ρf =

1.1

9)

45

40

35

30

25

20

15

10

5

0

–5

–10

–15

Anhydrite

Sulfur Salt

Approximategascorrection

Porosity

Liquid-filled holes (ρf = 1.190 g/cm3; Cf = 250 kppm)

Calcite (li

mestone)

0

5

10

15

20

25

30

35

40

45

Dolomite

0

5

10

15

20

25

30

35

Quartz sa

ndstone

0

5

10

15

20

25

30

35

40

45

*Mark of Schlumberger© Schlumberger

Page 60: Log Interpretation

Crossplots for Porosity, Lithology and SaturationSchlumberger

4-5

CP

Porosity and Lithology Determination from Formation Density Logand CDN* Compensated Density Neutron Log for 6.5-in. Tool CP-22

φCDNcor, apparent limestone porosity (p.u.)

ρ b, b

ulk

dens

ity (

g/cm

3 )

0 10 20 30 40

1.9

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3.0

Porosity

Quartz sa

ndstone

Calcite (li

mestone)

Dolomite

0

0

0

5

5

5

10

10

10

15

15

15

20

20

20

25

25

25

30

30

30

35

35

35

40

40

Fresh water, liquid-filled holes (ρf = 1.0)

*Mark of Schlumberger© Schlumberger

Page 61: Log Interpretation

Crossplots for Porosity, Lithology and SaturationSchlumberger

4-6

CP

Porosity and Lithology Determination from Formation Density Logand CDN* Compensated Density Neutron Log for 8-in. Tool CP-23

φCDNcor, apparent limestone porosity (p.u.)

ρ b, b

ulk

dens

ity (

g/cm

3 )

0 10 20 30 40

1.9

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3.0

Porosity

Quartz sa

ndstone

Calcite (li

mestone)

Dolomite

0

0

0

5

5

5

10

10

10

15

15

15

20

20

20

25

25

25

30

30

30

35

35

35

40

40

Fresh water, liquid-filled holes (ρf = 1.0)

*Mark of Schlumberger© Schlumberger

Page 62: Log Interpretation

Crossplots for Porosity, Lithology and SaturationSchlumberger

4-7

CP

Porosity and Lithology Determination from Formation Density Logand ADN* Azimuthal Density Neutron Log for 6.75-in. Tool CP-24

φADNcor, apparent limestone porosity (p.u.)

ρ b, b

ulk

dens

ity (

g/cm

3 )

0 10 20 30 40

1.9

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3.0

Porosity

Quartz sa

ndstone

Calcite (li

mestone)

Dolomite

0

0

0

5

5

5

10

10

10

15

15

15

20

20

20

25

25

25

30

30

30

35

35

35

40

40

Fresh water, liquid-filled holes (ρf = 1.0)

*Mark of Schlumberger© Schlumberger

Page 63: Log Interpretation

Crossplots for Porosity, Lithology and SaturationSchlumberger

4-8

CP

Porosity and Lithology Determination from Sonic Logand SNP Sidewall Neutron Porosity Log CP-2a

(English)

110

100

90

80

70

60

50

400 10 20 30 40

φSNPcor, neutron porosity index (p.u.) (apparent limestone porosity)

t, s

onic

tran

sit t

ime

(µse

c/ft)

Time average Field observation

0Sal

t

0An

hydr

ite

00

0

0

5

10

1010

15

15

15

15

15

15

20

2020

20

20

20

25

25

25

25

25

30

35

35

40

30 30

25

30

35

40

40

30

35

40

05

5

5

5

0

35

10

10

Cal

cite

(lim

esto

ne)

Qua

rtz s

ands

tone

(vm

a =

18,

000

ft/se

c)

Dol

omite

Poro

sity

t f = 189 µsec/ft

© Schlumberger

Page 64: Log Interpretation

Crossplots for Porosity, Lithology and SaturationSchlumberger

4-9

CP

Porosity and Lithology Determination from Sonic Logand SNP Sidewall Neutron Porosity Log CP-2am

(Metric)

340

320

300

280

260

240

220

200

180

160

140

0 10 20 30 40

φSNPcor, neutron porosity index (p.u.) (apparent limestone porosity)

t, s

onic

tran

sit t

ime

(µse

c/m

)

15

20

5

35

t f = 620 µsec/m

Time average Field observation

0Sal

t

0 Anhy

drite

00

0

0

5

10

1010

15

15

1515

15

20

20

20

20

20

25

25

25

25

25

30

35

35

40

30 30

25

30

35

40

40

30

35

40

05

5

5

0

Cal

cite

(lim

esto

ne)

Qua

rtz s

ands

tone

(vm

a =

548

6 m

/sec

)

Dol

omite

Poro

sity

10

10

© Schlumberger

Page 65: Log Interpretation

Crossplots for Porosity, Lithology and Saturation?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e

CP

Porosity and Lithology Determination fromLitho-Density* Log and Array Porosity Sonde (APS) CP-1g

*Mark of Schlumberger© Schlumberger

Page 66: Log Interpretation

Crossplots for Porosity, Lithology and Saturation?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e

CP

Porosity and Lithology Determination fromLitho-Density* Log and Array Porosity Sonde (APS) CP-1h

*Mark of Schlumberger© Schlumberger

Page 67: Log Interpretation

Crossplots for Porosity, Lithology and SaturationSchlumberger

4-12

CP

Porosity and Lithology Determination from Sonic Logand CNL* Compensated Neutron LogFor CNL logs after 1986 labeled TNPH

CP-2c(English)

0 10 20 30 40

110

100

90

80

70

60

50

40

φCNLcor, neutron porosity index (p.u.) (apparent limestone porosity)

t, s

onic

tran

sit t

ime

(µse

c/ft)

t f = 190 µsec/ft; Cf = 0 ppm

Salt

Anhyd

rite

Dolom

ite

Cal

cite

(lim

esto

ne)

Qua

rtz s

ands

tone

Time average Field observation

Poro

sity

0

5

55

00

10

15

20

25

35

40

40

3535

30

3535

30

25

20

15

10

25

20

15

10

10

15

20

25

3030

0

5

10

10

15

15

20

2025

2530

30

0

5

0

5

*Mark of Schlumberger© Schlumberger

Page 68: Log Interpretation

Crossplots for Porosity, Lithology and SaturationSchlumberger

4-13

CP

Porosity and Lithology Determination from Sonic Logand CNL* Compensated Neutron LogFor CNL logs after 1986 labeled TNPH

CP-2cm(Metric)

0 10 20 30 40

360

340

320

300

280

260

240

220

200

180

160

140

φCNLcor, neutron porosity index (p.u.) (apparent limestone porosity)

t, s

onic

tran

sit t

ime

(µse

c/m

)

t f = 620 µsec/m; Cf = 0 ppm

Salt

Anhy

drite

Dolom

ite

Cal

cite

(lim

esto

ne)

Qua

rtz s

ands

tone

Time average Field observation

Poro

sity

0

5

55

00

10

15

20

35

40

40

35

30

353530

20

15

10

25

20

15

10

10

15

20

3030

0

5

10

10

15

15

20

20

25

2530

30

0

5

0

5

2525

35

25

*Mark of Schlumberger© Schlumberger

Page 69: Log Interpretation

Crossplots for Porosity, Lithology and SaturationSchlumberger

4-14

CP

Lithology Identification fromFormation Density Log and Sonic Log CP-7

(English)

40 50 60 70 80 90 100 110 120

1.8

1.9

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3.0

t, sonic transit time (µsec/ft)

ρ b, b

ulk

dens

ity (

g/cm

3 )

t f = 189 µsec/ft; ρf = 1.0

Dolom

ite

Calcit

e (li

mes

tone

)Time average Field observation

Anhydrite

Polyhalite

Gypsum

Trona

Salt

Sylvite

Sulfur

0

10

10

10

10

10 20

20 30

4040

30

40 40

40

303030

20

20

20

0

0

0

0

10

0Q

uartz

san

dsto

ne

Poros

ity

20

© Schlumberger

Page 70: Log Interpretation

Crossplots for Porosity, Lithology and SaturationSchlumberger

4-15

CP

Lithology Identification fromFormation Density Log and Sonic Log CP-7m

(Metric)

150 200 250 300 350 400

1.8

1.9

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3.0

t, sonic transit time (µsec/m)

ρ b, b

ulk

dens

ity (

g/cm

3 )

t f = 620 µsec/m; ρf = 1.0

Dolom

ite

Calcit

e (li

mes

tone

)Time average Field observation

Anhydrite

Polyhalite

Gypsum

Trona

Salt

Sylvite

Sulfur

0

10

10

10 20

20

20

30

40

30

40 40

40

3030

20

20

0

0

10

0Q

uartz

san

dsto

ne

Poros

ity

40

30

20

0

0

10

10

© Schlumberger

Page 71: Log Interpretation

Crossplots for Porosity, Lithology and SaturationSchlumberger

4-16

CP

Porosity and Lithology Determination fromFormation Density Log and CNL* Compensated Neutron LogFor CNL logs before 1986, or labeled NPHI

CP-1c

0 10 20 30 40

φCNLcor, neutron porosity index (p.u.) (apparent limestone porosity)

1.9

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3.0

ρ b, b

ulk

dens

ity (

g/cm

3 )

φ D, d

ensi

ty p

oros

ity (

p.u.

) (ρ

ma

= 2

.71;

ρf =

1.0

)

45

40

35

30

25

20

15

10

5

0

–5

–10

–15

Poros

ity

Sulfur Salt

Approximategascorrection

0

Anhyd

rite

PolyhaliteLangbeinite

Calcite (li

mestone)

Quartz sa

ndstone

Dolom

ite

0

45

5

15

10

20

25

30

35

40

30

0

5

15

10

20

25

35

40

30

0

5

15

10

20

25

35

40

Fresh water, liquid-filled holes (ρf = 1.0)

*Mark of Schlumberger© Schlumberger

Page 72: Log Interpretation

Crossplots for Porosity, Lithology and SaturationSchlumberger

4-17

CP

Porosity and Lithology Determination fromFormation Density Log and CNL* Compensated Neutron LogFor CNL logs before 1986, or labeled NPHI

CP-1d

0 10 20 30 40

φCNLcor, neutron porosity index (p.u.) (apparent limestone porosity)

Salt water, liquid-filled holes (ρf = 1.1)

1.9

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3.0

ρ b, b

ulk

dens

ity (

g/cm

3 )

φ D, d

ensi

ty p

oros

ity (

p.u.

) (ρ

ma

= 2

.71;

ρf =

1.1

)

45

40

35

30

25

20

15

10

5

0

–5

–10

–15

Porosity

Sulfur Salt

Approximategascorrection

0

Anhyd

rite

PolyhaliteLangbeinite

Calcite (li

mestone)

0

45

5

15

10

20

25

30

35

40

Dolom

ite

30

0

5

15

10

20

25

35

40

Quartz sa

ndstone

30

0

5

15

10

20

25

35

40

45

*Mark of Schlumberger© Schlumberger

Page 73: Log Interpretation

Crossplots for Porosity, Lithology and SaturationSchlumberger

4-18

CP

Porosity and Lithology Determination fromSonic Log and CNL* Compensated Neutron LogFor CNL logs before 1986, or labeled NPHI

CP-2b(English)

110

100

90

80

70

60

50

400 10 20 30 40

φCNLcor, neutron porosity index (p.u.) (apparent limestone porosity)

t f = 189 µsec/ft

Poro

sity

0 Anhy

drite

0Sa

lt

Cal

cite

(lim

esto

ne)

Qua

rtz s

ands

tone

Dol

omite

t, s

onic

tran

sit t

ime

(µse

c/ft)

0

5

15

10

20

25

30

35

40

0

5

10

15

20

25

30

35

40

0

5

10

15

20

25

30

35

40

40

35

30

25

20

15

10

5

0Time average Field observation

35

30

25

20

15

10

5

0

5

0

10

15

20

25

30

*Mark of Schlumberger© Schlumberger

Page 74: Log Interpretation

Crossplots for Porosity, Lithology and SaturationSchlumberger

4-19

CP

Porosity and Lithology Determination fromSonic Log and CNL* Compensated Neutron LogFor CNL logs before 1986, or labeled NPHI

CP-2bm(Metric)

340

320

300

280

260

240

220

200

180

160

140

0 10 20 30 40

φCNLcor, neutron porosity index (p.u.) (apparent limestone porosity)

t f = 620 µsec/m

t, s

onic

tran

sit t

ime

(µse

c/m

)

Time average Field observation

Poro

sity

0An

hydr

ite

0Sa

lt

0

5

15

10

20

25

30

35

40

Cal

cite

(lim

esto

ne)

Qua

rtz s

ands

tone

Dol

omite

0

5

10

15

20

25

30

35

40

20

15

10

5

0

10

25

30

35

30

5

15

20

25

40

35

30

25

20

15

10

5

0

0

5

10

15

20

25

30

35

40

*Mark of Schlumberger© Schlumberger

Page 75: Log Interpretation

Crossplots for Porosity, Lithology and SaturationSchlumberger

4-20

CP

This crossplot may be used to help identify mineral mixturesfrom sonic, density and neutron logs. (The CNL neutron logis used in the above chart; the time average sonic response isassumed.) Except in gas-bearing formations, M and N arepractically independent of porosity. They are defined as:

Points for binary mixtures plot along a line connecting thetwo mineral points. Ternary mixtures plot within the triangledefined by the three constituent minerals. The effect of gas,shaliness, secondary porosity, etc., is to shift data points in thedirections shown by the arrows.

The dolomite and sandstone lines on Chart CP-8 are dividedby porosity range as follows: 1) φ= 0 (tight formation); 2) φ= 0 to 12 p.u.; 3) φ= 12 to 27 p.u.; and 4) φ= 27 to 40 p.u.

N N f N

b f=

−−

( )φ φρ ρ ( English or metric)

M f

b f=

−− ×

t t

ρ ρ 0 003. (metric)

M f

b f=

−− ×

t t

ρ ρ 0 01. (English)

M-N Plot for Mineral IdentificationFor CNL* curves that have been environmentally corrected CP-8

1.1

1.0

0.9

0.8

0.7

0.6

0.5

Approximate shale region

Anhydrite

Dolomite

Gypsum

Calcite (limestone)

vma = 5943 m/sec = 19,500 ft/sec

vma = 5486 m/sec = 18,000 ft/sec

Sulfur

Quartz sandstone

324 1

1 2 34

Secondary porosity

Gas

orsa

lt

N

M

0.3 0.4 0.5 0.6 0.7 0.8

Fresh mud ρf = 1.0 Mg/m3, t f = 620 µsec/m ρf = 1.0 g/cm3, t f = 189 µsec/ft

Salt mud ρf = 1.1 Mg/m3, t f = 607 µsec/m ρf = 1.1 g/cm3, t f = 185 µsec/ft

© Schlumberger

Page 76: Log Interpretation

Crossplots for Porosity, Lithology and SaturationSchlumberger

4-21

CP

On Chart CP-8a, the APS apparent limestone porosity (APLC)replaces the CNL* apparent limestone porosity (NPHI) used onChart CP-8.

Since there is negligible dolomite spread, a single dolomitepoint is plotted for each mud.

1.1

1.0

0.9

0.8

0.7

0.6

0.5

Approximate shale region

Anhydrite

Dolomite

Gypsum

Calcite (limestone)

vma = 5943 m/sec = 19,500 ft/sec

vma = 5486 m/sec = 18,000 ft/sec

Sulfur

Quartz sandstone

12 3&4

Secondary porosity

Gas

orsa

lt

N

M

0.3 0.4 0.5 0.6 0.7 0.8

Fresh mud ρf = 1.0 Mg/m3, t f = 620 µsec/m ρf = 1.0 g/cm3, t f = 189 µsec/ft

Salt mud ρf = 1.1 Mg/m3, t f = 607 µsec/m ρf = 1.1 g/cm3, t f = 185 µsec/ft

*Mark of Schlumberger© Schlumberger

M-N Plot for Mineral IdentificationFor APS curves that have been environmentally corrected CP-8a

Page 77: Log Interpretation

Crossplots for Porosity, Lithology and SaturationSchlumberger

4-22

CP

3 2.9 2.8 2.7 2.6 2.5 2.4 2.3 2.2 2.1 2

130 120 110 100 90 80 70 60 50 40 30 3

2.9

2.8

2.7

2.6

2.5

2.4

2.3

2.2

2.1

2

130

120

110

100

90

80

70

60

50

40

30

Fluid density = 1.0

ρmaa, apparent matrix density (g/cm3)�

ρ b, b

ulk

dens

ity (

g/cm

3 )

t, in

terv

al tr

ansi

t tim

e (µ

sec/

ft)

t maa, apparent matrix transit time (µsec/ft)

40

30

20

10

10

20

30

40

Apparent crossplot porosity

Densit

y-ne

utro

n

Neutro

n-so

nic

© Schlumberger

Determination of Apparent Matrix Parameters fromBulk Density or Interval Transit Time and Apparent Total Porosity CP-14

(English)

The MID plot permits the identification of rock mineralogy orlithology through a comparison of neutron, density and sonicmeasurements.

To use the MID plot, three steps are required. First, an appar-ent crossplot porosity must be determined using the appropriate

neutron-density and empirical (red curves) neutron-sonic cross-plot (Charts CP-1 through CP-7). For any data plotting above thesandstone curve on these charts, the apparent crossplot porosityis defined by a vertical projection to the sandstone curve.

Continued on next page

Page 78: Log Interpretation

Crossplots for Porosity, Lithology and SaturationSchlumberger

4-23

CP

3 2.9 2.8 2.7 2.6 2.5 2.4 2.3 2.2 2.1 2

350 325 300 275 250 225 200 175 150 125 100 3

2.9

2.8

2.7

2.6

2.5

2.4

2.3

2.2

2.1

2

350

325

300

275

250

225

200

175

150

125

100

Fluid density = 1.0

ρmaa, apparent matrix density (g/cm3)�

ρ b, b

ulk

dens

ity (

g/cm

3 )

t, in

terv

al tr

ansi

t tim

e (µ

sec/

m)

t maa, apparent matrix transit time (µsec/m)

40

30

20

10

10

20

30

40

Apparent crossplot porosity

Densit

y-ne

utro

n

Neutro

n-so

nic

© Schlumberger

Next, enter the appropriate CP-14 chart with the interval tran-sit time. Go to the apparent crossplot porosity previously foundon the appropriate neutron-sonic crossplot chart. This defines anapparent matrix interval transit time, t maa. Similarly, enter thesame chart with the bulk density, ρb. Go to the apparent crossplotporosity previously found on the appropriate density-neutroncrossplot chart. This defines an apparent matrix grain density,ρmaa.

Finally, the crossplot of the apparent matrix interval transit

time and apparent grain density on the MID plot (Chart CP-15)identifies the rock mineralogy by its proximity to the labeledpoints on the plot.

The presence of secondary porosity in the form of vugs orfractures produces displacements parallel to the t maaaxis. Thepresence of gas displaces points as shown on the MID plot.Identification of shaliness is best done by plotting some shalepoints to establish the shale trend lines.

Continued on next page

Determination of Apparent Matrix Parameters fromBulk Density or Interval Transit Time and Apparent Total Porosity CP-14m

(Metric)

Page 79: Log Interpretation

Crossplots for Porosity, Lithology and SaturationSchlumberger

4-24

CP

30 40 50 60 70

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3.0

3.1

t maa (µsec/ft)

ρ maa

(g

/cm

3 )

ρmaa versus t maa

Calcite

Dolomite

Anhydrite

Quartz

Gas dire

ction

Salt SNP

Salt CNL*

© Schlumberger

Matrix Identification (MID) PlotCP-15

(English)

Examples: Level 1 Level 2

t = 67 µsec/ft t = 63 µsec/ft

ρb = 2.04 g/cm3 ρb = 2.46 g/cm3

φCNL = –3 φCNL = 24 p.u.

ρf = 1.0 g/cm3

giving φaND = –1 φaND = 21

φaNS= –1 φaNS= 21

and t maa= 66 µsec/ft t maa= 43.5 µsec/ft

ρmaa= 2.03 g/cm3 ρmaa= 2.85 g/cm3

From the MID plot, Level 1 is identified as salt and Level 2as dolomite.

Continued on next page

Page 80: Log Interpretation

Crossplots for Porosity, Lithology and SaturationSchlumberger

4-25

CP

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3.0

3.1

100 120 140 160 180 200 220 240

t maa (µsec/m)

ρ maa

(g

/cm

3 )

Calcite

Dolomite

Anhydrite

Quartz

Gas dire

ction

Salt SNP

Salt CNL*

ρmaa versus t maa

© Schlumberger

For fluid density, ρf (other than 1.0 g/cm3), correct (multiply)the apparent total porosity by the multiplier in the table beforeentry into the density portion of the chart.

For more information see Reference 8.

Matrix Identification (MID) PlotCP-15m(Metric)

ρf Multiplier

1.0 1.001.05 0.981.1 0.951.15 0.93

Page 81: Log Interpretation

Crossplots for Porosity, Lithology and SaturationSchlumberger

4-26

CP

1.9

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3.00 1 2 3 4 5 6

Pe, photoelectric factor

ρ b, b

ulk

dens

ity (

g/cm

3 )

4030

2010

0

4030

2010

0

0

40

30

20

100

0

Qua

rtz

sand

ston

e

Dol

omite

Cal

cite

(lim

esto

ne)

Sal

t

Anh

ydrit

e

Fresh water, liquid-filled holes (ρf = 1.0)

*Mark of Schlumberger© Schlumberger

Porosity and Lithology Determinationfrom Litho-Density* Log CP-16

For more information see Reference 27.

Page 82: Log Interpretation

Crossplots for Porosity, Lithology and SaturationSchlumberger

4-27

CP

CP-17

1.9

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3.00 1 2 3 4 5 6

Pe, photoelectric factor

ρ b, b

ulk

dens

ity (

g/cm

3 )

4030

2010

0

4030

2010

0

0

Qua

rtz

sand

ston

e

Dol

omite

Anh

ydrit

e

40

30

20

100

Cal

cite

(lim

esto

ne)

0Sal

t

Salt water, liquid-filled holes (ρf = 1.1)

*Mark of Schlumberger© Schlumberger

For more information see Reference 27.

Porosity and Lithology Determinationfrom Litho-Density* Log

Page 83: Log Interpretation

Crossplots for Porosity, Lithology and SaturationSchlumberger

4-28

CP

Chart CP-18 provides clay mineralogy information using NGSNatural Gamma Ray Spectrometry and Litho-Density measure-ments. Because the porosity and the composition of many clayminerals may vary, the minerals plot on these crossplots not asunique points but as general areas.

After environmental correction, the appropriate parametersare plotted to provide qualitative information about themineralogy.

Example: ThNGScor= 10.6 ppm

UNGScor= 4.5 ppm

KNGScor= 3.9%

Pe = 3.2

giving Th/K = 10.6/3.9 = 2.7

Plotting these parameters on Chart CP-18 suggests that theclay mineral is illite.

*Mark of Schlumberger

Mineral Identification from Litho-Density* Logand NGS* Natural Gamma Ray Spectrometry Log

Page 84: Log Interpretation

Crossplots for Porosity, Lithology and SaturationSchlumberger

4-29

CP

K, potassium concentration (%)

Th/K, thorium/potassium ratio

P e, p

hoto

elec

tric

fact

orP e

, pho

toel

ectr

ic fa

ctor

Glauconite

Glauconite

Chlorite

Chlorite

Biotite

Biotite

Illite

Illite

Muscovite

Muscovite

Montmorillonite

Montmorillonite

Kaolinite

Kaolinite

Mixed layer

0 2 4 6 8 10

0.1 0.2 0.3 0.6 1 2 3 6 10 20 30 60 100

10

8

6

4

2

0

10

8

6

4

2

0

*Mark of Schlumberger© Schlumberger

Mineral Identification from Litho-Density* Logand NGS* Natural Gamma Ray Spectrometry Log CP-18

Page 85: Log Interpretation

Crossplots for Porosity, Lithology and SaturationSchlumberger

4-30

CP

Radioactive minerals often occur in relatively small concentra-tions in sedimentary rocks. Even shales typically contain only30 to 70% radioactive clay minerals.

Unless there is a complex mixture of radioactive mineralsin the formation, Chart CP-19 can be used to identify the morecommon ones. The ratio of thorium to uranium activity—the

thorium/potassium ratio, Th/K—does not vary with mineralconcentration. A sandstone reservoir with varying amounts ofshaliness, with illite as the principal clay mineral, usually plotsin the illite segment of the chart, with Th/K between 2.0 and 2.5.Less shaly parts of the reservoir plot closer to the origin, andmore shaly parts plot closer to the 70% illite area.

Mineral Identification fromNGS* Natural Gamma Ray Spectrometry Log CP-19

0 1 2 3 4 5

Potassium (%)

25

20

15

10

5

0

Tho

rium

(pp

m)

Mixed layer clay

IlliteMicas

Glauconite

Potassium evaporites, ~30% feldspar

~30% glauconite

~70% illite

100% illite point

~40% mica

Mon

tmor

illoni

te

Chlorite

Kaolinite

Possible 100% kaolinite, montmorillonite, illite “clay line”

Th/

K: 2

5

Th/K

: 12

Th/K: 3.5

Th/K: 2.0

Th/K: 0.6

Th/K: 0.3Feldspar

Hea

vy th

oriu

m-b

earin

g m

iner

als

*Mark of Schlumberger© Schlumberger

Page 86: Log Interpretation

Crossplots for Porosity, Lithology and SaturationSchlumberger

4-31

CP

6 5 4 3 2 1 4 6 8 10 12 14

3.0

2.5

2.0

%0

10

20

30

40

Pe, photoelectric factor

ρ b, b

ulk

dens

ity (

g/cm

3 )

φ ta,

app

aren

t tot

al p

oros

ity (

%)

Umaa, apparent matrix volumetric photoelectric factor

Fresh water (0 ppk), ρf = 1.0, Uf = 0.398 Salt water (200 ppk), ρf = 1.11, Uf = 1.36

© Schlumberger

Determination of Apparent MatrixVolumetric Photoelectric Factor CP-20

Page 87: Log Interpretation

Crossplots for Porosity, Lithology and SaturationSchlumberger

4-32

CP

Plot CP-21 identifies rock mineralogy through a comparison ofapparent matrix grain density and apparent volumetric photo-electric factor.

To use, apparent matrix grain density, ρmaa, and apparentvolumetric photoelectric factor, Umaa, are entered in ordinateand abscissa, respectively, on Plot CP-21. Rock mineralogy isidentified by the proximity of the plotted data point to the labeledpoints on the plot.

To determine apparent matrix grain density, an apparent totalporosity must first be determined (using, for example, a neutron-density crossplot). Then, Chart CP-14 may be used with bulkdensity, ρb, to define the apparent matrix grain density, ρmaa.

To find the apparent matrix volumetric photoelectric factor,Umaa, enter Nomograph CP-20 with the photoelectric factor, Pe;

go vertically to the bulk density, ρb; then, go horizontally acrossto the total porosity, φt; and finally, go vertically downward todefine the matrix volumetric photoelectric factor, Umaa.

Example: Pe = 3.65

ρb = 2.52 g/cm3 (ρf = 1.0 g/cm3)

φta = 16%

giving ρmaa= 2.81 g/cm3 (from Chart CP-14)

and Umaa= 10.9

Plotting these values indicates the level to be a mixture ofapproximately 60% dolomite and 40% limestone.

For more information see Reference 27.

Lithology Identification Plot

Page 88: Log Interpretation

Crossplots for Porosity, Lithology and SaturationSchlumberger

4-33

CP

Umaa, apparent matrix volumetric photoelectric factor

ρ maa

, app

aren

t mat

rix g

rain

den

sity

(g

/cm

3 )

2 4 6 8 10 12 14 16

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3.0

3.1

Salt

K-Feldspar

Quartz

Dolomite

Kaolinite

Illite

Anhydrite

Heavy minerals

Barite

Calcite

Gas

dire

ctio

n

% Calcite

% Dolomite

% Quartz

20

6080

40

60

40

20

80

60

40

20

80

ρmaa versus Umaa

© Schlumberger

Lithology Identification PlotCP-21

Page 89: Log Interpretation

Crossplots for Porosity, Lithology and SaturationSchlumberger

4-34

CP

Porosity Estimation in Hydrocarbon-Bearing FormationsFrom neutron, density and Rxo logs CP-9

–5

–4

–3

–2

–1

0100 80 60 40 20 0

Shr (%)

∆φ (p.u.)

φDcor

50

40

30

20

10

0

φ1

50

40

30

20

10

0

φcor

(SNP)

50

40

30

20

10

0

φcor

(CNL*)

50

40

30

20

10

0

(p.u.)

This nomograph estimates porosity in hydrocarbon-bearing for-mations using neutron, density and Rxo logs. The neutron anddensity logs must be corrected for environmental effects andlithology prior to entry into the nomograph. The chart includesan approximate correction for excavation effect, but if ρh < 0.25(gases), the chart may not be accurate in some extreme cases:very high values of porosity (> 35 p.u.) coupled with medium tohigh values of Shr, and for Shr ≈ 100% for medium to high valuesof porosity.

To use, connect the apparent neutron porosity point on theappropriate neutron stem with the apparent density porosity onthe density stem with a straight line. From the intersection of thisline with the porosity, φ1, stem, draw a line to the origin of theShr versus ∆φchart. Entering this chart with the hydrocarbonsaturation, Shr, (Shr = 1 – Sxo) defines a porosity correction factor∆φ. This correction factor algebraically added to porosity, φ1,gives the true porosity.

Example: φCNLcor = 12 p.u. giving φ1 = 32.2 p.u.

φDcor = 38 p.u. and ∆φ= –1.6 p.u.

Shr = 50% Therefore,φ = 32.2 – 1.6 = 30.6 p.u.

*Mark of Schlumberger© Schlumberger

Page 90: Log Interpretation

Crossplots for Porosity, Lithology and SaturationSchlumberger

4-35

CP

1.0

0.8

0.6

0.4

0.2

00 20 40 60 80 100

0.8ρh

0.7

0.6

0.5

0.4

0.3

0.20.10

Shr

φSNPcor

φDcor

Estimation of Hydrocarbon DensityFrom neutron and density logs CP-10

These charts estimate the density of the saturating hydrocarbonfrom a comparison of neutron and density measurements, andthe hydrocarbon saturation in the portion of the rock investigatedby the neutron and density logs (invaded or flushed zone). Theneutron log (either CNL* or SNP log) and the density log mustbe corrected for environmental effect and lithology before entryinto the charts.

To use, enter the appropriate chart with the ratio of neutronporosity to density porosity, and the hydrocarbon saturation. Theintersection defines the hydrocarbon density in g/cm3.

Example: φCNLcor = 15 p.u.

φDcor = 25 p.u.

and Shr = 30%

Therefore,ρh = 0.28 g/cm3

Charts CP-9 and CP-10 have not been updated for CNL logsrun after 1986 or labeled TNPH; approximations may thereforebe greater with more recent logs. For approximate results withAPLC porosity (from IPL*logs), use Charts CP-9 and CP-10 forSNP logs.

*Mark of Schlumberger© Schlumberger

1.0

0.8

0.6

0.4

0.2

0

φCNLcor

φDcor

0 20 40 60 80 100

0.8ρh

0.7

0.6

0.5

0.4

0.30.2

0.10

Shr

Page 91: Log Interpretation

Crossplots for Porosity, Lithology and SaturationSchlumberger

4-36

CP

Based on reservoir depth and conditions, enter the appropriatechart with matrix-corrected porosity values. Average watersaturation in the flushed zone, Sxo, and porosity are derived. Thischart assumes fresh water and gas of composition C1.1H4.2, and itincludes correction of the neutron log for “excavation effect.”

For more information see Reference 6.

The conditions represented by the curves are listed in thetable below.

Example: φD reads 25%, and φN reads 10% in a low-pressure,shallow (4000-ft) reservoir.

Therefore,φ= 20%, and Sxo = 62%.

Gas-Bearing Formations—Porosity from Density and Neutron Logs CP-5

φN, neutron-derived porosity (p.u.)

φ D, d

ensi

ty-d

eriv

ed p

oros

ity (

p.u.

)

50

40

30

20

10

00 10 20 30 40

Sxo

Sxo

15

20

Porosity

30

80

35

025

40

55

15

10

20

100

30

25

60

40

60

20

100

80

35

40

20

0

10

For shallow reservoirs, use blue curves.

For deep reservoirs, use red curves.

© Schlumberger

Depth Pressure Temperature Pw IHw Pg IHg

Shallow reservoirs (blue) ~2000 psi ~120°F[~14,000 kPa] [~50°C] 1.00 1.00 0 0

Deep reservoirs (red) ~7000 psi ~240°F[~48,000 kPa] [~120°C] 1.00 1.00 0.25 0.54

Page 92: Log Interpretation

Crossplots for Porosity, Lithology and SaturationSchlumberger

4-37

Sw

2.65

2.70

2.75

2.80

2.85

2.90

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

Neu

tron

por

osity

inde

x (c

orre

cted

for

litho

logy

)G

rain

den

sity

(ρ m

a)

2.6 2.5 2.4 2.3 2.2 2.1 2.0 1.9 1.8

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Sandstone Limy sandstone Limestone

Dolomite

2.8 2.7 2.6 2.5 2.4 2.3 2.2 2.1 2.0 1.9

Apparent bulk density from density log

φ, porosity (p.u.)

Density and hydrogen index of gas assumed to be zero

Use only if no shale is present

Use only if no oil is present

100

90

80

70

60

50

40

30

20

10

0

Gas

sat

urat

ion,

Sg

(%)

10,000 4000 2000 1000 400 300 200 150

100

70 60 50

40

30

20

15 14 13 12 11

Rt

Rw

Porosity and Gas Saturation in Empty HolesSw-11

Porosity, φ, and gas saturation, Sg, can be determined from thischart using either the combination of density-neutron measure-ments or density-resistivity measurements. To use, enter thechart vertically from the intersection of the apparent bulk densityand appropriate grain density values. The intersection of this linewith either the neutron porosity (corrected for lithology) or theRt/Rw ratio (true resistivity/connate water resistivity) definesactual porosity and gas saturation.

With all three measurements (density, neutron and resistivity),oil saturation can be determined as well. To do so, enter the chartwith apparent bulk density and neutron porosity (as describedabove) to define porosity and gas saturation. Moving along thedefined porosity to its intersection with the Rt/Rw ratio gives the

total hydrocarbon saturation. For more information seeReference 14.

Example: In a limy sandstone (ρma = 2.68)ρb = 2.44 g/cm3

φN = 9 p.u.Rt = 74Rw = 0.1

Therefore, Rt/Rw = 740and φ= 12 p.u.

Sg = 25%Sh = 70% (total hydrocarbon saturation)So = 70 – 25 = 45%Sw = 100 – 70 = 30%

© Schlumberger

Page 93: Log Interpretation

K

Crossplots for Porosity, Lithology and SaturationSchlumberger

4-38

Permeability from Porosity and Water SaturationK-3

60

50

40

30

20

10

00 5 10 15 20 25 30 35 40

φ, porosity (p.u.)

Sw

i, w

ater

sat

urat

ion

abov

e tr

ansi

tion

zone

(%

)

φ Swi

0.12

0.10

0.08

0.06

0.04

0.02

0.01

50002000

1000500

200

100

50

20

10

5

2

1.0

0.5

0.2

0.10.01

k, permeability (md)

© Schlumberger

2.0

1.8

1.6

1.4

1.2

1.0

0.80 20 40 60 80 100

Irreducible water saturation, Swi (%)

Cor

rect

ion

fact

or, C

Pc = 200

Pc = 100

Pc = 10 Pc = 0

Pc = 40

Pc =h(ρw – ρo)

2.3

Charts K-3 and K-4 provide an estimate of permeability forsands, shaly sands or other hydrocarbon-saturated intergranularrocks at irreducible water saturation, Swi. Both charts are based on empirical observations and are similar in form to a general expression proposed by Wyllie and Rose (1950): k1⁄ 2 = (cφ/Swi) + C′.

Chart K-3 presents the results of one study; the relationshipobserved was k1⁄ 2 = 100 φ2.25/Swi. Chart K-4 presents the results ofanother study; the relationship observed was k1⁄ 2 = 70 φe

2[(1 – Swi)/Swi]. Both charts are valid only for zones at irreducible water saturation.

To use, porosity, φ, and irreducible water saturation, Swi, areentered. Their intersection defines the intrinsic (absolute) rock

Continued on next page

Page 94: Log Interpretation

Crossplots for Porosity, Lithology and SaturationSchlumberger

4-39

permeability. A medium-gravity oil is assumed. If the saturatinghydrocarbon is other than a medium-gravity oil, a correctionfactor based upon fluid densities, ρw and ρh, and elevation abovethe free water level, h, should be applied to the irreducible watersaturation prior to entry into Chart K-3 or K-4. The inset figureprovides this correction factor.

Example: φ= 23%

Swi = 30%

Gas saturation (ρh = 0.3 g/cm3, ρw = 1.1 g/cm3)

h (elevation above water) ≈ 120 ft

Therefore,

C′ correction factor = 1.08

Corrected S′wi for chart entry = 1.08 (30) = 32.4%

giving k ≈ 130 md (Chart K-3)

or k ≈ 65 md (Chart K-4)

These charts can also be used to recognize zones at irre-ducible water saturation. Over intervals at irreducible watersaturation, the product of porosity and water saturation isgenerally a constant; thus, data points from levels at irreduciblewater saturation should plot in a fairly coherent pattern on orparallel to one of the φ• Sw lines.

For more information see References 16, 17, 21 and 22.P

hc

w h=−

=−

=( )

.

( . . )

.

ρ ρ2 3

120 1 1 0 3

2 342

Permeability from Porosity and Water SaturationK-4

40

35

30

25

20

15

10

5

00 10 20 30 40 50 60 70 80 90 100

Swi, water saturation above transition zone (%)

φ, p

oros

ity (

p.u.

)

φ Swi

k, permeability (m

d)

5000

1000

2000

500

200

50

2010

100

5

1

0.01

0.02

0.04

0.06

0.08

0.10

0.12

0.100.01

© Schlumberger

K

Page 95: Log Interpretation

Electromagnetic Propagation and MicroresistivitySchlumberger

5-1

EPT

EPT* Propagation Time for NaCl SolutionsEPTcor-1

90

80

70

60

50

40

30

200 50 100 150 200 250

Equivalent water salinity (kppm or g/kg NaCl)

t pw (

nsec

/m)

Matrix propagation time (tpma)

App

aren

t mat

rix d

ensi

ty (

ρ maa

)

7 8 9

2.6

2.7

2.8

2.9

3.0

Quartz

Dolomite

Anhydrite

Calcite

120°C250°F

100°C200°F

80°C175°F

40°C100°F

150°F  60°C

  75°F  20°C

125°F

EPT Matrix Propagation Travel Time

*Mark of Schlumberger© Schlumberger

Page 96: Log Interpretation

Electromagnetic Propagation and MicroresistivitySchlumberger

5-2

Sxo

Flushed Zone Saturation from EPT* Propagation TimeSxo-1

This nomograph defines water saturation in the rock immediatelyadjacent to the borehole, Sxo, using the EPT* propagation timemeasurement, tpl. It requires knowledge of reservoir lithology ormatrix propagation time (tpma), the saturating water propagationtime (tpw), porosity and the expected hydrocarbon type.

Water propagation time, tpw, can be estimated from theappropriate chart on the previous page as a function of equiva-lent water salinity and formation temperature. Rock lithologymust be known from other sources. For rock mixtures the charton the previous page can be used to estimate matrix propagationtime, tpma, when the apparent matrix density, ρmaa, is known. Theestimation requires some knowledge of the expected mineralmixture.

To use the nomograph, tpl is entered on the left grid; followthe diagonal lines to the appropriate tpmavalue, then horizontalto the right edge of the grid. From this point, a straight line isextended through the porosity to the center grid; again follow

thediagonal lines to the appropriate tpmavalue, then horizontalto the right edge of the grid. From this point, extend a straightline through the intersection of tpw and hydrocarbon type pointto the Sxo axis.

For more information see Reference 25.

Example: tpl = 10.9 nsec/m

φ= 28%

Limy sandstone with ρmaa= 2.67 g/cm3

Water salinity ≈ 20 kppm

BHT = 150°F

Gas saturation expected

giving tpma= 7.8 nsec/m (sand-lime mixture)

tpw = 32 nsec/m

and Sxo = 53%

7 8 9 10tpma

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

SD DOL LS Lithology

7 8 9 10tpma

Sxo (%)

SD DOL LS Lithology

50454035

3025

2015

105

t pl (

nsec

/m)

10.9

100

90

80

70

60

50

40

30

20

10

0

53%

t pw21

25

30

3540

50

60708090

GasO

ilFo

rmat

ion

Poro

sity

*Mark of Schlumberger© Schlumberger

Page 97: Log Interpretation

Electromagnetic Propagation and MicroresistivitySchlumberger

5-3

EPT

Electromagnetic Propagation

EPT* Attenuation for NaCl SolutionsSchlumberger

EPTcor-2

0 5 10 15 20 25 30

Uncorrected tpl (nsec/m)

0 50 100 150 200 250

Equivalent water salinity (kppm or g/kg NaCl)

Cor

rect

ion

to A

EP

T (

dB/m

)

–40

–60

–80

–100

–120

–140

–160

–180

–200

120°C250°F100°C200°F  80°C175°F

  40°C100°F

150°F  60°C

  75°F  20°C

125°F

5000

4000

3000

2000

1000

0

Aw (

dB/m

)

EPT-D Spreading Loss

*Mark of Schlumberger© Schlumberger

Page 98: Log Interpretation

Electromagnetic Propagation and MicroresistivitySchlumberger

5-4

EPT

EPT-G Mudcake Correction Charts for Water-Base MudEMD-L (endfire array) EPTcor-3a

The EPT-G mudcake charts are used to correct the raw log traveltimes (TPL) and log attenuations (EATT) for the effects of mud-cakes on the tool responses. (Caution: Do not use TPPW andEAPW as inputs into these charts.) The charts also correct thelog attenuations for spreading losses so that no further correc-tions are required. The chart outputs are the true formation travel

times (tpl) and attenuations (Ac), which are used to evaluate theflushed zone. For example, these latter quantities are the inputsto petrophysical models such as the Complex Refractive IndexMethod (CRIM).

Continued on next page

25

20

15

10

5100 200 300 400 500 600 700 800

EATT (dB/m)

TP

L (n

sec/

m)

25

20

15

10

5100 200 300 400 500 600 700 800

EATT (dB/m)

TP

L (n

sec/

m)

tpl (nsec/m) hmc = 0.5 in. [1.27 cm]

Ac (dB/m)

22

20

18

16

14

12

10

8

7.2

400 450 500

0 50 100 150 200 250 300 350

tpl (nsec/m) hmc = 0.25 in. [0.635 cm]

Ac (dB/m)

22

20

18

16

14

12

10

8

400 450 500

0 50 100 150 200 250 300 350

Smf = 27 kppm; temperature = 125°F [52°C]

7.2

© Schlumberger

Page 99: Log Interpretation

Electromagnetic Propagation and MicroresistivitySchlumberger

5-5

EPT

The true travel times, tpl, can also be used in nomograms suchas Sxo-1 to determine flushed-zone water saturations, Sxo. Thecharts displayed here are for water-base muds and are applicable,as indicated, for the EMD-L and BMD-S arrays. The chartsarevalid for the indicated mudcake thicknesses (hmc), borehole

temperatures and mud-filtrate salinities in kppm by weightNaCl (Smf). The mudcake effects depend on hmc and the contrastbetween the mudcake and formation dielectric properties.

Continued on next page

EPT-G Mudcake Correction Charts for Water-Base MudEMD-L (endfire array) EPTcor-3b

25

20

15

10

5100 200 300 400 500 600 700 800

30

25

20

15

10

5100 200 300 400 500 600 700 800 900 1000

EATT (dB/m)

Smf = 10 kppm; temperature = 125°F [51.67°C]

EATT (dB/m)

TPL (nsec/m)

TPL (nsec/m)

400 450 500

0 50 100 150 200 250 300 350

20

18

16

14

12

10

22

7.28

7.2

20

18

16

14

12

10

8

22

0 50 100 150 200 250 300 350

450500

400

tpl (nsec/m)

hmc = 0.5 in. [1.27 cm]

Ac (dB/m)

tpl (nsec/m) hmc = 0.25 in. [0.635 cm]

Ac (dB/m)

© Schlumberger

Page 100: Log Interpretation

Electromagnetic Propagation and MicroresistivitySchlumberger

5-6

EPT

EPT-G Mudcake Correction Charts for Water-Base MudBMD-S (broadside array) EPTcor-4a

In general, low-conductivity muds produce the largest effectssothat increases in temperature, mudcake porosity and salinitygenerally reduce the mudcake effects. The charts displayed hereassume a mudcake porosity of 40 p.u. (For more information see

Reference 31.) The mudcake thicknesses are estimated from acaliper ora Microlog using Chart Rxo-1.

Continued on next page

25

20

15

10

5100 200 300 400 500 600 700 800

30

25

20

15

10

5100 200 300 400 500 600 700 800

Smf = 27 kppm; temperature = 125°F [51.67°C]

EATT (dB/m)

TPL (nsec/m)

TPL (nsec/m)

EATT (dB/m)

400 500450

0 50 100 150 200 250 300 350

7.2

20

18

16

14

12

10

8

22tpl (nsec/m)

tpl (nsec/m)

Ac (dB/m)

Ac (dB/m)

hmc = 0.5 in. [1.27 cm]

hmc = 0.25 in. [0.635 cm]

400 450 500

0 50 100 150 200 250 300 3507.2

20

18

16

14

12

10

8

22

© Schlumberger

Page 101: Log Interpretation

Electromagnetic Propagation and MicroresistivitySchlumberger

5-7

EPT

Example: EMD-L array

hmc = 0.5 in. (estimated from bit size and caliper)

Borehole temperature = 125°F

Mud filtrate salinity = 27,000 ppm NaCl

Log TPL = 20 nsec/m

Log EATT = 500 dB/m

Entering Chart EPTcor-3a with the above log values, one reads a true formation travel time, tpl = 19.7 nsec/m, and true formation attenuation, Ac = 307 dB/m.

EPT-G Mudcake Correction Charts for Water-Base MudBMD-S (broadside array) EPTcor-4b

30

25

20

15

10

5

0

25

20

15

10

5 100 200 300 400 500 600 700 800 900 1000 1100

100 200 300 400 500 600 700 800 900 1000 1100 1200

Smf = 200 kppm; temperature = 200°F [93.33°C]

TPL (nsec/m)

TPL (nsec/m)

EATT (dB/m)

EATT (dB/m)

tpl (nsec/m)

t pl (

nsec

/m)

Ac (dB/m)

hmc = 0.5 in. [1.27 cm]

Ac (dB/m)

hmc = 0.25 in. [0.635 cm]

7.2

20

18

16

14

12

10

8

22

400 450 500

650 700

50 100 150 200 250 300 3500

550 600

7.2

20

18

16

14

12

10

8

22

400 450 500

650 700

0 50 100 150 200 250 300 350

550 600

© Schlumberger

Page 102: Log Interpretation

Electromagnetic Propagation and MicroresistivitySchlumberger

5-8

Sxo

Flushed Zone Saturation from EPT* AttenuationSxo-2

The nomograph defines water saturation in the rock immediatelyadjacent to the borehole, Sxo, using the EPT attenuation measure-ment. It requires knowledge of saturating fluid (usually mudfiltrate) attenuation (Aw), porosity and the EPT attenuation(AEPTcor) corrected for spreading loss.

Fluid attenuation (Aw) can be estimated from Chart EPTcor-2by knowing the equivalent water salinity and formation tempera-ture. EPT-D spreading loss is alsodetermined from ChartEPTcor-2 based on the uncorrected EPT tpl measurement. Thespreading loss correction algebraically added to the EPT-Dattenuation measurement gives the corrected EPT attenuation,AEPTcor.

These values, together with porosity, inserted into the nomo-graph lead to the flushed zone water saturation, Sxo.

Example: AEPT = 250 dB/m

tpl = 10.9 nsec/m

φ= 28%

Water salinity = 20 kppm

BHT = 150°F

giving Spreading loss = –82 dB/m

AEPT = 250 – 82 = 168 dB/m

Aw = 1100 dB/m

and Sxo = 56%

Aw(dB/m)

AEPTcor(dB/m)

Sxo(%)

φ (p.u.)

6000

5000

4000

3000

2000

1000 900 800 700 600

500

400

300

200

100 90 80

1

2

3 4 5

10

1520

30 40

2

34

68

1

10

20

3040

6080100

200

300

400

6008001000

5

6

7

89 10

20

30

40

50

60

70

80 90 100

*Mark of Schlumberger© Schlumberger

Page 103: Log Interpretation

Electromagnetic Propagation and MicroresistivitySchlumberger

5-9

Rxo

Microlog Interpretation ChartRxo-1

Enter the chart with the ratios R1×1/Rmc and R2/Rmc. The pointof intersection defines the Rxo/Rmc ratio and the mudcake thick-ness, hmc. Knowing Rmc, Rxo can be calculated.

For hole sizes other than 8 in. [203 mm], multiply R1×1/Rmc

by the following factors before entering the chart: 1.15 for 43⁄4-in. [120-mm] hole, 1.05 for 6-in. [152-mm] hole, and 0.93for 10-in. [254-mm] hole.

Note: An incorrect Rmc will displace the points in the chartalong a 45°line. In certain cases this can be recognized when

themudcake thickness is different from direct measurementby the microcaliper. To correct, move the plotted point at 45°to intersect the known hmc. For this new point, read Rxo/Rmc

from the chart and R2/Rmc from the bottom scale of the chart.

R RR R

R Rxoxo mc

mc

=

2

2

/

/

1 1.5 2 3 4 5 6 7 8 9 10 15 20

20

15

10

9

8

7

6

5

4

3

2

1.5

1

1.5

2

2.5

3

3.5

44.

55

6

7

8

9

10

12

15

20 3050

100

200 00

R2

Rmc

R1 × 1

Rmc

8-in. [203-mm] hole

Values

of R

xo/R m

c

Zero

h mc

Zero

h mc

1⁄16 in. [1.5 mm]

1⁄8 in. [3 mm]

1⁄4 in. [6.4 mm]

3⁄8 in. [9.5 mm]

1⁄2 in. [13 mm]

5⁄8 in. [16 mm]

3⁄4 in. [19 mm]

1 in. [25.4 mm]

© Schlumberger

Page 104: Log Interpretation

Electromagnetic Propagation and MicroresistivitySchlumberger

5-10

Rxo

Charts Rxo-2 and Rxo-3 correct microresistivity measurementsfor mudcake effect. To use, enter the ratio of the microresistivitylog reading divided by the mudcake resistivity into the abscissaof the appropriate chart. Go vertically to the mudcake thickness;

the ratio of the corrected microresistivity value to the microresis-tivity log reading is then given on the ordinate. Multiplication ofthis ratio by the microresistivity log reading yields the correctedmicroresistivity.

Continued on next page

Microlaterolog and Proximity LogMudcake Correction Rxo-2

Microlaterolog

(Type VIII hydraulic pad)

RMLL/Rmc

RM

LLco

r/RM

LLR

pcor

/Rp

Rp/Rmc

Proximity Log

(Isotropic mudcake)

1 2 5 10 20 50 100

1 2 5 10 20 50 100

3.0

2.0

1.0

0.7

3.0

2.0

1.0

0.8

1 in. [25.4 mm]

1 in. [25.4 mm]

3⁄4 in. [19 mm]

3⁄4 in. [19 mm]

3⁄8 in. [9.5 mm]

[0 – 6.4 mm]

0 – 1⁄4 in.

1⁄4 – 1⁄2 in. [6.4 – 12.7 mm]

0 in.

hmc

hmc

© Schlumberger

Page 105: Log Interpretation

Electromagnetic Propagation and MicroresistivitySchlumberger

5-11

Rxo

MicroSFL* Mudcake CorrectionRxo-3

Example: RMLL = 9.0 ohm-m

Rmc = 0.15 ohm-m at formation temperature

hmc = 9.5 mm

giving RMLL /Rmc = 9.0/0.15 = 60

Therefore, RMLLcor/RMLL = 2

and RMLLcor = 2(9.0) = 18 ohm-m

RMSFL/Rmc

RM

SF

Lcor

/RM

SF

L

Standard MicroSFL

MSFL version III mudcake correction, 8-in. borehole

1 2 5 10 20 50 100

3.0

2.5

2.0

1.5

1.00.90.80.7

0.6

1 in. [25.4 mm]

3⁄4 in. [19 mm]

1⁄4 in. [6.4 mm]

1⁄8 in. [3.2 mm]

1⁄2 in. [12.7 mm]

hmc

0 in.

RM

SF

Lcor

/RM

SF

L

RMSFL/Rmc

Slimhole MicroSFL

Slim MSFL mudcake correction, 8-in. borehole

1 2 5 10 20 50 100

3.0

2.5

2.0

1.5

1.00.9 0.80.7

0.6

1 in. [25.4 mm] 3⁄4 in. [19 mm]

1⁄2 in. [12.7 mm]

1⁄4 in. [6.4 mm]

0 – 1⁄8 in. [0 – 3.2 mm]

hmc

*Mark of Schlumberger© Schlumberger

Page 106: Log Interpretation

ResistivitySchlumberger

6-1

Rcor

24 22 20

86

1 10 100 1000 10,000

1.5

1

0.5

2

1.5

1

0.51 10 100 1000 10,000

RLLD/Rm

RLLS/Rm

RLL

Sco

r/RLL

SR

LLD

cor/R

LLD

30 28 26 18 16 1412

10

30 28 26 2422

2018

1614

1210

86

Shallow Laterolog

DLT-D/E (LLS) centered, thick beds

Deep Laterolog

DLT-D/E (LLD) centered, thick beds

Hole diameter (in.)

Hole diameter (in.)

Dual Laterolog (D/E) Borehole CorrectionSchlumberger

Rcor-2b

© Schlumberger

Page 107: Log Interpretation

ResistivitySchlumberger

6-2

Rcor

14 1210

8 250200400 350

16Hole diameter (in.)

Hole diameter (mm)

300

(mm)

(in.)

Hole diameter

1 2 5 10 20 50 100 200 500 1000 5000 10,000

1 2 5 10 20 50 100 200 500 1000 5000 10,000

RLLD/Rm

RLL

Sco

r/RLL

S

RLLS/Rm

1.6

1.5

1.4

1.3

1.2

1.1

1.0

0.9

RLL

Dco

r/RLL

D

1.4

1.3

1.2

1.1

1.0

0.9

0.8

0.7

Deep Laterolog

DLS-D/E eccentered (standoff = 1.5 in.), thick beds

Shallow Laterolog

DLS-D/E eccentered (standoff = 1.5 in.), thick beds

350

300

250

200

1614

108

400

12

Schlumberger

Rcor-2cDual Laterolog (D/E) Borehole Correction

© Schlumberger

Page 108: Log Interpretation

Rcor

Resistivity

ARI* Azimuthal Resistivity Imager Borehole CorrectionFor high-resolution LLhr curve

Schlumberger

Rcor-14

6-3

1 10 100 1000 10,000

1.5

1

0.5

Ra/Rm

Rcor/Ra

35⁄8-in. tool centered, active mode, thick beds

6

81012

Hole diameter (in.)

*Mark of Schlumberger© Schlumberger

The high-resolution deep resistivity curve available from theARI Azimuthal Resistivity Imager log is subject to boreholeeffects like any other laterolog measurement. Borehole correc-tion is performed using Chart Rcor-14 in the same way as thedeep and shallow laterolog borehole corrections and themicrolog and MicroSFL* mudcake corrections (see Charts Rxo-2and Rxo-3 for an explanation and illustration).

LLD and LLS curves recorded with the ARI tool are identicalto the curves recorded with a standard dual laterolog tool (type Dor E) and may be corrected for borehole effects using ChartRcor-2b or Rcor-2c.

Page 109: Log Interpretation

ResistivitySchlumberger

6-4

Rcor

Chart Rcor-10 corrects the Dual Laterolog (LLD and LLS) forbed thickness.

To use, laterolog readings should first be corrected for bore-hole effects (see Charts Rcor-2b and -2c). Then, enter ChartRcor-10 with the bed thickness and proceed upward to the properRLL /Rs ratio (apparent laterolog reading corrected for borehole/adjacent-bed resistivity) curve. Read the ratio of the correctedlaterolog value (RLLcor) to the apparent laterolog value (RLL) inordinate.

Example: RLLD = 4.2 ohm-m

RLLS = 3.0 ohm-m

RS ≈ 30 ohm-m

Bed thickness = 6 ft

Given

Therefore,

and RLLDcor = 3.7 ohm-m

RLLScor = 2.4 ohm-m

R

RLLScor

LLS= 0 80.

R

RLLDcor

LLD= 0 88.

R

RLLS

S= =3 0

300 10

..

R

RLLD

S= =4 2

300 14

..

Dual Laterolog (D/E) Bed-Thickness Corrections

Page 110: Log Interpretation

ResistivitySchlumberger

6-5

Rcor

2.4

2.2

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

2.4

2.2

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

1 2 4 6 8 10 20 40 60 80 100

1 2 3 4 5 6 7 8 9 10 20 30

500200

10050

20105

2

10.50.2 0.05

0.010.005

0.02

0.1

500

210

0.1

0.005

0.5

Deep Laterolog

No invasion, semi-infinite shoulder, 8-in. [203-mm] borehole, squeeze: Rt/Rm ≈ 30, antisqueeze: Rs/Rm ≈ 30

Bed thickness

(ft)

(m)

(m)

(ft)

Bed thickness

Shallow Laterolog

No invasion, semi-infinite shoulder, 8-in. [203-mm] borehole, squeeze: Rt/Rm ≈ 30, antisqueeze: Rs/Rm ≈ 30

500200

100

2010

52

50

10.5

0.10.05

0.02 0.01

0.005

0.2

500

0.50.1

102

0.005

RLL

S/R

SR

LLD/R

S

RLLD/RS

RLLS/RS

RLL

Dco

r/RLL

DR

LLS

cor/R

LLS

1 2 4 6 8 10 20 40 60 80 100

1 2 3 4 5 6 7 8 9 10 20 30

Schlumberger

Rcor-10

© Schlumberger

Dual Laterolog (D/E) Bed-Thickness CorrectionsDLS-D/E

Page 111: Log Interpretation

ResistivitySchlumberger

6-6

Rint

The invasion correction charts, sometimes referred to as “tor-nado” or “butterfly” charts, of the next several pages (labeledRint-) are used to define the depth of invasion di, the Rxo/Rt ratioand the true resistivity Rt. All assume a step-contact profileof invasion and that all resistivity measurements have beencorrected, where necessary, for borehole effect and bed thicknessusing the appropriate Rcor- chart, prior to entry.

To use any of these charts, enter the abscissa and ordinatewith the required resistivity ratios. The point of intersectiondefines di, Rxo/Rt and Rt as a function of one resistivitymeasurement.

Saturation determination in clean formations

Either of the chart-derived values of Rt and Rxo/Rt can be usedto find values for Sw. One value, which is designated as SwA

(Sw-Archie), is found using the Archie saturation formula (orChart Sw-1) with the Rt value and known values of FR and Rw.

An alternate Sw value, designated as SwR (Sw-Ratio), is foundusing Rxo/Rt with Rmf/Rw as in Chart Sw-2.

If SwA and SwR are equal, the assumption of a step-contactinvasion profile is indicated to be correct, and all values found(Sw, Rt, Rxo, di) are considered good.

If SwA > SwR, either invasion is very shallow or a transitiontype of invasion profile is indicated, and SwA is considered agood value for Sw.

If SwA < SwR, an annulus-type invasion profile may be indi-cated. In this case a more accurate value of water saturation maybe estimated using the relation:

The correction factor (SwA/SwR)1 ⁄4 can be found from thescale below.

For more information see Reference 9.

S SS

Swcor wAwA

wR=

1

4

Invasion Correction ChartsRint-1

(SwA/SwR) 1⁄4

0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.0

0.80 0.85 0.90 0.95 1.0

SwA/SwR

© Schlumberger

Page 112: Log Interpretation

ResistivitySchlumberger

6-7

Rint

Dual Laterolog–Rxo DeviceDLT-D/E LLD–LLS–Rxo device Rint-9b

1.11.2

1.3 1.41.6

1.8

100

80

60

40

30

20

15

10

8

6

4

3

2

1.5

1

0.8

0.6

0.4

0.3

0.2

RLLD/Rxo

RLLD/RLLS

Thick beds, 8-in. [203-mm] hole, no annulus, no transition zone, Rxo/Rm = 50,

use data corrected for borehole effect

20 30

80

100

120

0.500.75 1.01 1.27

1.522.03

3.04

40 50 60100

70

50

30

20

15

10

7

5

3

1.5

2

0.4

0.2

10060

403020

2.54

1.52

1.010.75

0.50

0.4 0.6 0.8 1.0 1.5 2 3 4 6 8 10 15 20 30 40 50

di (in.)

di (m)

di (in.)

di (m)

Rt

Rxo

Rt

Rxo

Rt

RLLD

© Schlumberger

Page 113: Log Interpretation

Resistivity

Borehole Correction for 16-in. NormalRecorded with induction-electrical log

Schlumberger

Rcor-8

6-8

Rcor

1000

500

200

100

50

20

10

5

2

11 2 5 10 20 50 100 200 500 1000

R16

Rm

R16cor

Rm

6

8

10 12 14 16

150

200

250300350400

Hole diameter dh

(in.)

(mm)

© Schlumberger

Page 114: Log Interpretation

Rcor

1.5

1.4

1.3

1.2

1.1

1.0

0.9

0.81 2 5 10 20 50 100 200 500 1000 5000 10,000

Tool centered, thick beds 11⁄2-in. [38-mm] standoff

400

350300

250

200

150

1614

1210

8

6

(in.) (mm)Hole diameter

RS

FLc

or/R

SF

L

RSFL/Rm

SFL* Spherically Focused Resistivity Borehole CorrectionRecorded with DIS-DB, EA or equivalent

Schlumberger

Rcor-1

6-9

Most resistivity measurements should be corrected for boreholeeffect. Charts Rcor-1 and Rcor-8 provide the borehole correctionfor the 16-in. Normal and the SFL measurements.

To use, the ratio of the resistivity measurement divided bythe mud resistivity, Rm, is entered in abscissa. Proceed to the

proper borehole diameter, and read the correction factor fromthe ordinate.

The chart contains curves for a centered tool and for a toolwith 11⁄2-in. standoff.

*Mark of Schlumberger© Schlumberger

Resistivity

Page 115: Log Interpretation

The hole-conductivity signal is to be subtracted, where neces-sary, from the induction log conductivity reading before othercorrections are made.† This correction applies to all zones(including shoulder beds) having the same hole size and mudresistivity.

† Some induction logs, especially in salty muds, are adjusted so that the holesignal for the nominal hole size is already subtracted out of the recorded curve.Refer to the log heading.

Rcor-4 gives corrections for 6FF40 or ID, IM and 6FF28 forvarious wall standoffs. Dashed lines illustrate the use of the chartfor a 6FF40 sonde with a 1.5-in. standoff in a 14.6-in. borehole,and Rm = 0.35 ohm-m. The hole signal is found to be 5.5 mS/m.If the log reads RI = 20 ohm-m, CI (conductivity) = 50 mS/m.The corrected CI is then (50 – 5.5) = 44.5 mS/m. RI = 1000/44.5= 22.4 ohm-m.

Resistivity

Induction Log Borehole CorrectionSchlumberger

Rcor-4a

6-10

Rcor

–10

–5

0

5

10

15

20

25

30

35

40

45

0.05

0.1

0.2

0.3

0.5

1.0

25

6FF40, ID IM 6FF28

1.5

0

0

0

38

0.5

1.5

512.0

2.564

122.0

51

38

642.5

1.025

Hole diameter (mm)

Hole diameter (in. )

Standoff (in.)

100 150 200 250 300 350 400 450 500

4 6 8 10 12 14 16 18 20

0.01

0.009

0.008

0.007

0.006

0.005

0.004

0.003

0.002

0.001

0

–0.001

Bor

ehol

e ge

omet

rical

fact

or

Hol

e si

gnal

(m

S/m

)

R m (o

hm-m

)

Hole signal = hole GF/Rm

For very low mud resistivities, divide Rm scale by 10 and multiply hole signal scale by 10.

© Schlumberger

Page 116: Log Interpretation

Rcor

Induction Log Correction for Thin Conductive Beds6FF40, ID, 6FF28

Schlumberger

Rcor-7

6-11

Charts Rcor-5, Rcor-6 and Rcor-7 correct the induction logs(6FF40, ID, 6FF28 and IM) for bed thickness. A skin-effectcorrection is included in these charts.

To use, select the chart appropriate for the tool type and forthe adjacent bed resistivity (RS). For Charts Rcor-5 and Rcor-6,enter the bed thickness and proceed upward to the proper Ra

curve. Read the corrected resistivity value (Rt) in ordinate.For Chart Rcor-7, enter the chart with the RID/RS ratio

(apparent ID reading/adjacent bed resistivity) and go upwardto the bed thickness. Read the correction factor (RIDcor/RID)in ordinate.

Example: RID = 4.2 ohm-m

RIM = 6.0 ohm-m

RS = 2.0 ohm-m

Bed thickness = 3 m

giving, from the RS = 2 ohm-m charts,

RIDcor = 4.5 ohm-m

RIMcor = 6.2 ohm-m

For the small-diameter 6FF28, multiply the bed thickness by1.43 before entering these correction charts. For example, in a 7-ft bed, the bed thickness used in correcting the 6FF28 readingis 10 ft (7 × 1.43 = 10).

1.0

0.9

0.8

0.7

0.60 0.2 0.4 0.6 0.8 1.0

41.2

3.51.1

3

0.9

2.5

0.8

2

0.6

0.050.1

0.3

0.4

0.5

0.6

0.8

0.2

RID/Rs

Rt/RsRIDcor/RID

Bed thickness

(ft)(m)

6FF40 or ID Rt > 1 ohm-m

Computed for a shoulder-bed resistivity (SBR) setting of 1 ohm-m (refer to log heading)

© Schlumberger

Resistivity

Page 117: Log Interpretation

For the small-diameter 6FF28 sonde, multiply the bed thicknessby 1.43 before entering these correction charts. For example, in

a7-ft bed, the bed thickness used in correcting the 6FF28reading is 10 ft (7 × 1.43 = 10).

Resistivity

Induction Log Bed-Thickness Correction6FF40 (ID) and 6FF28

Schlumberger

Rcor-5

6-12

Rcor

200

10080

60

40

20

108

6

4

3

2

10.80.6

0.4

0.3

0.2

0.1

200

10080

60

40

20

108

6

4

3

2

10.8

0.6

0.4

0.3

0.2

0.1

0 4 8 12 16 20 24 28

0 4 8 12 16 20 24 28

15

1086

4

2

1

0.5

0.2

0.3

5045403530

25

20

Ra

(ohm-m)Rs = 2 ohm-m

Rs = 10 ohm-mRa

(ohm-m)

RIDcor

RIDcor

Computed for a shoulder-bed resistivity (SBR) setting of 1 ohm-m (refer to log heading)

15

108

6

4

2

1

0.5

0.2

0.3

80706050

40

30

20

(ft)

200

10080

60

40

20

108

6

4

3

2

10.80.6

0.4

0.3

0.2

0.1

200

10080

60

40

20

108

6

4

3

2

10.80.6

0.4

0.3

0.2

0.1

0 4 8 12 16 20 24 28

0 4 8 12 16 20 24 28

15

108

6

4

2

1

0.5

0.2

0.3

5045403530

25

20

Ra

(ohm-m)Rs = 1 ohm-m

Rs = 4 ohm-mRa

(ohm-m)

RIDcor

RIDcor

15

1086

4

2

1

0.5

0.2

0.3

50454035302520

(ft)

(ft) (ft)

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

Bed thickness

Bed thickness

(m)0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

Bed thickness

Bed thickness

(m)

(m) (m)

© Schlumberger

Page 118: Log Interpretation

Resistivity

Induction Log Bed-Thickness CorrectionIM medium induction

Schlumberger

Rcor-6

6-13

Rcor

200

10080

60

40

20

1086

4

3

2

10.8

0.6

0.4

0.3

0.2

0.1

0 4 8 12 16 20 24 28

0 1 2 3 4 5 6 7 8

0 4 8 12 16 20 24 28

0 1 2 3 4 5 6 7 8

Ra

(ohm-m)

RIMcor

Bed thickness

Bed thickness

10

86

4

2

1

0.5

0.2

0.3

5040

30

20

15

6070

(ft)

(m)

(ft)

(m)

200

10080

60

40

20

108

6

4

3

2

10.80.6

0.4

0.3

0.2

0.1

200

1008060

40

20

108

6

4

3

2

10.80.6

0.4

0.3

0.2

0.1

0 4 8 12 16 20 24 28

0 1 2 3 4 5 6 7 8

0 4 8 12 16 20 24 28

0 1 2 3 4 5 6 7 8

Rs = 2 ohm-mRs = 1 ohm-m

Rs = 4 ohm-mRa

(ohm-m)

RIMcor

RIMcor

Bed thickness

Bed thickness

10

86

4

2

1

0.5

0.2

0.3

50

40

30

20

15

6070

8070605040

30

20

15

108

6

4

2

1

0.5

0.2

0.3

100

908070

60

(ft)

(m)

(ft)

(m)

Ra

(ohm-m)

200

10080

60

40

20

108

6

4

3

2

10.8

0.6

0.4

0.3

0.2

0.1Rs = 10 ohm-m

RIMcor

8070605040

30

20

15

108

6

4

2

1

0.5

0.2

0.3

Ra

(ohm-m)

100

© Schlumberger

Page 119: Log Interpretation

The invasion correction charts, sometimes referred to as“tornado” or “butterfly” charts, of the next several pages (labeledRint-) are used to define the depth of invasion di, the Rxo/Rt ratioand the true resistivity Rt. All assume a step-contact profile ofinvasion and that all resistivity measurements have been cor-rected, where necessary, for borehole effect and bed thicknessusing the appropriate Rcor- chart, prior to entry.

To use any of these charts, enter the abscissa and ordinatewith the required resistivity ratios. The point of intersectiondefines di, Rxo/Rt and Rt as a function of one resistivitymeasurement.

Example: RSFL = 25 ohm-m After correctionRIM = 5.9 ohm-m for borehole effect

RID = 4.8 ohm-m and bed thickness

Rm = 0.5 ohm-m

Entering the Rxo/Rm ≈ 100 chart (Chart Rint-2c) with

RSFL/RID = 25/4.8 = 5.2

RIM /RID = 5.9/4.8 = 1.2

yields Rxo/Rt = 8

di = 39 in. or 1 m

Rt/RID = 0.97

Therefore, Rt = RID (Rt/RID) = 4.8 × 0.97 = 4.7 ohm-m

Rxo = Rt (Rxo/Rt) = 4.7 × 8 = 37.6 ohm-m

Use of Chart Rint-2c is confirmed since Rxo/Rm = 75 (i.e., Rxo/Rm ≈ 100).

Saturation determination in clean formations

Either of the chart-derived values of Rt and Rxo/Rt can be usedto find values for Sw. One value, which is designated as SwA

(Sw-Archie), is found using the Archie saturation formula (orChart Sw-1) with the Rt value and known values of FR and Rw.An alternate Sw value, designated as SwR (Sw-Ratio), is foundusing Rxo/Rt with Rmf/Rw, as in Chart Sw-2.

If SwA and SwR are equal, the assumption of a step-contactinvasion profile is indicated as correct, and all values found (Sw,Rt, Rxo and di) are considered good.

If SwA > SwR, either invasion is very shallow or a transition-type invasion profile is indicated, and SwA is considered a goodvalue for Sw.

If SwA < SwR, an annulus-type invasion profile may be indi-cated. In this case a more accurate value of water saturation maybe estimated using the relation:

The correction factor (SwA/SwR)1 ⁄4 can be found from thescale below.

For more information see Reference 9.

S SS

Swcor wAwA

wR=

1

4

Resistivity

Invasion Correction ChartsSchlumberger

Rint-1a

6-14

Rint

(SwA/SwR) 1⁄4

0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.0

0.80 0.85 0.90 0.95 1.0

SwA/SwR

© Schlumberger

}

Page 120: Log Interpretation

ResistivitySchlumberger

6-15

Rint

DIL* Dual Induction–SFL* Spherically Focused Resistivity LogID–IM–SFL Rint-2b

RIM/RID

RSFL/RID

Thick beds, 8-in. [203-mm] hole, skin-effect corrected, DIS-EA or equivalent

1.0 1.1 1.2 1.3 1.4 1.5 1.7 1.9

20

10

9

8

7

6

5

4

3

2

1

4050

60

70

80

90

15

20

0.38

0.50

0.63

1.27 1.521.78

10

25

3030

25

15

70.75

di (m)

1.01

5

3

2

0.95 0.850.75

1.0

20

d i (in.)

Rt

RD

Rxo/Rm ≈ 20

Rxo

Rt

*Mark of Schlumberger© Schlumberger

Page 121: Log Interpretation

ResistivitySchlumberger

6-16

Rint

DIL* Dual Induction–SFL* Spherically Focused Resistivity LogID–IM–SFL Rint-2c

1

2

3

4

5

6

7

8

9

10

20

30

40

1.0 1.1 1.2 1.3 1.4 1.5 1.7 1.9

RSFL/RID

RIM /RID

Thick beds, 8-in. [203-mm] hole, skin-effect corrected, DIS-EA or equivalent

90

25

20

25

20

15

3030

40

80

6050

Rt

RID

Rxo

Rt

10

1.0

0.95 0.90 0.80

1.01

Rxo/Rm ≈ 100

di (in.)

70

2

3

5

7

15

di (m)

2.031.521.27

0.50

0.63

0.75

0.38

*Mark of Schlumberger© Schlumberger

Page 122: Log Interpretation

Deep Induction–SFL* Spherically Focused Resistivity Log–Rxo DeviceID–SFL–Rxo device

Rint-5

Thick beds, 8-in. [203-mm] hole, no annulus, no transition zone,

induction log is skin-effect corrected

50

40

30

20

10

8

6

5

4

3

2

1

0.8

0.6

0.5

0.4

0.3

0.2

0.10.1 0.2 0.3 0.4 0.6 0.8 1 2 3 4 5 6 8 10

Rxo/RSFL

Rxo/RID

0.381.011.27

0.5

0.2

1.78

25

50

40

30

20

15

10

7

5

3

2

No inv

asion

0.50

0.25

Rxo

Rt

0.750.500.63

di (m) 2.54

di (m) 1.010.75

0.33

Rxo

Rt

10 in.

0.25 m

di (in.) 100

70

5040 30 25 20 15

di (in.) 401020

30

*Mark of Schlumberger© Schlumberger

ResistivitySchlumberger

6-17

Rint

Page 123: Log Interpretation

ResistivitySchlumberger

6-18

Rint

To use this chart in an oil-base mud environment, use synthetic Rxo calculated from EPT* or TDT* logs.

DIL* Dual Induction–Rxo DeviceID–IM–Rxo device Rint-10

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

RIM/RID

Rxo/RID

Thick beds, 8-in. [203-mm] hole, no annulus, no transition zone, Rxo ≈ 20,

induction log is skin-effect corrected10090

80

70

60

50

40

30

20

10 9

8

7

6

5

4

3

2

1

3020

0.50 0.75

40

70

50

30

20

15

10

7

5

3

2

1.5

1.01

50

1.27

1.52

1.78

2.03

2.54

3.04

60

70

80

100

120

di (m)

di (in.)

Rxo

Rt

*Mark of Schlumberger© Schlumberger

Page 124: Log Interpretation

ResistivitySchlumberger

6-19

Rcor

SFL* Borehole CorrectionDIT-E Phasor* Induction tool Rcor-3

1.8

1.7

1.6

1.5

1.4

1.3

1.2

1.1

1

0.9

0.80.1 1 10 100 1,000 10,000 100,000

RSFL/Rm

Rcor /RSFL

Tool centered, thick beds

(in.) (mm)

Hole diameter

24

22

20

18

16

14

12

10

8

6

600

550

500

450

400

350

300

250

200

150

*Mark of Schlumberger© Schlumberger

Page 125: Log Interpretation

ResistivitySchlumberger

6-20

Rcor

Borehole corrections can now be based on exact modeling aswell as on traditional experiments. Borehole correction requiresfour inputs: borehole conductivity (CB), formation conductivity(Cf), borehole diameter (D) and standoff (S). For smooth roundholes, correction of Phasor Induction logs may be based onCharts Rcor-4b and Rcor-4c. For cases when Rt/Rm > 100,Chart Rcor-4b is used alone. For cases when Rt/Rm < 100, bothCharts Rcor-4b and Rcor-4c are needed. Each chart gives theborehole geometrical factor (GB) as a function of boreholediameter and standoff. GB is used to get from apparent conduc-tivity (Ca) to corrected conductivity (Ccor) through the correctionformula

(1)

GB is obtained from the charts for the appropriate boreholeand standoff. All conductivities are expressed in mS/m andarecalculated through the formula

(2)

where R is the resistivity in ohm-m.When the formation-to-borehole contrast is low and the bore-

holes are large enough to warrant correction, the followingformula for interpolation between charts gives the approximateborehole geometrical factor:

(3)

(4)

where GBD4b is the ID GF from Chart Rcor-4b and GBD4b

is from Chart Rcor-4c (D refers to ID and M refers to IM). Theparameter AM is derived from the formation and mud conduc-tivities through the formula

(5)

and

(6)

where

(7)

Since Cf represents the formation conductivity just inside theborehole, SFL is the best estimator of this conductivity. Theinterpolated borehole geometrical factor is used in Eq. 1.

Note: All resistivity logs are limited near 2000 ohm-m.Borehole conditions can cause legitimate negative conductivityreadings in conditions such as very resistive formations. Theconductivity channels CIDP and CIMP are not limited and arebetter choices for borehole correction.

All Phasor Induction borehole corrections are applicableto ERL* Enhanced Resolution Logging and ERA* EnhancedResolution Analysis presentations.

Borehole corrections for the Phasor Induction tool are usuallymade in real time. These charts provide only approximate cor-rections for specific cases of Rt/Rm and unique hole diameters.Any discrepancy between real-time (or Data Services Center)and manual chart-based corrections should normally be resolvedin favor of the real-time corrections.

*Mark of Schlumberger

FC C

C CB f

B F

=−+

A F FD = − +0 994584 1 59245 0 663813 2. . .

A F FM = − + −2 58414 3 59087 1 49684 2. . . ,

G A G A GB D B D BID D c D b= + −

4 41( )

G A G A GB M B M BIM M c M b= + −

4 41( )

CR

= 1000

CC C G

Gcora B B

B

=−−1

.

Phasor* Induction Borehole Correction

Page 126: Log Interpretation

ResistivitySchlumberger

6-21

Rcor

Phasor* Induction Borehole CorrectionRcor-4b

The borehole geometrical factor obtained from this chart orChart Rcor-4c can be inserted into Nomograph Rcor-4a with themud resistivity (Rm) to determine the hole signal (in mS/m).

100 200 300 400 500 600 700

4 10 12 14 16 18 20 22 24 26 28

0.015

0.013

0.011

0.009

0.007

0.005

0.003

0.001

–0.001

–0.003

–0.0056 8

IDPH

IMPH

Standoff (in.)Centralized

Centralized

5

4

5

4

0 03

3.5

0.5

2.5

0.5

1.5

1.5

2.5

3.5

21

2

3

Hole diameter (in.)

Hole diameter (mm)

Bor

ehol

e ge

omet

rical

fact

orRt /Rm > 100

1

*Mark of Schlumberger© Schlumberger

Page 127: Log Interpretation

ResistivitySchlumberger

6-22

Rcor

Phasor* Induction Borehole CorrectionRcor-4c

5

4

3

2

1

0

0

1

2

3

4

5

0.050

0.045

0.040

0.035

0.030

0.025

0.020

0.015

0.010

0.005

0.000

–0.005

–0.010

100 200 300 400 500 600 700

4 6 8 10 12 14 16 18 20 22 24 26 28

Hole diameter (in.)

Hole diameter (mm)

Rt /Rm = 1B

oreh

ole

geom

etric

al fa

ctor

IDPH

IMPH

Standoff (in.)

*Mark of Schlumberger© Schlumberger

Page 128: Log Interpretation

ResistivitySchlumberger

6-23

Rcor

Phasor* Induction Bed-Thickness CorrectionDIT-E Phasor Dual Induction–SFL Rcor-9

These charts (Rcor-9) correct the DIT-E Phasor Induction(IM and ID) measurements for bed thickness.

To use, enter the appropriate chart with the ratio of theapparent resistivity (RIMP or RIDP) divided by the adjacent bedresistivity (Rs) and the bed thickness. At this resulting intersec-tion, the ratio of the corrected resistivity to the adjacent bedresistivity is read on the ordinate.

Example: RIDP = 7.5 ohm-m

RIMP = 6 ohm-m

Rs = 2 ohm-m

Bed thickness = 6 ft

giving RIDP/Rs = 7.5/2 = 3.75

RIMP/Rs = 6/2 = 3

Therefore, RIDPcor/Rs = 4

RIMPcor/Rs = 3.1

and RIDPcor = 8 ohm-m

RIMPcor = 6 ohm-m

504030

20

1086543

2

10.80.60.50.40.3

0.2

0.10.080.060.050.040.03

0 4 8 12 (ft) 16 20 24 28

0 81 2 3 4 (m) 5 6 7

5

2

1

252015

107.5

3.75

2.5

1.5

0.5

0.25

0.125

0.075

0.05

Bed thickness

ID Deep Phasor Induction

RID

Pco

r/R

s

RIDP

Rs

504030

20

1086543

2

10.80.60.50.40.3

0.2

0.10.080.060.050.040.03

0 4 8 12 (ft) 16 20 24 28

0 81 2 3 4 (m) 5 6 7

2015

107.5

53.75

2.521.5

1

0.5

0.25

0.125

0.075

0.05

Bed thickness

IM Medium Phasor Induction

RIM

Pco

r/R

s

RIMP

Rs

*Mark of Schlumberger© Schlumberger

Page 129: Log Interpretation

ResistivitySchlumberger

6-24

RintCharts Rint-11, Rint-12, Rint-13 and Rint-15 apply to thePhasor Induction tool when operated at a frequency of 20 kHz.Similar charts (notpresented here) are available for tool opera-tion at 10kHz and 40 kHz.

The 20-kHz charts provide reasonable approximations of

Rxo/Rt and Rt/RIDPH for tool operation at 10 kHz and 40 kHzwhen only moderately deep invasion exists (less than 100 in.).

All Phasor Induction invasion correction charts are applicableto ERL* Enhanced Resolution Logging and ERA* EnhancedResolution Analysis presentations.

Phasor* Dual Induction–SFL* Spherically Focused Resistivity LogID Phasor–IM Phasor–SFL Rint-11a

1 2 3 4 5

RIMPH/RIDPH

200

100

50

20

10

5

2

1

Thick beds, 8-in. [203-mm] hole, skin-effect and borehole corrected Rxo/Rm ≈ 100, DIT-E or equivalent, frequency = 20 kHz

15

RSFL/RIDPH

200

90

120

80

100

70

200

140160

50

100

4030

25

20

15

70

5040

30

20

1075

32

Rxo

Rt

0.95 0.9 0.8Rt

RIDPH0.7 0.6

0.50.4

0.3

di (in.)60

1

*Mark of Schlumberger© Schlumberger

Page 130: Log Interpretation

ResistivitySchlumberger

6-25

Rint

Phasor* Dual Induction–SFL* Spherically Focused Resistivity LogID Phasor–IM Phasor–SFL Rint-11b

40

1 2 3 4

1

2

5

10

20

1

RIMPH/RIDPH

RSFL/RIDPH

Thick beds, 8-in. [203-mm] hole, skin-effect and borehole correctedRxo/Rm ≈ 20, DIT-E or equivalent, frequency = 20 kHz

8

6

32

4

14

20

30

10

20

25

5015

4030

50 60 7080

90

0.95

0.4

0.3

0.9 0.8 0.7 0.60.5

200

Rxo

Rt

160

120

100

di (in.)

Rt

RIDPH

*Mark of Schlumberger© Schlumberger

Page 131: Log Interpretation

ResistivitySchlumberger

6-26

Rint

Phasor* Dual Induction–SFL* Spherically Focused Resistivity LogID Phasor–IM Phasor–SFL Rint-11c

2

0.05 10.2

0.4

0.5

0.7

1

0.3

0.07 0.1 0.70.50.2 0.3 0.4

RIMPH/RIDPH

RSFL/RIDPH

Thick beds, 8-in. [203-mm] hole, skin-effect and borehole corrected Rxo < Rt, Rxo < 2 ohm-m, frequency = 20 kHz

40

30

50

6070

800.4

0.30.2

0.80.6

di (in.)

1.2

7

5

3

2

11.1

Rxo

Rt

0.80.9

25

20

0.7

0.0150.0075 0.010.005 0.02 0.03 0.04 0.06

1.5

0.08

Rt

RIDPH

*Mark of Schlumberger© Schlumberger

Page 132: Log Interpretation

ResistivitySchlumberger

6-27

Rint

Phasor* Dual Induction in Oil-Base MudID Phasor–IM Phasor–Raw, unboosted I signals Rint-12

RIIM /RIDP

RIID /RIDP

3

2

11 2 3 4

6

43

2

810

14

20

30

50

0.80.7

0.60.5

0.4

0.95 0.9

1.0

50 60 70 80 90100 120

160

40252015

Rt

RIDP

Thick beds, 8-in. [203-mm] hole RIDP < 10 ohm-m, DIT-E or equivalent, frequency = 20 kHz

di (in.)

Rxo

Rt

*Mark of Schlumberger© Schlumberger

This chart uses the raw, unboosted induction signals and the IDPhasor value to define the invasion profile in a rock drilled withoil-base mud. To use the chart, the ratio of the raw, unboostedmedium induction signal (IIM) and the deep Phasor induction(IDP) is entered in abscissa. The ratio of the raw, unboosteddeep induction signal (IID) and the deep Phasor induction (IDP)is entered in ordinate. Their intersection defines di, Rxo/Rt andRt/RIDP.

Example: RIDP = 1.6 ohm-m

RIID = 2.4 ohm-m

RIIM = 2.4 ohm-m

giving RIID/RIDP = 2.4/1.6 = 1.5

RIIM /RIDP = 2.4/1.6 = 1.5

Therefore, di = 50 in.

Rxo/Rt = 15

Rt/RIDP = 0.94

Rt = 0.94 (1.6) = 1.5 ohm-m

Page 133: Log Interpretation

ResistivitySchlumberger

6-28

Rint

Phasor* Dual Induction–Rxo DeviceID Phasor–IM Phasor–Rxo device Rint-13a

400

11

200

100

50

20

10

5

2

5432

RIMPH/RIDPH

Rxo/RIDPH

Thick beds, 8-in. [203-mm] hole, skin-effect and borehole corrected Rxo = 50, Rxo/Rm = 100, frequency = 20 kHz

Rxo

Rt

di (in.)

7

3

2

5

1520

3040

10

20 25

50

70

100

140

20015 30 40 50

6070

8090

200

160

120100Rt

RIDPH

0.95 0.90.8

0.5

0.70.6

0.4

0.31

*Mark of Schlumberger© Schlumberger

Page 134: Log Interpretation

ResistivitySchlumberger

6-29

Rint

Phasor* Dual Induction–Rxo DeviceID Phasor–IM Phasor–Rxo device Rint-13b

70

50

1

2

5

10

20

1 2 3 4

RIMPH/RIDPH

Rxo/RIDPH

Thick beds, 8-in. [203-mm] hole, skin-effect and borehole corrected Rxo = 10, Rxo/Rm = 20, frequency = 20 kHz

8

6

3

2

4

14

20

30

10

20 2550

1540

5060

7080

90

30

0.95

0.4

0.3

0.9 0.80.7

0.6

0.5

200

1

Rxo

Rt

Rt

RIDPH

di (in.)

160

120

100

*Mark of Schlumberger© Schlumberger

Page 135: Log Interpretation

ResistivitySchlumberger

6-30

Rint

Phasor* Dual Induction–Rxo DeviceID Phasor–IM Phasor–Rxo device Rint-13c

0.1 0.2 0.3 0.4 0.5 0.7 1 2

1

0.50

0.20

0.10

0.05

0.02

0.01

RIMPH /RIDPH

Rxo /RIDPH

Thick beds, 8-in. [203-mm] hole, skin-effect and borehole corrected Rxo < Rt, frequency = 20 kHz

0.14

0.06

0.04

0.03

0.02

0.015

9080

70

60

50

40

0.8

0.6

0.1

0.4

0.3

0.2

15

30

2520

Rxo

Rt

d i (in.)

*Mark of Schlumberger© Schlumberger

Page 136: Log Interpretation

ResistivitySchlumberger

6-31

Rint

Phasor* Dual Induction–SFL*–Rxo DeviceID Phasor–SFL–Rxo device Rint-15a

400

200

100

1

2

5

10

50

20

1 2 543

Rxo/RSFL

Rxo/RIDPH

Rxo = 50, Rxo/Rm = 100, frequency = 20 kHz

908070 60 50 40 30 25 20 15

15

50

70

40

30

20

10

75

3

2

1

160

120100 0.95 100

140

200

0.60.7

0.80.9

di (in.)

Rxo

Rt

0.50.4

0.3

Rt

RIDPH

*Mark of Schlumberger© Schlumberger

Page 137: Log Interpretation

ResistivitySchlumberger

6-32

Rint

70

50

20

10

5

2

11 2 3 4 5

Rxo/RSFL

Rxo/RIDPH

Rxo = 10, Rxo/Rm = 20, frequency = 20 kHz

200

9080

7060

5040 30 25 20 15

14

50

30

20

10

8

6

4

3

2

1

160

120

100

Rxo

Rt

di (in.)

Rt

RIDPH

0.3

0.4

0.5

0.95

0.60.7

0.80.9

*Mark of Schlumberger© Schlumberger

Phasor* Dual Induction–SFL*–Rxo DeviceID Phasor–SFL–Rxo device

Rint-15b

Page 138: Log Interpretation

ResistivitySchlumberger

6-33

Rcor

2.0

1.8

1.6

1.4

1.2

1.00.9

0.8

0.7

0.6

0.5

RPScor/ RPS

RPS

Rm = 0.05 ohm-m

2.0

1.8

1.6

1.4

1.2

1.00.9

0.8

0.7

0.6

0.5

RPScor/ RPS

RPS

Rm = 0.2 ohm-m

2.0

1.8

1.6

1.4

1.2

1.00.9

0.8

0.7

0.6

0.5

RADcor/ RAD

RAD

Rm = 0.05 ohm-m

2.0

1.8

1.6

1.4

1.2

1.00.9

0.8

0.7

0.6

0.5

RADcor/ RAD

RAD

Rm = 0.2 ohm-m

0.1 1 10 100 1000

0.1 1 10 100 1000

0.1 1 10 100 1000

2.0

1.8

1.6

1.4

1.2

1.00.9

0.8

0.7

0.6

0.5

RADcor/ RAD

RAD

Rm = 1.0 ohm-m

Borehole diameters

(in.)18 16 14 12 10

8

Borehole diameters

(in.)18

16

14

8

Borehole diameters

(in.)18 16 14 12 10 8

0.1 1 10 100 1000

0.1 1 10 100 1000

0.1 1 10 100 1000

2.0

1.8

1.6

1.4

1.2

1.00.9

0.8

0.7

0.6

0.5

RPScor/ RPS

RPS

Rm = 1.0 ohm-m

18 16

14

1210 8

Borehole diameters

(in.)

18 16Borehole

diameters (in.)

14 12

10

8

18 16Borehole

diameters (in.)

14

810

12

1210

*Mark of Schlumberger© Schlumberger

CDR* Compensated Dual Resistivity Borehole Correction for 6.5-in. Tool Rcor-11a

The CDR Compensated Dual Resistivity tool, a logging-while-drilling (LWD) electromagnetic propagation tool, providesmeasurements with similarities to the medium (IM) and deep(ID) wireline induction logs. The phase shift and attenuation of

2-MHz electromagnetic waves are independently transformedinto two apparent resistivities—providing two depths ofinvestigation.

Continued on next page

Page 139: Log Interpretation

Resistivity?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e

Rcor

*Mark of Schlumberger© Schlumberger

CDR* Compensated Dual Resistivity Borehole Correction for 8-in. Tool Rcor-11b

RPS is the apparent resistivity from the phase shift-shallow,and RAD is the apparent resistivity from the attenuation-deep.Charts Rcor-11a, -11b and -11c provide borehole correctionsfor the 6.5-, 8- and 9.5-in. CDR tools run in mud resistivities

of 0.05, 0.2 and 1 ohm-m. To use, select the chart appropriatefor the tool size, the measurement (RPSor RAD) and the propermud resistivity. Enter the chart in abscissa with the apparentresistivity. Proceed upward to the proper hole diameter curveand read the correct/apparent resistivity value on the ordinate.

Page 140: Log Interpretation

ResistivitySchlumberger

6-35

Rcor

2.0

1.8

1.6

1.4

1.2

1.00.9

0.8

0.7

0.6

0.5

RPScor/ RPS

RPS

Rm = 0.05 ohm-m

2.0

1.8

1.6

1.4

1.2

1.00.9

0.8

0.7

0.6

0.5

RPScor/ RPS

RPS

Rm = 0.2 ohm-m

2.0

1.8

1.6

1.4

1.2

1.00.9

0.8

0.7

0.6

0.5

RADcor/ RAD

RAD

Rm = 0.05 ohm-m

2.0

1.8

1.6

1.4

1.2

1.00.9

0.8

0.7

0.6

0.5

RADcor/ RAD

RAD

Rm = 0.2 ohm-m

0.1 1 10 100 1000

0.1 1 10 100 1000

0.1 1 10 100 1000

2.0

1.8

1.6

1.4

1.2

1.00.9

0.8

0.7

0.6

0.5

RADcor/ RAD

RAD

Rm = 1.0 ohm-m

Borehole diameters

(in.)

0.1 1 10 100 1000

0.1 1 10 100 1000

0.1 1 10 100 1000

2.0

1.8

1.6

1.4

1.2

1.00.9

0.8

0.7

0.6

0.5

RPScor/ RPS

RPS

Rm = 1.0 ohm-m

Borehole diameters

(in.)

Borehole diameters

(in.)

22 18

14

12

16

Borehole diameters

(in.)22 18 16 14 12

18

16

22 14 12Borehole

diameters (in.)

16

22

12

18

14

22 18 16 14

12

22

18

Borehole diameters

(in.)

14 12

16

*Mark of Schlumberger© Schlumberger

CDR* Compensated Dual Resistivity Borehole Correction for 9.5-in. Tool Rcor-11c

Page 141: Log Interpretation

ResistivitySchlumberger

6-36

Rcor

CDR* Bed-Thickness CorrectionRcor-12

Charts Rcor-12 and Rcor-13 correct the CDR tool resistivitiesfor bed thickness. To use, select the chart appropriate for themeasurement (RPSor RAD) and for the adjacent bed resistivity(RS). Enter the chart with the bed thickness, which can be deter-mined from the distance between the crossovers of RPSand RAD.

Proceed upward to the Ra curve corresponding to the center bedresistivity value. Read the corrected resistivity value (Rt) on theordinate.

For more information see Reference 37.

1008060

200

40

20

1086

4

2

10.80.6

0.4

0.2

0.1

0.3

3

2 4 6 8 10 12 14 16 18 20 220

0 1 2 3 4 5 6

©Schlumberger

1008060

200

40

20

1086

4

2

10.80.6

0.4

0.2

0.1

0.3

3

2 4 6 8 10 12 14 16 18 20 220

0 1 2 3 4 5 6

RPS

Bed thickness

Rt (ohm-m)

Rt (ohm-m)

Bed thickness

Rs = 2 ohm-m

Rs = 10 ohm-m

Ra

(ohm-m)

Ra

(ohm-m)

1

0.5

0.3

2

0.2

504030

2015

1086

4

1

504030

2015

1086

0.5

0.3

0.2

2

4

(ft)

(m)

1008060

200

40

20

1086

4

2

10.80.6

0.4

0.2

0.1

0.3

3

2 4 6 8 10 12 14 16 18 20 220

0 1 2 3 4 5 6

1008060

200

40

20

1086

4

2

10.80.6

0.4

0.2

0.1

0.3

3

2 4 6 8 10 12 14 16 18 20 220

0 1 2 3 4 5 6

©Schlumberger

Bed thickness

Bed thickness

Rt (ohm-m)

Rt (ohm-m)

Ra

(ohm-m)

Rs = 1 ohm-m

Rs = 4 ohm-m

Ra

(ohm-m)

1

504030

2015

1086

0.5

0.3

0.2

2

4

1

504030

2015

1086

0.5

0.3

0.2

2

4

(ft)

(m)

(ft)

(m)

(ft)

(m)

*Mark of Schlumberger© Schlumberger

Page 142: Log Interpretation

ResistivitySchlumberger

6-37

Rcor

CDR* Bed-Thickness CorrectionRcor-13

1008060

40

200

20

1086

4

2

10.80.6

0.4

0.2

0.1

0.3

3

2 4 6 8 10 12 14 16 18 20 220

0 1 2 3 4 5 6

1008060

200

40

20

1086

4

2

10.80.6

0.4

0.2

0.1

0.3

3

2 4 6 8 10 12 14 16 18 20 220

0 1 2 3 4 5 6

RAD

Bed thickness

Rt (ohm-m)

Rt (ohm-m)

Bed thickness

Rs = 2 ohm-m

Rs = 10 ohm-m

Ra

(ohm-m)

Ra

(ohm-m)

0.2

0.3

0.5

1

2

4

68

10

1520

30

4050

0.2

0.3

0.5

1

2

4

68

1520

4050

30

10

(ft)

(m)

1008060

200

40

20

1086

4

2

10.80.6

0.4

0.2

0.1

0.3

3

2 4 6 8 10 12 14 16 18 20 220

0 1 2 3 4 5 6

©Schlumberger

1008060

200

40

20

1086

4

2

10.80.6

0.4

0.2

0.1

0.3

3

2 4 6 8 10 12 14 16 18 20 220

0 1 2 3 4 5 6

Bed thickness

Bed thickness

Rt (ohm-m)

Rt (ohm-m)

Ra

(ohm-m)

Rs = 1 ohm-m

Rs = 4 ohm-m

Ra

(ohm-m)

1

504030

2015

1086

0.5

0.3

0.2

2

4

0.2

0.3

0.5

1

2

68

10

20

304050

15

4

(ft)

(m)

(ft)

(m)

(ft)

(m)

*Mark of Schlumberger© Schlumberger

Page 143: Log Interpretation

ResistivitySchlumberger

6-38

Rcor

RAB* Resistivity-at-the-Bit Borehole Correctionfor 6.75-in. Tool8.5-in. borehole

Rcor-15

Rapp/Rm

0.1 1 10 100 1000 10,000

Rt /Rapp

1.2

1.1

1.0

0.9

0.8

0.7

0.6

0.5

Bit Ring Shallow button Medium button Deep button

*Mark of Schlumberger© Schlumberger

Chart Rcor-15 demonstrates the relative size of the borehole cor-rections for RAB measurements as a function of mud resistivity.This chart is for illustration purposes only. Borehole corrections

are dependant upon the bottomhole assembly and are normallyapplied in the software. This example was generated for a RABtool running behind a 12-in. bit.

Page 144: Log Interpretation

ResistivitySchlumberger

6-39

Sw

Saturation DeterminationSw-1

This nomograph solves the Archie water saturation equation

It should be used in clean (nonshaly) formations only. If R0

(resistivity when 100% water saturated) is known, a straight linefrom the known R0 value through the measured Rt value giveswater saturation, Sw. If R0 is unknown, it may be determined by

connecting the formation water resistivity, Rw, with the forma-tion resistivity factor, FR, or porosity, φ.

Example: Rw = 0.05 ohm-m at formation temperature

φ= 20% (FR = 25)

Rt = 10 ohm-m

Therefore, Sw = 35%

For other φ/F relations, the porosity scale should be changedaccording to Chart Por-1.

SR

R

F R

Rwt

R w

t

= =0 .

Rw (ohm-m)

R0 (ohm-m)

R0 = FRRw

Rt (ohm-m)

Sw (%)

φ(%)

FR

2000

1000 800600400300 200

100 80 60 50 40 30 20

10 8 654

2.5 3

4

5 6 7 8 9

10

15

20

25 30 35 40 4550

FR = 1 φ2.0

m = 2.0

0.01

0.02

0.03

0.04

0.05 0.060.07 0.080.090.1

0.2

0.3

0.4

0.50.60.70.8 0.9 1

1.5

2

5

6

7

8

9

10 11 12 13 14 15 16

18 20

25

30

40

50

60

70

80

90

100

10,000 8,0006,000 5,000 4,000 3,000 2,000

1,000 800 600 500 400 300 200

1008060 50 4030 20

108 6 5 4 3 2

1.0 0.8 0.6 0.5 0.4 0.3

0.2

0.1

30

20 1816 1412 10 9 8 7 6 5

4

3

2 1.8 1.61.41.21.00.90.8 0.70.60.5

0.4

0.3

0.2 0.18 0.16 0.14 0.12 0.10

Sw = R0

Rt√

Clean formations, m = 2

© Schlumberger

Page 145: Log Interpretation

ResistivitySchlumberger

6-40

Sw

Chart Sw-2 (next page) is used to determine water saturationin shaly or clean formations when knowledge of porosity isunavailable. It may also be used to verify the water saturationdetermination from another interpretation method. The mainchart assumes

however, the small chart to the right provides an Sxo correctionwhen Sxo is known. Note, too, that the SP portion of the chartdoes not provide for any water activity (Chart SP-2) correction.

For clean sands, plot the ratio Rxo/Rt against Rmf/Rw to findwater saturation at average residual oil saturation. If Rmf/Rw isunknown, the chart may be entered with the SP value and theformation temperature. If Sxo is known, proceed diagonallyupward, parallel to the constant Swa lines, to the edge of thechart. Then, go horizontally to the known Sxo (or Sor) value toobtain the corrected water saturation Sw.

Example: Rxo = 12 ohm-m

Rt = 2 ohm-m

Rmf/Rw = 20

Sor = 20%

Therefore, Sw = 43% (after ROS correction)

In shaly sands, plot Rxo/Rt against EpSP(the SP in the shalysand). This point gives an apparent water saturation. Draw aline from the chart’s origin (the small circle located at Rxo/Rt =Rmf/Rm = 1) through this point. Extend this line to intersect withthe value of ESSPto obtain a value of Rxo/Rt corrected for shali-ness. Plot this value of Rxo/Rt versus Rmf/Rw to find Sw. IfRmf/Rw is unknown, the point defined by Rxo/Rt and ESSPisa reasonable approximation of Sw. Use the diagram at right tofurther refine Sw if Sor is known.

Example: Rxo/Rt = 2.8

Rmf/Rw = 25

EpSP= –75 mV

ESSP= –120 mV

K = 80 (formation temperature = 150°F)

Therefore, Sw = 38%

(If Sor were known to be 10%, Sw = 40%)

For more information see Reference 12.

S Sxo w= 5

Saturation DeterminationRatio method

Page 146: Log Interpretation

ResistivitySchlumberger

6-41

Sw

Saturation DeterminationRatio method Sw-2

See instructions on previous page. For more information see Reference 12.

50

40

30

20

10

8

65

4

3

2

1

0.8

0.60.5

0.4

0.3

0.2

0.1

0.08

75100150200

300

0.80.6 1.0 1.5 2.52 3 4 5 6 8 10 15 20 25 30 40 50 60

20 10 0 –20 –40 –60 –80 –100 –120 –140

0.80.6 1.0 1.5 2.52 3 4 5 6 8 10 15 20 25 40 50 6030

25

5075100150

80

0 10 20 30 40

1.0 0.9 0.8 0.7 0.6

80

70

60

50

40

30

25

20

15

10

60

50

40

25

30

20

15

70

90100

Rmf /Rw

Rxo

Rt

Rmf /RwKc

°F °C

EpSP or ESSP (mV)

Sxo

Sw = Sxo (Swa)0.8

Sor (%)

Sw (%

)

A

B

CC′

10%

15%

20%

25%

30%

40%

50%

60%

70%

Swa =

100%

EpSP = –Kc log – 2Kc log Rxo

Rt

Sxo

Sw

Sxo = 5√ Sw

Sxo = 5√ Sw

© Schlumberger

Page 147: Log Interpretation

Through-Pipe EvaluationSchlumberger

7-1

Tcor

TDT* Thermal Decay Time Log Hydrocarbon Corrections Tcor-1

20.0

17.5

15.0

12.5

10.0

7.5

5.0

2.5

0.0

68

125

200

300

400500

Reservoir pressure (psia)

0 4000 8000 12,000 16,000 20,000

Methane

Temperature (°F)

Σh (c.u.)

Metric

English

10 100 1000 10,000

Solution GOR (ft3/bbl)

200

250

300

Liquid hydrocarbons

Condensate

30°, 40°, 50° API

20°, 60° API

16

18

20

22

Σh (c.u.) τ (µsec)

20.0

17.5

15.0

12.5

10.0

7.5

5.0

2.5

0.0

20

52

93

150

260

Reservoir pressure (mPa)

0 14 28 41 55 69 83 97 110 124 138

Methane

Temperature (°C)

Σh (c.u.)

2 10 100 1000 2000

Solution GOR (m3/m3)

200

250

300

τ (µsec)

205

Condensate

Liquid hydrocarbons

0.78 to 0.88 mg/m3

0.74 or 0.94 mg/m3

16

18

20

22

Σh (c.u.)

*Mark of Schlumberger© Schlumberger

For more information see References 10 and 11.

Page 148: Log Interpretation

Through-Pipe EvaluationSchlumberger

7-2

Tcor

TDT* Thermal Decay Time LogEquivalent water salinity Tcor-2a

Chart Tcor-1 provides the capture cross section, Σ, for oil andmethane, while Charts Tcor-2a and Tcor-2b give the Σ value forwater salinity. These updated charts have an extended utility

range to 500°F and 20,000 psia. Knowledge of water salinity,reservoir pressure, GOR and reservoir temperature is required.

Ambie

nt

200°

F [93°

C]

68°F

[20°

C]

400°

F [205

°C]

300°

F [150

°C]

200°

F [93°

C]

68°F

[20°

C]

400°

F [205

°C]

300°

F [150

°C]

200°

F [93°

C]

68°F

[20°

C]

1000

psi

(6.9

MPa)

5000

psi

(34

MPa)

300

275

250

225

200

175

150

125

100

75

50

25

0

100

75

50

25

0

100

75

50

25

0

300

275

250

225

200

300

275

250

225

200

300

275

250

225

200

175

150

125

100

75

50

25

0

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

Σw (c.u.)

Equ

ival

ent w

ater

sal

inity

(kp

pm N

aCl)

125

150

175175

150

125

*Mark of Schlumberger© Schlumberger

Page 149: Log Interpretation

Through-Pipe EvaluationSchlumberger

7-3

Tcor

Example:

Given: A reservoir section at 90°C temperature and 25-MPapressure contains water of 175,000-ppm (NaCl)salinity, 30°API oil with a gas/oil ratio of 2000ft3/bbl and methane gas.

Results: Σw = 87 c.u.

Σo = 19 c.u.

Σg = 6.9 c.u.

TDT* Thermal Decay Time LogEquivalent water salinity Tcor-2b

10,0

00 p

si (6

9 M

Pa)

500°

F [260

°C]

400°

F [205

°C]

300°

F [150

°C]

200°

F [93°

C]

68°F

[20°

C]

400°

F [205

°C]

300°

F [150

°C]

200°

F [93°

C]

68°F

[20°

C]

400°

F [205

°C]

300°

F [150

°C]

200°

F [93°

C]

68°F

[20°

C]

15,0

00 p

si (1

03 M

Pa)

20,0

00 p

si (1

38 M

Pa)

300

275

250

225

200

175

150

125

100

75

50

25

0

100

75

50

25

0

100

75

50

25

0

300

275

250

225

200

300

275

250

225

200

300

275

250

225

200

175

150

125

100

75

50

25

0

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

Σw (c.u.)

Equ

ival

ent w

ater

sal

inity

(kp

pm N

aCl)

125

150

175175

150

125

*Mark of Schlumberger© Schlumberger

Page 150: Log Interpretation

Through-Pipe EvaluationSchlumberger

7-4

Sw

Neutron capture cross section, Σ, is expressed in capture units(c.u.). Σ is related to thermal decay time, τ (in µsec), by the for-mula Σ = 4550/τ. A capture unit is equivalent to one-thousandthof a reciprocal centimeter (cm–1).

Matrix capture cross section, Σma, varies over a small rangefor each lithology. Practical values, empirically determined, aresomewhat larger than those calculated for the pure rock minerals.Average values commonly used are sandstone, 8 c.u.; dolomite,9 c.u.; and limestone, 11 to 12 c.u.

Σw, the capture cross section of the formation water, dependson the type and abundance of the elements in solution. The valueof Σw corresponding to the NaCl concentration can be consid-ered a minimum value; traces of certain elements in the watercan increase Σw beyond the value indicated by the chemicallyequivalent concentration of NaCl.

For more information see Reference 11.

Description and use of Chart Sw-12

If Σma, Σw and porosity are known, Chart Sw-12 may be used todetermine water saturation. It may be used in shaly formations ifporosity, φ, and the fraction of shale in the formation, Vsh, areknown.

Clean formations

Information required:

Σma Matrix capture cross section, based on lithology

φ Porosity

Σw From NaCl salinity; see Tcor-2a or Tcor-2b

Σh See Tcor-1

Procedure:

Enter the value of Σma on Bar B; draw Matrix Line a from Σma toPivot Point B. Enter ΣLOG on Bar B; draw Line b through theintersection of Line a and the value of φ to Σf on Bar C. DrawLine 5 from Σf through the intersection of Σh and Σw to the valueof Sw.

Example:

Given: ΣLOG = 20 c.u.

Σma = 8 c.u. (sandstone)

Σh = 21 c.u. (oil)

Σw = 80 c.u. (150,000 ppm or mg/kg)

φ= 30 p.u.

Solution: Sw = 43%

Shaly formations

Information required:

Σma Based on lithology

Σsh Read from TDT log in adjacent shale

Σw From NaCl salinity; see Tcor-2a or Tcor-2b

Σh See Tcor-1

Vsh From porosity-log crossplot or gamma ray

φsh Read from porosity log in adjacent shale

φ From porosity log, corrected for shaliness; forneutron and density logs in liquid-filled formations,φ, = φLOG – Vshφsh.

Procedure:

Enter the value of Σma on Bar B; connect with Pivot Point A(Line 1). From the value of Σsh on Bar A, draw Line 2 throughthe intersection of Line 1 and Vsh to determine Σcor. Draw Line 3from Σcor to the value of Σma on the scale at left of Bar C. EnterΣLOG on Bar B; draw Line 4 through the intersection of Line 3and φ to Σf. From Σf draw Line 5 through Σh and Σw to Sw.

Example:

Given: ΣLOG = 25 c.u.

Σma = 8 c.u.

Σh = 21 c.u.

Σw = 80 c.u.

Σsh = 45 c.u.

LOG = 33 p.u.

φsh = 45 p.u.

Vsh = 20%

φ= φLOG – Vshφsh

φ= 24 p.u.

Solution: Sw = 43%

*Mark of Schlumberger

Saturation Determination from TDT* Thermal Decay Time Logs

Page 151: Log Interpretation

Through-Pipe EvaluationSchlumberger

7-5

Sw

Sw Determination from TDT* Thermal Decay Time Log Sw-12

2

3

4

100 90 80 70 60 50 40 30 20 10 0

3040

5060

70 8090

120

20

60

100

200

250 0 10 15 21

20 30 40 50 60 70 80 90 100 110 1200 5 10 15

50 40 30 20 10 0

100 120 140 160 200 300 400

20 30 40 50 60

200 150 120 100 90 80

5

10

1520

2530

354045

0.1

0.5

Pivot point A

0.40.3

0.2

40

Σsh

Σsh (c.u.)

τsh (µsec)

ΣLOG

ΣmaΣcorΣ (c.u.)

τ (µsec)

Σma (c.u.) Σ f (c.u.)

Σw (c.u.)

Σh (c.u.)

Sw (%)

Formation-water salinity (ppm × 1000)

Sw =

(ΣLOG – Σma) – φ(Σh – Σma) – Vsh (Σsh – Σma) φ(Σw – Σh)

φ (p.u.)

a b

A

B

C

D

Vsh

Pivot point B

1

5

*Mark of Schlumberger© Schlumberger

Page 152: Log Interpretation

Through-Pipe EvaluationSchlumberger

7-6

Sw

Grid Sw-17 can be used for graphical interpretation of the TDTThermal Decay Time log. In one technique, applicable inshalyas well as clean sands, apparent water capture cross section, Σwa,is plotted versus bound water saturation on a specially construct-ed grid.

To construct this grid, refer to the chart on this page. Threefluid points must be located: a free water point, a hydrocarbonpoint and a bound water point. The free (or connate/formation)water point is located on the left edge of the grid and can beobtained from measurement of a formation water sample, fromChart Tcor-2 if water salinity is known, or from the TDT log ina clean water-bearing sand using the following equation:

(1)

The hydrocarbon point is also located on the left edge of thegrid. It can be determined from Chart Tcor-1 based upon theknown or expected hydrocarbon type.

The bound water point, Σwb, can be obtained from the TDTlog in shale intervals using Eq. 1 above. It is located on the rightedge of the grid.

The distance between the free water and hydrocarbon pointsis linearly divided into constant water saturation lines drawnparallel to a straight line connecting the free water and boundwater points. The Swt = 0% line originates from the hydrocarbonpoint, and the Swt = 100% line originates from the free waterpoint.

Apparent water capture cross section, Σwa, from Eq. 1, is thenplotted versus bound water saturation, Swb, to give the total watersaturation. Bound water saturation can be estimated from thegamma ray or other bound water saturation estimator.

Knowing the total water saturation and the bound watersaturation, the effective water saturation (water saturationof reservoir rock exclusive of shale) can be determined usingChart Sw-14.

Example (see chart on this page):

Free water point = 61 c.u.(from TDT log in a water-bearing clean sand—Eq. 1, Chart Tcor-2 or measurement of a watersample)

Hydrocarbon point = 21 c.u. (medium-gravity oil with modest gas/oil ratio—Chart Tcor-1)

Bound water point = 76 c.u. (from TDT log in a shale interval—Eq. 1)

Analysis of Point 4:

Σwa = 54 c.u. (from Eq. 1)

Swb = 25% (from gamma ray)

Therefore, Swt = 72%

and Sw = 63% (from Chart Sw-14)

The grid can also be used to graphically determine watersaturation, Sw, in clean formations by crossplotting ΣLOG inordinate versus porosity, φ, in abscissa. The matrix capture crosssection, Σma, and the formation water capture cross section, Σw,need not be known but must be constant over the intervalstudied. There must be some points from 100% water zones,andthere must be a good variation in porosity. These waterpoints define the Sw = 100% line; when extrapolated, this lineintersects the zero-porosity axis at Σma. The Sw = 0% line isdrawn from Σma at φ= 0 p.u. to Σ = Σh at φ= 100 p.u. [or Σ =1⁄ 2(Σma + Σh) at φ= 50 p.u.]. The vertical distance from Sw = 0%to Sw = 100% is divided linearly to define lines of constant watersaturation. The water saturation of any plotted point can therebybe determined.

∑ =∑ − ∑

+ ∑wama

malog .

φ

Graphical Determination of Total Water Saturation (Swt)from TDT* Thermal Decay Time Data

0.0 0.20 0.40 0.60 0.80 1.0Swb

40 44 48 52 56 60 64 68 72 76 80GR

Σwa

90

85

80

75

70

65

60

55

50

45

40

35

30

25

20

15

10

5

Free water point

Σwf = 61

Bound water point

Σwb = 76

100% water line

Hydrocarbon point

Σh = 21

86 5

4

3

2

1

7

S wt =

S wb

80

70

60

50

40

30

20

0

10

90%

*Mark of Schlumberger© Schlumberger

Page 153: Log Interpretation

Through-Pipe EvaluationSchlumberger

7-7

Sw

Graphical Determination of Water Saturation (Sw) or Total Water Saturation (Swt) from TDT* Thermal Decay Time Log Sw-17

φ or Swb

ΣLOGor

Σwa

*Mark of Schlumberger© Schlumberger

Page 154: Log Interpretation

Through-Pipe EvaluationSchlumberger

7-8

Sw

Graphical Determination of Sw from Swt and SwbSw-14

100

90

80

70

60

50

40

30

20

10

00 10 20 30 40 50 60 70 80 90 100

Sw (%)

Swt (%)

Swt – Swb

1 – SwbSw =

Swb

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

*Mark of Schlumberger© Schlumberger

Page 155: Log Interpretation

Through-Pipe EvaluationSchlumberger

7-9

GST

These charts permit the determination of water saturation fromcarbon/oxygen (C/O) ratio measurements made with the GSTInduced Gamma Ray Spectrometry Tool in inelastic modeoperation.

To use, the C/O ratio and the porosity, φ, are entered in

ordinate and abscissa, respectively, on the appropriate chart(dependent upon borehole and casing size). Water saturation isdefined by the location of the plotted point within the appropriatematrix “fan chart.”

Continued on next page

Saturation Determination fromGST* Induced Gamma Ray Spectrometry Log GST-1

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

0 5 10 15 20 25 30 35 40 45

φ, porosity (p.u.)

C/O

, car

bon/

oxyg

en r

atio

Sw = 0%

20

Sw = 0%

20

40

60

80

100

40

60

80

100

Quartz sandstone

Calcite (limestone)

8-in. borehole, 51⁄2-in. water-filled casing

*Mark of Schlumberger© Schlumberger

Page 156: Log Interpretation

Through-Pipe EvaluationSchlumberger

7-10

GST

Saturation Determination fromGST* Induced Gamma Ray Spectrometry Log GST-2

Example: 51⁄2-in. water-filled casing cemented in 77⁄8-in. borehole (use Chart GST-1)

C/O ratio = 0.10

φ= 28 p.u.

Lithology is quartz sandstone

Therefore, Sw = 30%

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

0 5 10 15 20 25 30 35 40 45

φ, porosity (p.u.)

C/O

, car

bon/

oxyg

en r

atio

Calcite (limestone)

Quartz sandstone

Sw = 0%

20

40

60

80

100

Sw = 0%

100

20

40

60

80

10-in. borehole, 75⁄8-in. water-filled casing

*Mark of Schlumberger© Schlumberger

Page 157: Log Interpretation

Through-Pipe EvaluationSchlumberger

7-11

GST

Saturation Determination fromGST* Induced Gamma Ray Spectrometry Log GST-5

0 5 10 15 20 25 30 35 40 45

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

φ, porosity (p.u.)

C/O

, car

bon/

oxyg

en r

atio

121⁄4-in. borehole; 95⁄8-in., 40-lbm/ft casing

100

6040

80

60

40

20

20

Sw = 0%Calcite (limestone)

Quartz sandstone

100

Sw = 0%

80

*Mark of Schlumberger© Schlumberger

Page 158: Log Interpretation

Through-Pipe EvaluationSchlumberger

7-12

GST

Charts GST-3 and GST-4 permit the determination of an appar-ent water salinity from the chlorine-hydrogen ratio (Cl/H) asrecorded with the GST Induced Gamma Ray Spectrometry Tool.Two sets of charts are presented. Chart GST-3 applies when theGST tool is operated in inelastic mode; Chart GST-4 applieswhen the tool is operated in capture-tau mode.

To use, enter the chlorine-hydrogen (Cl/H) ratio into the chartthat most nearly matches the borehole and casing size conditionsand matches the tool operating mode. Proceed upward to theappropriate combination of borehole fluid salinity and formationporosity conditions. Interpolation between curves may be neces-sary. The apparent water salinity is given in ordinate.

The apparent water salinity value can then be compared to theknown connate water salinity to provide water saturation in cleanformations.

Example: Cl/H ratio = 5

φ= 30%

Borehole fluid salinity ≈ 25,000 ppm

51⁄2-in. casing in a 77⁄8-in. borehole

Tool operating in capture-tau mode

From Chart GST-4,

Apparent water salinity = 80,000 ppm

If the connate water salinity were 200,000 ppm, watersaturation would be 40% (Sw = 80,000/200,000).

Apparent Water Salinity Determination fromGST* Induced Gamma Ray Spectrometry LogInelastic mode

GST-3

200k

100k

50k

25k0

025

k50

k10

0k

200k

250k

200k

150k

100k

50k

00 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16

200k

100k

50k

25k0

0

25k

50k

100k

200k

Cl/H, chlorine-hydrogen salinity ratio Cl/H, chlorine-hydrogen salinity ratio

8-in. [203-mm] borehole, 51⁄2-in. [140-mm] casing 10-in. [255-mm] borehole, 75⁄8-in. [194-mm] casing

App

aren

t wat

er s

alin

ity (

ppm

)

32-p.u. sandstone16-p.u. sandstone

Borehole fluid salinity (ppm)

32-p.u. sandstone16-p.u. sandstone

Borehole fluid salinity (ppm)

*Mark of Schlumberger© Schlumberger

Page 159: Log Interpretation

Through-Pipe EvaluationSchlumberger

7-13

GST

Apparent Water Salinity Determination fromGST* Induced Gamma Ray Spectrometry LogCapture-Tau mode

GST-4

0 2 4 6 8 10 12 14 16

200k

100k

50k

25k0

0

25k

50k

100k

200k

Cl/H, chlorine-hydrogen salinity ratio

10-in. [255-mm] borehole, 75⁄8-in. [194-mm] casing

200k

100k

50k

25k0

0

25k

50k

100k

200k

0 2 4 6 8 10 12 14 16

Cl/H, chlorine-hydrogen salinity ratio

8-in. [203-mm] borehole, 51⁄2-in. [140-mm] casing

32-p.u. sandstone16-p.u. sandstone

Borehole fluid salinity (ppm)250k

200k

150k

100k

50k

0

App

aren

t wat

er s

alin

ity (

ppm

)

32-p.u. sandstone16-p.u. sandstone

Borehole fluid salinity (ppm)

*Mark of Schlumberger© Schlumberger

Page 160: Log Interpretation

Charts RST-1, -2 and -3, drawn for specific cased holeand openhole cases, help to ensure that the measurednear-detector and far-detector carbon/oxygen ratio dataare consistent with the interpretation model. Known for-mation and borehole data define the expected values ofcarbon/oxygen ratio for each detector using water satu-ration and borehole holdup values ranging from 0 to 1.All log data for levels with porosity greater than 10 p.u.should lie within the trapezoidal area bounded by thelimits on oil saturation, So, and oil holdup, yo. If data fallconsistently outside the trapezoid, the interpretationmodel may require revision.

Each set of near-detector and far-detector carbon/oxygen ratios represents a formation oil saturation andaborehole oil holdup. Oil saturation and oil holdup canbe estimated for each level by interpolation within thetrapezoid.

Additional trapezoid charts can be constructed foralternative casing and borehole sizes.

Through-Pipe Evaluation

RST* Reservoir Saturation ToolCarbon/Oxygen Ratio Response

Schlumberger

7-14

Far-detector carbon/oxygen

ratio

Far-detector carbon/oxygen

ratio

yo

Near-detector carbon/oxygen ratio

Near-detector carbon/oxygen ratio

Dual-Detector COR Model for 21⁄2-in. RST-B Tool

Dual-Detector COR Model for 111⁄16-in. RST-A Tool

So

wo

ww

oo

ow

Borehole oil

Form

atio

n oi

l

Borehole oil

Form

ation

oil

wo

ww

ow

oo

WW: water in borehole, water in formation OW: oil in borehole, water in formation OO: oil in borehole, oil in formation WO: water in borehole, oil in formation

*Mark of Schlumberger© Schlumberger

RST

Page 161: Log Interpretation

RST

Through-Pipe EvaluationSchlumberger

7-15

OO

OO

OO

OOOW

OW

OW

WOWO

WOWW

WW WW

WW

OW

φ = 30%, 8.5-in. borehole, 7-in. casing

Near detector carbon/oxygen ratio

Far

det

ecto

r ca

rbon

/oxy

gen

ratio

0.9

0.7

0.5

0.3

0.1

–0.1–0.1 0.1 0.3 0.5 0.7 0.9

OO

OO

OO

OO

OW

OW

OW

WO

WOWOWW

WW WW

WOWO

OW

φ = 20%, 8.5-in. borehole, 7-in. casing

Near detector carbon/oxygen ratio

Far

det

ecto

r ca

rbon

/oxy

gen

ratio

0.9

0.7

0.5

0.3

0.1

–0.1–0.1 0.1 0.3 0.5 0.7 0.9

RST-A, limestone RST-A, quartz sandstone RST-B, limestone RST-B, quartz sandstone

RST-A, limestone RST-A, quartz sandstone RST-B, limestone RST-B, quartz sandstone

*Mark of Schlumberger© Schlumberger

RST* Reservoir Saturation ToolCarbon/Oxygen Ratio ResponseRST-A and RST-B in cased holes

RST-1

Page 162: Log Interpretation

RST

Through-Pipe Evaluation

RST* Reservoir Saturation ToolCarbon/Oxygen Ratio ResponseRST-A and RST-B in cased holes

Schlumberger

7-16

OO

OO

OO

OO

OW

OW

OW

WO

WO

WO

WW

WW WW

WW

OW

φ = 30%, 10-in. borehole, 7-in. casing

Near detector carbon/oxygen ratio

Far

det

ecto

r ca

rbon

/oxy

gen

ratio

0.9

0.7

0.5

0.3

0.1

–0.1–0.1 0.1 0.3 0.5 0.7 0.9

OW

OO

OO

OO

OO

OW

OW

WO

WOWWWW

WW WW

WOWO

OW

φ = 20%, 10-in. borehole, 7-in. casing

Near detector carbon/oxygen ratio

Far

det

ecto

r ca

rbon

/oxy

gen

ratio

0.9

0.7

0.5

0.3

0.1

–0.1–0.1 0.1 0.3 0.5 0.7 0.9

RST-A, limestone RST-A, quartz sandstone RST-B, limestone RST-B, quartz sandstone

RST-A, limestone RST-A, quartz sandstone RST-B, limestone RST-B, quartz sandstone

*Mark of Schlumberger© Schlumberger

RST-2

Page 163: Log Interpretation

RST

Through-Pipe Evaluation

RST* Reservoir Saturation ToolCarbon/Oxygen Ratio ResponseRST-A and RST-B in openholes

Schlumberger

7-17

OO

OO

OO

OOOW

OW

OWWO

WO

WO

WO

WW WW

WWWW

OW

φ = 30%, 6-in. openhole

Near detector carbon/oxygen ratio

Far

det

ecto

r ca

rbon

/oxy

gen

ratio

0.9

0.7

0.5

0.3

0.1

–0.1–0.1 0.1 0.3 0.5 0.7 0.9

OW

OO

OO

OO

OO

OW

OW

WOWO

WW

WW

WWWW

WO

WO

OW

φ = 20%, 6-in. openhole

Near detector carbon/oxygen ratio

Far

det

ecto

r ca

rbon

/oxy

gen

ratio

0.9

0.7

0.5

0.3

0.1

–0.1–0.1 0.1 0.3 0.5 0.7 0.9

RST-A, limestone RST-A, quartz sandstone RST-B, limestone RST-B, quartz sandstone

RST-A, limestone RST-A, quartz sandstone RST-B, limestone RST-B, quartz sandstone

*Mark of Schlumberger© Schlumberger

RST-3

Page 164: Log Interpretation

The compressive strength of bonded cement (either standard orfoamed) can be estimated from the CBL amplitude recordingusing Chart M-1.

Enter the nomograph with the CBL amplitude in mV; thenfollow diagonal lines to the appropriate casing size. This definessignal attenuation. Connect this value with the casing thicknessto estimate the compressive strength of the cement.

Example: CBL amplitude = 3.5 mV

Casing size = 7 in.

Casing thickness = 0.41 in. (7 in. 29 lbm)

Cement is standard

Therefore,Signal attenuation = 8.9 dB/ft or 29.2 dB/m

and Compressive strength = 2100 psi or 14.5 mPa

Through-Pipe Evaluation

CBL Interpretation—Casing DataSchlumberger

7-18

M

OD Weight† Nominal Drift(in.) per ft ID Diameter ‡

(lbm) (in.) (in.)

4 11.60 3.428 3.303

41⁄2 9.50 4.090 3.965

11.60 4.000 3.875

13.50 3.920 3.795

43⁄4 16.00 4.082 3.957

5 11.50 4.560 4.435

13.00 4.494 4.369

15.00 4.408 4.283

17.70 4.300 4.175

18.00 4.276 4.151

21.00 4.154 4.029

51⁄2 13.00 5.044 4.919

14.00 5.012 4.887

15.00 4.974 4.849

15.50 4.950 4.825

17.00 4.892 4.767

20.00 4.778 4.653

23.00 4.670 4.545

53⁄4 14.00 5.290 5.165

17.00 5.190 5.065

19.50 5.090 4.965

22.50 4.990 4.865

6 15.00 5.524 5.399

16.00 5.500 5.375

18.00 5.424 5.299

20.00 5.352 5.227

23.00 5.240 5.115

65⁄8 17.00 6.135 6.010

20.00 6.049 5.924

22.00 5.989 5.864

24.00 5.921 5.796

26.00 5.855 5.730

26.80 5.837 5.712

28.00 5.791 5.666

29.00 5.761 5.636

32.00 5.675 5.550

OD Weight† Nominal Drift(in.) per ft ID Diameter ‡

(lbm) (in.) (in.)

7 17.00 6.538 6.413

20.00 6.456 6.331

22.00 6.398 6.273

23.00 6.366 6.241

24.00 6.336 6.211

26.00 6.276 6.151

28.00 6.214 6.089

29.00 6.184 6.059

30.00 6.154 6.029

32.00 6.094 5.969

35.00 6.004 5.879

38.00 5.920 5.795

40.00 5.836 5.711

75⁄8 20.00 7.125 7.000

24.00 7.025 6.900

26.40 6.969 6.844

29.70 6.875 6.750

33.70 6.765 6.640

39.00 6.625 6.500

85⁄8 24.00 8.097 7.972

28.00 8.017 7.892

32.00 7.921 7.796

36.00 7.825 7.700

38.00 7.775 7.650

40.00 7.725 7.600

43.00 7.651 7.526

44.00 7.625 7.500

49.00 7.511 7.386

9 34.00 8.290 8.165

38.00 8.196 8.071

40.00 8.150 8.025

45.00 8.032 7.907

55.00 7.812 7.687

95⁄8 29.30 9.063 8.907

32.30 9.001 8.845

36.00 8.921 8.765

40.00 8.835 8.679

43.50 8.755 8.599

47.00 8.681 8.525

53.50 8.535 8.379

OD Weight† Nominal Drift(in.) per ft ID Diameter ‡

(lbm) (in.) (in.)

10 33.00 9.384 9.228

103⁄4 32.75 10.192 10.036

40.00 10.054 9.898

40.50 10.050 9.894

45.00 9.960 9.804

45.50 9.950 9.794

48.00 9.902 9.746

51.00 9.850 9.694

54.00 9.784 9.628

55.50 9.760 9.604

113⁄4 38.00 11.150 10.994

42.00 11.084 10.928

47.00 11.000 10.844

54.00 10.880 10.724

60.00 10.772 10.616

12 40.00 11.384 11.228

13 40.00 12.438 12.282

133⁄8 48.00 12.715 12.559

16 55.00 15.375 15.187

185⁄8 78.00 17.855 17.667

20 90.00 19.190 19.002

211⁄2 92.50 20.710 20.522

103.00 20.610 20.422

114.00 20.510 20.322

241⁄2 100.50 23.750 23.562

113.00 23.650 23.462

†Weight per foot in pounds is given for plain pipe

(no threads or coupling).‡Drift diameter is the guaranteed minimum internal

diameter of any part of the casing. Use drift diameter

to determine the largest-diameter equipment that can

besafely run inside the casing. Use internal diameter

for volume capacity calculations.

Data for Threaded Nonupset Casing

Page 165: Log Interpretation

CBL Interpretation ChartM-1

See opposite page for instructions.

Casing size (mm) Centered tool only, 3-ft [0.914-m] spacing

Casing size (in.)

dB/ft

Casing thickness (mm) (in.)

CB

L am

plitu

de (

mV

)

dB/m

115

41⁄2 7

51⁄2 75⁄8103⁄4

133⁄8

15

10

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

4

8

12

16

20

24

28

32

36

40

44

48

52

56

70

50

40

30

20

15

10 9876

5

4

3

2

1

0.5

0.2

8

7

6

5 0.2

0.3

0.4

0.5

0.6

7 in. 29 lbm

140194

176273

340

Compressive strength (psi)

(mPa)

Sta

ndar

d ce

men

t

Foa

med

cem

ent

6

5

4

3

2

1

1000

800

500

300

200

100

30

25

20

15

10

5

3

2

1

0.5

0.3

4000

3000

2000

1000

500

250

100

50

© Schlumberger

Through-Pipe EvaluationSchlumberger

7-19

M

Page 166: Log Interpretation

A-2

Appendix A

9

8

7

6

5

4

3

2

1

9

8

7

6

5

4

3

2

1

Log-Linear Grid

Page 167: Log Interpretation

Appendix A

A-3

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.60

0.70

0.80

0.90 1.0

1.2

1.4

1.6 1.82.0

2.5

3.0

4.05.06.0

8.0 10

15 203040 50100200

5000

4000

3000

2500

2000

1500

1000

500

400

300

200

150

100

50

25

10

0

Resistivity scale may be multiplied by 10 for use in a higher range

Con

duct

ivity

Res

istiv

ity

t, ρb

φ

FR

For FR =0.62 φ2.15

Water Saturation Grid for Porosity Versus Resistivity

Page 168: Log Interpretation

A-4

Appendix A

2

2.5

3

3.5

4

4.5

5

6

7

8

9

10

12

14

16

20

25

30

40

50

100

200

50010002000

500

400

300

250

200

150

100

50

40

30

20

10

5

0

Resistivity scale may be multiplied by 10 for use in a higher range

Con

duct

ivity

Res

istiv

ity

t, ρb

φ

FR

For FR =1 φ2

Water Saturation Grid for Porosity Versus Resistivity

Page 169: Log Interpretation

Appendix A Linear Grid

Page 170: Log Interpretation

Appendix B

B-5

Logging Tool Response in Sedimentary Minerals

Name FormulaρLOG φSNP φCNL φAPS† t c t s

Pe Uε tp GR Σ

(g/cm3) (p.u.) (p.u.) (p.u.) (µsec/ft) (µsec/ft) (farad/m) (nsec/m) (API units) (c.u.)

Silicates

Quartz SiO2 2.64 –1 –2 –1 56.0 88.0 1.8 4.8 4.65 7.2 4.3

β-Cristobalite SiO2 2.15 –2 –3 1.8 3.9 3.5

Opal (3.5% H2O) SiO2 (H2O).1209 2.13 4 2 58 1.8 3.7 5.0

Garnet‡ Fe3Al2(SiO4)3 4.31 3 7 11 48 45

Hornblende‡Ca2NaMg2Fe2

AlSi8O22(O,OH)23.20 4 8 43.8 81.5 6.0 19 18

Tourmaline NaMg3Al6B3Si6O2(OH)4 3.02 16 22 2.1 6.5 7450

Zircon ZrSiO4 4.50 –1 –3 69 311 6.9

Carbonates

Calcite CaCO3 2.71 0 0 0 49.0 88.4 5.1 13.8 7.5 9.1 7.1

Dolomite CaCO3MgCO3 2.85 2 1 1 44.0 72 3.1 9.0 6.8 8.7 4.7

Ankerite Ca(Mg,Fe)(CO3)2 2.86 0 1 9.3 27 22

Siderite FeCO3 3.89 5 12 3 47 15 57 6.8–7.5 8.8–9.1 52

Oxidates

Hematite Fe2O3 5.18 4 11 42.9 79.3 21 111 101

Magnetite Fe3O4 5.08 3 9 73 22 113 103

Geothite FeO(OH) 4.34 50+ 60+ 19 83 85

Limonite‡ FeO(OH)(H2O)2.05 3.59 50+ 60+ 56.9 102.6 13 47 9.9–10.9 10.5–11.0 71

Gibbsite Al(OH)3 2.49 50+ 60+ 1.1 23

Phosphates

Hydroxyapatite Ca5(PO4)3OH 3.17 5 8 42 5.8 18 9.6

Chlorapatite Ca5(PO4)3CL 3.18 –1 –1 42 6.1 19 130

Fluorapatite Ca5(PO4)3F 3.21 –1 –2 42 5.8 19 8.5

Carbonapatite (Ca5(PO4)3)2CO3H2O 3.13 5 8 5.6 17 9.1

Feldspars—Alkali‡

Orthoclase KAISi3O8 2.52 –2 –3 69 2.9 7.2 4.4–6.0 7.0–8.2 ~220 16

Anorthoclase KAISi3O8 2.59 –2 –2 2.9 7.4 4.4–6.0 7.0–8.2 ~220 16

Microcline KAISi3O8 2.53 –2 –3 2.9 7.2 4.4–6.0 7.0–8.2 ~220 16

Feldspars—Plagioclase‡

Albite NaAlSi3O8 2.59 –1 –2 –2 49 85 1.7 4.4 4.4–6.0 7.0–8.2 7.5

Anorthite CaAl2Si2O8 2.74 –1 –2 45 3.1 8.6 4.4–6.0 7.0–8.2 7.2

Micas‡

Muscovite KAl2(Si3AlO10)(OH)2 2.82 12 ~20 ~13 49 149 2.4 6.7 6.2–7.9 8.3–9.4 ~270 17

GlauconiteK0.7(Mg,Fe2,Al)

(Si4,Al10)O2(OH)2.86 ~38 ~15 4.8 14 21

Biotite K(Mg,Fe)3(AlSi3O10)(OH)2 ~2.99 ~11 ~21 ~11 50.8 224 6.3 19 4.8–6.0 7.2–8.1 ~275 30

Phlogopite KMg3(AlSi3O10)(OH)2 50 207 33

†APSporosity derived from near-to-array ratio (APLC)‡Mean value, which may vary for individual samples

For more information see Reference 41.

Page 171: Log Interpretation

Appendix B

B-6

Logging Tool Response in Sedimentary Minerals

Name FormulaρLOG φSNP φCNL φAPS† t c t s

Pe Uε tp GR Σ

(g/cm3) (p.u.) (p.u.) (p.u.) (µsec/ft) (µsec/ft) (farad/m) (nsec/m) (API units) (c.u.)

Clays‡

Kaolinite Al4Si4O10(OH)8 2.41 34 ~37 ~34 1.8 4.4 ~5.8 ~8.0 80–130 14

Chlorite(Mg,Fe,Al)6(Si,Al)4

O10(OH)82.76 37 ~52 ~35 6.3 17 ~5.8 ~8.0 180–250 25

IlliteK1–1.5Al 4(Si7–6.5,Al1–1.5)

O20(OH)42.52 20 ~30 ~17 3.5 8.7 ~5.8 ~8.0 250–300 18

Montmorillonite(Ca,Na)7(Al,Mg,Fe)4(Si,Al)8O20(OH)4(H2O)n

2.12 ~60 ~60 2.0 4.0 ~5.8 ~8.0 150–200 14

Evaporites

Halite NaCl 2.04 –2 –3 21 67.0 120 4.7 9.5 5.6–6.3 7.9–8.4 754

Anhydrite CaSO4 2.98 –1 –2 2 50 5.1 15 6.3 8.4 12

Gypsum CaSO4(H2O)2 2.35 50+ 60+ 60 52 4.0 9.4 4.1 6.8 19

Trona Na2CO3NaHCO3H2O 2.08 24 35 65 0.71 1.5 16

Tachhydrite CaCl2(MgCl2)2(H2O)12 1.66 50+ 60+ 92 3.8 6.4 406

Sylvite KCl 1.86 –2 –3 8.5 16 4.6–4.8 7.2–7.3 500+ 565

Carnalite KClMgCl2(H2O)6 1.57 41 60+ 4.1 6.4 ~220 369

Langbeinite K2SO4(MgSO4)2 2.82 –1 –2 3.6 10 ~290 24

PolyhaliteK2SO4Mg

SO4(CaSO4)2(H2O)22.79 14 25 4.3 12 ~200 24

Kainite MgSO4KCl(H2O)3 2.12 40 60+ 3.5 7.4 ~245 195

Kieserite MgSO4H2) 2.59 38 43 1.8 4.7 14

Epsomite MgSO4(H2O)7 1.71 50+ 60+ 1.2 2.0 21

Bischofite MgCl2(H2O)6 1.54 50+ 60+ 100 2.6 4.0 323

Barite BaSO4 4.09 –1 –2 267 1090 6.8

Celestite SrSO4 3.79 –1 –1 55 209 7.9

Sulfides

Pyrite FeS2 4.99 –2 –3 39.2 62.1 17 85 90

Marcasite FeS2 4.87 –2 –3 17 83 88

Pyrrhotite Fe7S8 4.53 –2 –3 21 93 94

Sphalerite ZnS 3.85 –3 –3 36 138 7.8–8.1 9.3–9.5 25

Chalopyrite CuFeS2 4.07 –2 –3 27 109 102

Galena PbS 6.39 –3 –3 1630 10,400 13

Sulfur S 2.02 –2 –3 122 5.4 11 20

Coals

Anthracite CH.358N.009O.022 1.47 37 38 105 0.16 0.23 8.7

Bituminous CH.793N.015O.078 1.24 50+ 60+ 120 0.17 0.21 14

Lignite CH.849N.015O.211 1.19 47 52 160 0.20 0.24 13

†APSporosity derived from near-to-array ratio (APLC)‡Mean value, which may vary for individual samples

For more information see Reference 41.

Page 172: Log Interpretation

Appendix C Conversions

C-7

Length

MultiplyNumber

of Centimeters Feet Inches KilometersNautical

Meters Mils Miles Millimeters Yardsto

miles

Obtain by

Centimeters 1 30.48 2.540 105 1.853 × 105 100 2.540 × 10–3 1.609 × 105 0.1 91.44

Feet 3.281 × 10–2 1 8.333 × 10–2 3281 6080.27 3.281 8.333 ×10–5 5280 3.281 × 10–3 3

Inches 0.3937 12 1 3.937 × 104 7.296 × 104 39.37 0.001 6.336 ×104 3.937 × 10–2 36

Kilometers 10–5 3.048 × 10–4 2.540 × 10–5 1 1.853 0.001 2.540 × 10–8 1.609 10–6 9.144 × 10–4

Nautical miles 1.645 × 10–4 0.5396 1 5.396 ×10–4 0.8684 4.934 ×10–4

Meters 0.01 0.3048 2.540 × 10–2 1000 1853 1 1609 0.001 0.9144

Mils 393.7 1.2 × 104 1000 3.937 × 107 3.937 × 104 1 39.37 3.6 × 104

Miles 6.214 × 10–6 1.894 × 10–4 1.578 × 10–5 0.6214 1.1516 6.214 × 10–4 1 6.214 × 10–7 5.682 × 10–4

Millimeters 10 304.8 25.40 105 1000 2.540 × 10–2 1 914.4

Yards 1.094 × 10–2 0.3333 2.778 × 10–2 1094 2027 1.094 2.778 × 10–5 1760 1.094 × 10–3 1

Area

MultiplyNumber

of AcresCircular Square Square Square Square Square Square Square Square

tomils centimeters feet inches kilometers meters miles millimeters yards

Obtain by

Acres 1 2.296 × 10–5 247.1 2.471 × 10–4 640 2.066× 10–4

Circular mils 1 1.973 × 105 1.833 × 108 1.273 × 106 1.973 ×109 1973

Squarecentimeters 5.067 × 10–6 1 929.0 6.452 1010 104 2.590 × 1010 0.01 8361

Square feet 4.356 × 104 1.076 × 10–3 1 6.944 × 10–3 1.076 × 107 10.76 2.788 × 107 1.076 × 10–5 9

Square inches 6,272,640 7.854 × 10–7 0.1550 144 1 1.550 × 109 1550 4.015 × 109 1.550 × 10–3 1296

Squarekilometers 4.047 × 10–3 10–10 9.290 × 10–8 6.452 × 10–10 1 10–6 2.590 10–12 8.361 × 10–7

Square meters 4047 0.0001 9.290 × 10–2 6.452 × 10–4 106 1 2.590 × 106 10–6 0.8361

Square miles 1.562 × 10–3 3.861 × 10–11 3.587 × 10–8 0.3861 3.861 × 10–7 1 3.861 × 10–13 3.228 × 10–7

Squaremillimeters 5.067 × 10–4 100 9.290 × 104 645.2 1012 106 1 8.361 × 105

Square yards 4840 1.196 × 10–4 0.1111 7.716 × 10–4 1.196 × 106 1.196 3.098 × 106 1.196 × 10–6 1

Page 173: Log Interpretation

Appendix C Conversions

C-8

Volume

MultiplyNumber

ofBushels Cubic Cubic Cubic Cubic Cubic Gallons

LitersPints Quarts

to(dry) centimeters feet inches meters yards (liquid) (liquid) (liquid)

Obtain by

Bushels (dry) 1 0.8036 4.651 × 10–4 28.38 2.838 × 10–2

Cubiccentimeters 3.524 × 104 1 2.832 × 104 16.39 106 7.646 × 105 3785 1000 473.2 946.4

Cubic feet 1.2445 3.531 × 10–5 1 5.787 × 10–4 35.31 27 0.1337 3.531 × 10–2 1.671 × 10–2 3.342 × 10–2

Cubic inches 2150.4 6.102 × 10–2 1728 1 6.102 × 104 46,656 231 61.02 28.87 57.75

Cubic meters 3.524 × 10–2 10–6 2.832 × 10–2 1.639 × 10–5 1 0.7646 3.785 × 10–3 0.001 4.732 × 10–4 9.464 × 10–4

Cubic yards 1.308 × 10–6 3.704× 10–2 2.143 × 10–5 1.308 1 4.951 × 10–3 1.308 × 10–3 6.189 × 10–4 1.238 × 10–3

Gallons(liquid) 2.642 × 10–4 7.481 4.329 × 10–3 264.2 202.0 1 0.2642 0.125 0.25

Liters 35.24 0.001 28.32 1.639 × 10–2 1000 764.6 3.785 1 0.4732 0.9464

Pints (liquid) 2.113 × 10–3 59.84 3.463 × 10–2 2113 1616 8 2.113 1 2

Quarts (liquid) 1.057 × 10–3 29.92 1.732 × 10–2 1057 807.9 4 1.057 0.5 1

Mass and Weight

MultiplyNumber

of Grains Grams Kilograms Milligrams Ounces† Pounds†Tons Tons Tons

to(long) (metric) (short)

Obtain by

Grains 1 15.43 1.543 × 104 1.543 × 10–2 437.5 7000

Grams 6.481 × 10–2 1 1000 0.001 28.35 453.6 1.016 × 106 106 9.072 × 105

Kilograms 6.481 × 10–5 0.001 1 10–6 2.835 × 10–2 0.4536 1016 1000 907.2

Milligrams 64.81 1000 106 1 2.835 × 104 4.536 × 105 1.016 × 109 109 9.072 × 108

Ounces† 2.286 × 10–3 3.527 × 10–2 35.27 3.527 × 10–5 1 16 3.584 × 104 3.527 × 104 3.2 × 104

Pounds† 1.429 × 10–4 2.205 × 10–3 2.205 2.205 × 10–6 6.250 × 10–2 1 2240 2205 2000

Tons (long) 9.842 × 10–7 9.842 × 10–4 9.842 × 10–10 2.790 × 10–5 4.464 × 10–4 1 0.9842 0.8929

Tons (metric) 10–6 0.001 10–9 2.835 × 10–5 4.536 × 10–4 1.016 1 0.9072

Tons (short) 1.102 × 10–6 1.102 × 10–3 1.102 × 10–9 3.125 × 10–5 0.0005 1.120 1.102 1

†Avoirdupois pounds and ounces

Page 174: Log Interpretation

Appendix C Conversions

C-9

Density or Mass per Unit Volume

MultiplyNumber Grams per Kilograms

Pounds per Pounds per Pounds perof cubic percubic foot cubic inch gallonto centimeter cubic meter

Obtain by

Grams per cubic centimeter 1 0.001 1.602 × 10–2 27.68 0.1198

Kilograms per cubic meter 1000 1 16.02 2.768 × 104 119.8

Pounds per cubic foot 62.43 6.243 × 10–2 1 1728 7.479

Pounds per cubic inch 3.613 × 10–2 3.613 × 10–5 5.787 × 10–4 1 4.329 × 10–3

Pounds per gallon 8.347 8.3 × 10–3 13.37 × 10–2 231.0 1

Pressure or Force per Unit Area

MultiplyNumber

Bayres orCentimeters Inches Inches

KilogramsPounds

PoundsTons (short)

of Atmospheres†dynes per

of mercury of mercury of waterper

perper

per Pascalsto

squareat 0°C§ at 0°C§ at 4°C

squaresquare foot

squaresquare foot

Obtain bycentimeter‡ meter†† inch‡‡

Atmospheres† 1 9.869 × 10–7 1.316 × 10–2 3.342 × 10–2 2.458 × 10–3 9.678 × 10–5 4.725 × 10–4 6.804 × 10–2 0.9450 9.869× 10–6

Bayres or dynesper square 1.013 × 106 1 1.333 × 104 3.386 × 104 2.491 × 10–3 98.07 478.8 6.895 × 104 9.576 × 105 10centimeter‡

Centimetersof mercury 76.00 7.501 × 10–5 1 2.540 0.1868 7.356 × 10–3 3.591 × 10–2 5.171 71.83 7.501 × 10–4

at 0°C§

Inchesof mercury 29.92 2.953 × 10–5 0.3937 1 7.355 × 10–2 2.896 × 10–3 1.414 × 10–2 2.036 28.28 2.953 × 10–4

at 0°C§

Inches of 406.8 4.015 × 10–4 5.354 13.60 1 3.937 × 10–2 0.1922 27.68 384.5 4.015 × 10–3

water at 4°C

Kilogramsper square 1.033 × 104 1.020 × 10–2 136.0 345.3 25.40 1 4.882 703.1 9765 0.1020meter††

Poundsper square 2117 2.089 × 10–3 27.85 70.73 5.204 0.2048 1 144 2000 2.089 × 10–2

foot

Pounds per 14.70 1.450 × 10–5 0.1934 0.4912 3.613 × 10–2 1.422 × 10–3 6.944 × 10–3 1 13.89 1.450 × 10–4

square inch‡‡

Tons (short) per 1.058 1.044 × 10–5 1.392 × 10–2 3.536 × 10–2 2.601 × 10–3 1.024 × 10–4 0.0005 0.072 1 1.044 × 10–5

square foot

Pascals 1.013 × 105 10–1 1.333 × 103 3.386 × 103 2.491 × 10–4 9.807 47.88 6.895 × 103 9.576 × 104 1

† One atmosphere (standard) = 76 cm of mercury at 0°C‡ Bar§ To convert height h of a column of mercury at t °C to the equivalent height h0 at 0°C, use h0 = h {1 – [(m– l ) t / 1 + mt]}, where m = 0.0001818 and l = 18.4 × 10–6

if the scale is engraved on brass; l = 8.5 × 10–6 if on glass. This assumes the scale is correct at 0°C; for other cases (any liquid) see International Critical Tables,Vol. 1, 68.

††1 gram per square centimeter = 10 kilograms per square meter‡‡psi = MPa × 145.038

psi/ft = 0.433 × g/cm3 = lb/ft3/144 = lb/gal/19.27

Temperature

°F 1.8°C + 32

°C 5⁄9 (°F – 32)

°R °F + 459.69

K °C + 273.16

Page 175: Log Interpretation

Appendix D Symbols

D-10

Standard Standard StandardTraditional SPE computer Description Customary unit or relation reservesymbol and symbola symbolb

SPWLAa

a a ACT electrochemical activity equivalents/liter, moles/liter

a KR COER coefficient in FR – φ relation FR = KR/φm MR, a, C

A A AWT atomic weight amu

C C ECN conductivity (electrical logging) millimho per meter (mmho/m) σ

Cp Bcp CORCP sonic compaction correction factor φSVcor= Bcp φSV Ccp

D D DPH depth ft, m y, H

d d DIA diameter in. D

E E EMF electromotive force mV V

F FR FACHR formation resistivity factor FR = KR/φm

G G GMF geometrical factor (multiplier) fG

H IH HYX hydrogen index iH

h h THK bed thickness, individual ft, m, in. d, e

I I –X index i

FFI IFf FFX free fluid index iFf

SI Isl SLX silt index Islt, isl, islt

Iφ PRX porosity index iφ

SPI Iφ2 PRXSE secondary porosity index iφ2

J Gp GMFP pseudogeometrical factor fGp

K Kc COEC electrochemical SP coefficient Ec = Kc log (aw/amf) Mc, Kec

k k PRM permeability, absolute (fluid flow) md K

L L LTH length, path length ft, m, in. s, l

M M SAD slope, sonic interval transit time versus M = [(t f – t LOG)/(ρb – ρf)] × 0.01 mθDdensity × 0.01, in M-N plot

m m MXP porosity (cementation) exponent FR = KR/φm

N N SND slope, neutron porosity versus N = (φNf – φN)/(ρb – ρf) mφNDdensity, in M-N Plot

n n SXP saturation exponent Swn = FRRw/Rt

P C CNC salinity g/g, ppm c, n

p p PRS pressure psi, kg/cm2c, atm P

Pc Pc PRSCP capillary pressure psi, kg/cm2c, atm Pc, pc

Pe photoelectric cross section

a References: “SPE Letter and Computer Symbols Standard,” 1986.

b Reserve symbols are to be used only if conflict arises between standard symbols used in the same paper.

c The unit, kilograms per square centimeter, is to be replaced in use by the SI metric unit, the pascal.

d “DEL” is in the operator field. “RAD” is in the main-quantity field.

e Suggested computer symbol.

Page 176: Log Interpretation

D-11

Standard Standard StandardTraditional SPE computer Description Customary unit or relation reservesymbol and symbola symbolbSPWLAa

Qv shaliness (CEC per ml water) meq/ml

q fφshd FIMSHD dispersed-shale volume fraction of φimfshd, qintermatrix porosity

R R RES resistivity (electrical) ohm-m ρ, r

r r RAD radial distance from hole axis in. R

S S SAT saturation fraction or percent ρ, sof pore volume

T T TEM temperature °F, °C, K θ

BHT, Tbh Tbh TEMBH bottomhole temperature °F, °C, K θBH

FT, Tfm Tf TEMF formation temperature °F, °C, K

t t TIM time µsec, sec, min t

t t TAC interval transit time ∆t

U volumetric cross section barns/cm3

v v VAC velocity (acoustic) ft/sec, m/sec V, u

V V VOL volume cm3, ft3, etc. v

V V VLF volume fraction fv, Fv

Z Z ANM atomic number

α αSP REDSP SP reduction factor

γ γ SPG specific gravity (ρ/ρw or ρg/ρair) s, Fs

φ φ POR porosity fraction or percentage f, εof bulk volume, p.u.

φ1 PORPR primary porosity fraction or percentage f1, e1of bulk volume, p.u.

φ2 PORSE secondary porosity fraction or percentage f2, e2of bulk volume, p.u.

φig PORIG intergranular porosity φig = (Vb – Vgr)/Vb fig, εig

φz, φim φim PORIM intermatrix porosity φim = (Vb – Vma)/Vb fim, εim

∆r ∆r DELRADd radial distance (increment) in. ∆R

∆t t TAC sonic interval transit time µsec/ft ∆t

∆φNex DELPORNXe excavation effect p.u.

λ Kani COEANI coefficient of anisotropy Mani

ρ ρ DEN density g/cm3 D

Σ Σ XST neutron capture cross section c.u., cm–1 SXSTMAC macroscopic

τ τdN TIMDN thermal neutron decay time µsec tdn

a References: “SPE Letter and Computer Symbols Standard,” 1986.

b Reserve symbols are to be used only if conflict arises between standard symbols used in the same paper.

c The unit, kilograms per square centimeter, is to be replaced in use by the SI metric unit, the pascal.

d “DEL” is in the operator field. “RAD” is in the main-quantity field.

e Suggested computer symbol.

Appendix D Symbols

Page 177: Log Interpretation

Appendix E

E-12

Subscripts

Standard Standard StandardTraditional SPE computer Explanation Example reservesubscript and subscripta subscriptb

SPWLAa

a LOG L apparent from log reading RLOG, RLL log(or use tool description subscript)

a a A apparent (general) Ra ap

abs cap C absorption, capture Σcap

anh anh AH anhydrite

b b B bulk ρb B, t

bh bh BH bottomhole Tbh w, BH

clay cl CL clay Vcl cla

cor, c cor COR corrected tcor

c c C electrochemical Ec ec

cp cp CP compaction Bcp

D D D density log d

dis shd SHD dispersed shale Vshd

dol dol DL dolomite tdol

e, eq eq EV equivalent Rweq, Rmfeq EV

f, fluid f F fluid ρf fl

fm f F formation (rock) Tf fm

g, gas g G gas Sg G

gr GR grain ρgr

gxo gxo GXO gas in flushed zone Sgxo GXO

gyp gyp GY gypsum ρgyp

h h H hole dh H

h h H hydrocarbon ρh H

hr hr HR residual hydrocarbon Shr

i i I invaded zone (inner boundary) di I

ig ig IG intergranular (incl. disp. and str. shale) φig

im, z im IM intermatrix (incl. disp. shale) φim

int int I intrinsic (as opposed to log value) Σ int

irr i IR irreducible Swi ir, i

J j J liquid junction Ej ι

k k K electrokinetic Ek ek

l L log t pl log

lam l LAM lamination, laminated Vshl L

lim lim LM limiting value φlim

liq L L liquid ρL l

a References: “SPE Letter and Computer Symbols Standard,” 1986.

b Reserve symbols are to be used only if conflict arises between standard symbols used in the same paper.

Page 178: Log Interpretation

Appendix F

F-15

Abbreviations

These unit abbreviations, which have beenadopted by the Societyfor Petroleum Engineers (SPE), are appropriate for most publica-tions. However, an accepted industry standard may be used instead.For instance, in the drilling field, ppg may be more common thanlbm/gal when referring to pounds per gallon.

Unit abbreviations are followed by a period only when theabbreviation forms aword (for example, in. for inch).

acre. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .spell out

acre-foot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .acre-ft

alternating-current (adj.). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .AC

ampere. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A

ampere-hour. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .amp-hr

angstrom unit (10–8 cm). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A

atmosphere. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .atm

atomic mass unit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .amu

average. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .avg

barrel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .bbl

barrels of fluid per day. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .BFPD

barrels of liquid per day. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .BLPD

barrels of oil per day. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .BOPD

barrels of water per day. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .BWPD

barrels per day. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .B/D

barrels per minute. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .bbl/min

billion cubic feet (billion = 109). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Bcf

billion cubic feet per day. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Bcf/D

billion standard cubic feet per day. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Bscf/D

bits per inch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .bpi

bits per second. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .bps

bottomhole pressure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .BHP

bottomhole temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .BHT

British thermal unit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Btu

capture unit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .c.u.

centimeter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .cm

centipoise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .cp

centistoke. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .cstk

coulomb. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .C

counts per second. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .cps

cubic centimeter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .cm3

cubic foot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ft3

cubic feet per barrel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ft3/bbl

cubic feet per day. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ft3/D

cubic feet per minute. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ft3/min

cubic feet per pound. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ft3/lbm

cubic feet per second. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ft3/sec

cubic inch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .in.3

cubic meter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .m3

cubic millimeter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .mm3

cubic yard. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .yd3

Curie. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Ci

darcy, darcies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .spell out

day. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .spell out

dead-weight ton. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .DWT

decibel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .dB

degree (American Petroleum Institute). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .°API

degree Celsius. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .°C

degree Fahrenheit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .°F

degree Kelvin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(see “kelvin”)

degree Rankine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .°R

direct-current (as adjective). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .DC

dots per inch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .dpi

electromotive force. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .emf

electron volt. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .eV

farad. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .F

feet per minute. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ft/min

feet per second. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ft/sec

foot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ft

foot-pound. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ft-lbf

gallon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .gal

gallons per minute. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .gal/min

gallons per day. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .gal/D

gigabyte. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Gbyte

gigahertz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .GHz

gigaPascal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .gPa

gigawatt. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .GW

gram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .g

hertz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Hz

horsepower. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .hp

horsepower-hour. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .hp-hr

hour. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .hr

hyperbolic sine, cosine, etc.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .sinh, cosh, etc.

inch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .in.

inches per second. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .in./sec

kelvin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .K

kilobyte. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .kbyte

kilogram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .kg

kilogram-meter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .kg-m

kilohertz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .kHz

kilometer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .km

kilopond (1000 lbf). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .lbf

Page 179: Log Interpretation

Appendix F

F-16

Abbreviations

kilovolt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .kV

kilowatt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .kW

kilowatt-hour. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .kW-hr

kips per square inch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ksi

lines per inch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .lpi

lines per minute. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .lpm

lines per second. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .lps

liter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .spell out

megabyte. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Mbyte

megahertz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .MHz

meter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .m

mho per meter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ./m

microsecond. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .µsec

mile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .spell out

miles per hour. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .mph

milliamperes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .milliamp

milliCurie. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .mCi

millidarcy, millidarcies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .md

milliequivalent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .meq

milligram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .mg

milliliter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .mL

millimeter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .mm

millimho . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .mmho

million cubic feet (million = 106) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .MMcf

million cubic feet per day. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .MMcf/D

million electron volts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .MeV

million Pascals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .MPa

million standard cubic feet per day. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .MMscf/D

millisecond. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .msec

millisiemen. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .mS

millivolt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .mV

mils per year. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .mil/yr

minute. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .min

mole. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .mol

nanosecond. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .nsec

newton. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .N

ohm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ohm

ohm-centimeter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ohm-cm

ohm-meter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ohm-m

ounce. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .oz

parts per million. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ppm

picofarad. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .pF

pint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .pt

pore volume. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .PV

porosity unit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .p.u.

pound (force). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .lbf

pound (mass). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .lbm

pound per cubic foot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .lbm/ft3

pound per gallon. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .lbm/gal

pounds per square inch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .psi

pounds per square inch absolute. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .psia

pounds per square inch gauge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .psig

quart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .qt

reservoir barrel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .res bbl

reservoir barrel per day. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .RB/D

revolutions per minute. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .rpm

saturation unit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .s.u.

second. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .sec

self-potential. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .SP

shots per foot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .spf

specific productivity index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .SPI

square. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .sq

square centimeter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .cm2

square foot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ft2

square inch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .in.2

square meter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .m2

square millimeter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .mm2

standard. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .std

standard cubic feet per day. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .scf/D

standard cubic foot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .scf

stock-tank barrel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .STB

stock-tank barrels per day. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .STB/D

stoke. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .St

teragram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Tg

thousand cubic feet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Mcf

thousand cubic feet per day. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Mcf/D

thousand pounds per square inch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .kpsi

thousand standard cubic feet per day. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Mscf/D

tonne (metric ton). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .t

trillion cubic feet (trillion = 10–12). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Tcf

trillion cubic feet per day. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Tcf/D

volt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V

volume per volume. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .vol/vol

watt. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .W

yard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .yd

year. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .yr

V

Page 180: Log Interpretation

Appendix G

G-17

References

1. Overton HL and Lipson LB: “A Correlation of the ElectricalProperties of Drilling Fluids with Solids Content,”Transactions, AIME (1958) 213.

2. Desai KP and Moore EJ: “Equivalent NaCl Concentrationsfrom Ionic Concentrations,” The Log Analyst (May–June1969).

3. Gondouin M, Tixier MP and Simard GL: “An ExperimentalStudy on the Influence of the Chemical Composition ofElectrolytes on the SP Curve,” JPT (February 1957).

4. Segesman FF: “New SP Correction Charts,” Geophysics(December 1962) 27,No. 6, PI.

5. Alger RP, Locke S, Nagel WA and Sherman H: “The DualSpacing Neutron Log–CNL,” paper SPE 3565, presented atthe 46th SPE Annual Meeting, New Orleans, Louisiana,USA (1971).

6. Segesman FF and Liu OYH: “The Excavation Effect,”Transactions of the SPWLA 12th Annual LoggingSymposium(1971).

7. Burke JA, Campbell RL Jr and Schmidt AW: “The Litho-Porosity Crossplot,” Transactions of the SPWLA 10th AnnualLogging Symposium (1969), paper Y.

8. Clavier C and Rust DH: “MID-PLOT: A New LithologyTechnique,” The Log Analyst(November–December 1976).

9. Tixier MP, Alger RP, Biggs WP and Carpenter BN: “DualInduction-Laterolog: A New Tool for Resistivity Analysis,”paper 713, presented at the 38th SPE Annual Meeting, NewOrleans, Louisiana, USA (1963).

10. Wahl JS, Nelligan WB, Frentrop AH, Johnstone CW andSchwartz RJ: “The Thermal Neutron Decay Time Log,”SPEJ (December 1970).

11. Clavier C, Hoyle WR and Meunier D:” QuantitativeInterpretation of Thermal Neutron Decay Time Logs, Part Iand II,” JPT (June 1971).

12. Poupon A, Loy ME and Tixier MP: “A Contribution toElectrical Log Interpretation in Shaly Sands,” JPT (June1954).

13. Tixier MP, Alger RP and Tanguy DR: “New Developmentsin Induction and Sonic Logging,” paper 1300G, presented atthe 34th SPE Annual Meeting, Dallas, Texas, USA (1959).

14. Rodermund CG, Alger RP and Tittman J: “Logging EmptyHoles,” OGJ (June 1961).

15. Tixier MP: “Evaluation of Permeability from Electric LogResistivity Gradients,” OGJ (June 1949).

16. Morris RL and Biggs WP: “Using Log-Derived Values ofWater Saturation and Porosity,” Transactions of the SPWLA8th Annual Logging Symposium(1967).

17. Timur A: “An Investigation of Permeability, Porosity, andResidual Water Saturation Relationships for SandstoneReservoirs,” The Log Analyst (July–August 1968).

18. Wyllie MRJ, Gregory AR and Gardner GHF: “Elastic WaveVelocities in Heterogeneous and Porous Media,” Geophysics(January 1956) 21,No. 1.

19. Tixier MP, Alger RP and Doh CA: “Sonic Logging,” JPT(May 1959) 11,No. 5.

20. Raymer LL, Hunt ER and Gardner JS: “An Improved SonicTransit Time-to-Porosity Transform,” Transactions of theSPWLA 21st Annual Logging Symposium(1980).

21. Coates GR and Dumanoir JR: “A New Approach toImproved Log-Derived Permeability,” The Log Analyst(January–February 1974).

22. Raymer LL: “Elevation and Hydrocarbon DensityCorrection for Log-Derived Permeability Relationships,”The Log Analyst (May–June 1981).

23. Westaway P, Hertzog R and Plasic RE: “The GammaSpectrometer Tool, Inelastic and Capture Gamma RaySpectroscopy for Reservoir Analysis,” paper SPE 9461,presented at the 55th SPE Annual Technical Conferenceand Exhibition, Dallas, Texas, USA (1980).

24. Quirein JA, Gardner JS and Watson JT: “Combined NaturalGamma Ray Spectral/Litho-Density Measurements Appliedto Complex Lithologies,” paper SPE 11143, presented at the57th SPE Annual Technical Conference and Exhibition, NewOrleans, Louisiana, USA (1982).

25. Harton RP, Hazen GA, Rau RN and Best DL: “Electromag-netic Propagation Logging: Advances in Technique andInterpretation,” paper SPE 9267, presented at the 55th SPEAnnual Technical Conference and Exhibition, Dallas, Texas,USA (1980).

26. Serra O, Baldwin JL and Quirein JA: “Theory and PracticalApplication of Natural Gamma Ray Spectrometry,”Transactions of the SPWLA 21st Annual Logging Symposium(1980).

27. Gardner JS and Dumanoir JL: “Litho-Density LogInterpretation,” Transactions of the SPWLA 21st AnnualLogging Symposium(1980).

28. Edmondson H and Raymer LL: “Radioactivity LoggingParameters for Common Minerals,” Transactions of theSPWLA 20th Annual Logging Symposium(1979).

29. Barber TD: “Real-Time Environmental Corrections for thePhasor Dual Induction Tool,” Transactions of the SPWLA26th Annual Logging Symposium(1985).

30. Roscoe BA and Grau J: “Response of the Carbon-OxygenMeasurement for an Inelastic Gamma Ray SpectroscopyTool,” paper SPE 14460, presented at the 60th SPE AnnualTechnical Conference and Exhibition, Las Vegas, Nevada,USA (1985).

Page 181: Log Interpretation

Appendix G

G-18

References

31. Freedman R and Grove G: “Interpretation of EPT-G Logs inthe Presence of Mudcakes,” paper presented at the 63rd SPEAnnual Technical Conference and Exhibition, Houston,Texas, USA (1988).

32. Gilchrist WA Jr, Galford JE, Flaum C, Soran PD andGardner JS: “Improved Environmental Corrections forCompensated Neutron Logs,” paper SPE 15540, presented atthe 61st SPE Annual Technical Conference and Exhibition,New Orleans, Louisiana, USA (1986).

33. Tabanou JR, Glowinski R and Rouault GF: “SPDeconvolution and Quantitative Interpretation in ShalySands,” Transactions of the SPWLA 28th Annual LoggingSymposium(1987).

34. Kienitz C, Flaum C, Olesen J-R and Barber T: “AccurateLogging in Large Boreholes,” Transactions of the SPWLA27th Annual Logging Symposium(1986).

35. Galford JE, Flaum C, Gilchrist WA Jr and Duckett SW:“Enhanced Resolution Processing of Compensated NeutronLogs, paper SPE 15541, presented at the 61st SPE AnnualTechnical Conference and Exhibition, New Orleans,Louisiana, USA (1986).

36. Lowe TA and Dunlap HF: “Estimation of Mud FiltrateResistivity in Fresh Water Drilling Muds,”The Log Analyst(March–April 1986).

37. Clark B, Luling MG, Jundt J, Ross M and Best D: “A DualDepth Resistivity for FEWD,” Transactions of the SPWLA29th Annual Logging Symposium(1988).

38. Ellis DV, Flaum C, Galford JE and Scott HD: “The Effect ofFormation Absorption on the Thermal Neutron PorosityMeasurement,” paper presented at the 62nd SPE AnnualTechnical Conference and Exhibition, Dallas, Texas, USA(1987).

39. Watfa M and Nurmi R: “Calculation of Saturation,Secondary Porosity and Producibility in Complex MiddleEast Carbonate Reservoirs,” Transactions of the SPWLA28th Annual Logging Symposium(1987).

40. Brie A, Johnson DL and Nurmi RD:“Effect of SphericalPores on Sonic and Resistivity Measurements,”Transactionsof the SPWLA26th Annual Logging Symposium(1985).

41. Serra O: Element Mineral Rock Catalog,Schlumberger(1990).