Local Volatility Dynamic Models - Columbia University · Local Volatility Dynamic Models ... 4...

35
Local Volatility Dynamic Models Ren ´ e Carmona * * Bendheim Center for Finance Department of Operations Research & Financial Engineering Princeton University Columbia November 9, 2007 14th CAP 2007 Local Volatility Dynamic Models

Transcript of Local Volatility Dynamic Models - Columbia University · Local Volatility Dynamic Models ... 4...

Page 1: Local Volatility Dynamic Models - Columbia University · Local Volatility Dynamic Models ... 4 Understanding Derman-Kani & Setting Dupire in Motion R.C. review article in 4th Paris-Princeton

Local Volatility Dynamic Models

Rene Carmona∗

∗Bendheim Center for FinanceDepartment of Operations Research & Financial Engineering

Princeton University

Columbia November 9, 2007

14th CAP 2007 Local Volatility Dynamic Models

Page 2: Local Volatility Dynamic Models - Columbia University · Local Volatility Dynamic Models ... 4 Understanding Derman-Kani & Setting Dupire in Motion R.C. review article in 4th Paris-Princeton

Contents

Joint work with Sergey Nadtochyi

Motivation1 Understanding Market Models for Credit Portfolios

(Shoenbucher or SPA?)2 Choosing Time Evolution for a NonStationary Markov Process3 Let’s do it for Equity Markets4 Understanding Derman-Kani & Setting Dupire in Motion

R.C. review article in 4th Paris-Princeton Lecture Notes in MathematicalFinance. Lecture Notes in Math #1919

R.C. & S. Nadtochy, submitted

14th CAP 2007 Local Volatility Dynamic Models

Page 3: Local Volatility Dynamic Models - Columbia University · Local Volatility Dynamic Models ... 4 Understanding Derman-Kani & Setting Dupire in Motion R.C. review article in 4th Paris-Princeton

Contents

Joint work with Sergey Nadtochyi

Motivation1 Understanding Market Models for Credit Portfolios

(Shoenbucher or SPA?)2 Choosing Time Evolution for a NonStationary Markov Process3 Let’s do it for Equity Markets4 Understanding Derman-Kani & Setting Dupire in Motion

R.C. review article in 4th Paris-Princeton Lecture Notes in MathematicalFinance. Lecture Notes in Math #1919

R.C. & S. Nadtochy, submitted

14th CAP 2007 Local Volatility Dynamic Models

Page 4: Local Volatility Dynamic Models - Columbia University · Local Volatility Dynamic Models ... 4 Understanding Derman-Kani & Setting Dupire in Motion R.C. review article in 4th Paris-Princeton

Contents

Joint work with Sergey Nadtochyi

Motivation1 Understanding Market Models for Credit Portfolios

(Shoenbucher or SPA?)2 Choosing Time Evolution for a NonStationary Markov Process3 Let’s do it for Equity Markets4 Understanding Derman-Kani & Setting Dupire in Motion

R.C. review article in 4th Paris-Princeton Lecture Notes in MathematicalFinance. Lecture Notes in Math #1919

R.C. & S. Nadtochy, submitted

14th CAP 2007 Local Volatility Dynamic Models

Page 5: Local Volatility Dynamic Models - Columbia University · Local Volatility Dynamic Models ... 4 Understanding Derman-Kani & Setting Dupire in Motion R.C. review article in 4th Paris-Princeton

Contents

Joint work with Sergey Nadtochyi

Motivation1 Understanding Market Models for Credit Portfolios

(Shoenbucher or SPA?)2 Choosing Time Evolution for a NonStationary Markov Process3 Let’s do it for Equity Markets4 Understanding Derman-Kani & Setting Dupire in Motion

R.C. review article in 4th Paris-Princeton Lecture Notes in MathematicalFinance. Lecture Notes in Math #1919

R.C. & S. Nadtochy, submitted

14th CAP 2007 Local Volatility Dynamic Models

Page 6: Local Volatility Dynamic Models - Columbia University · Local Volatility Dynamic Models ... 4 Understanding Derman-Kani & Setting Dupire in Motion R.C. review article in 4th Paris-Princeton

Equity Market Model

{St}t≥0 price process0 interest rate (discount factor βt ≡ 1)No dividend

Classical ApproachSpecify dynamics for St , e.g. GBM in Black Scholes case

dSt = Stσt dWt

Compute prices of derivatives by expectation, e.g.

C0(T , K ) = E{(ST − K )+}

14th CAP 2007 Local Volatility Dynamic Models

Page 7: Local Volatility Dynamic Models - Columbia University · Local Volatility Dynamic Models ... 4 Understanding Derman-Kani & Setting Dupire in Motion R.C. review article in 4th Paris-Princeton

Actively/Liquidly Traded Instrument

Main AssumptionsAt each time t ≥ 0 we observe Ct(T , K ) the market price at timet of European call options of strike K and maturity T > t .Market prices by expectation

Ct(T , K ) = E{(ST − K )+|Ft}

for some measure (not necessarily unique) PEmpirical FactMany observed option price movements cannot be attributed tochanges in St

Fundamental market data: Surface {Ct(T , K )}T ,K instead of St

14th CAP 2007 Local Volatility Dynamic Models

Page 8: Local Volatility Dynamic Models - Columbia University · Local Volatility Dynamic Models ... 4 Understanding Derman-Kani & Setting Dupire in Motion R.C. review article in 4th Paris-Princeton

Remarks

No arbitrage impliesC0(T , K ) increasing in TC0(T , K ) non-increasing and convex in KlimK↗∞C0(T , K ) = 0limK↘0 C0(T , K ) = S0

Realistic Set-UpWe actually observe

C0(Ti , Kij) i = 1, · · · , m, j = 1, · · · , ni

Davis-Hobson & references therein.

14th CAP 2007 Local Volatility Dynamic Models

Page 9: Local Volatility Dynamic Models - Columbia University · Local Volatility Dynamic Models ... 4 Understanding Derman-Kani & Setting Dupire in Motion R.C. review article in 4th Paris-Princeton

More Remarks

Switch to notation τ = T − t for time to maturity (Musiela)Call surface {Ct(τ, K )} of prices Ct(T , K ) parameterized byτ ≥ 0 and K ≥ 0.

Ct(τ, K ) = E{(St+τ − K )+|Ft} = EPt{(St+τ − K )+}.

Ct(τ, K ) =

∫ ∞

0(x − K )+ dµt,t+τ (dx)

Crucial Fact (Breeden-Litzenberger)For each τ > 0, the knowledge of all the prices Ct(τ, K ) completelydetermines the marginal distribution µt,t+τ of St+τ w.r.t. Pt .

14th CAP 2007 Local Volatility Dynamic Models

Page 10: Local Volatility Dynamic Models - Columbia University · Local Volatility Dynamic Models ... 4 Understanding Derman-Kani & Setting Dupire in Motion R.C. review article in 4th Paris-Princeton

Black-Scholes FormulaDynamics of the underlying asset

dSt = StσdWt , S0 = s0

Wiener process {Wt}t , σ > 0.

Price of a call option

Ct(τ, K ) = StΦ(d1)− KΦ(d2)

with

d1 =− log Mt + τσ2/2

σ√

τ, d1 =

− log Mt − τσ2/2σ√

τ

Mt = K/St moneyness of the option

Φ error function

Φ(x) =1√2π

∫ x

−∞e−y2/2 dy , x ∈ R.

14th CAP 2007 Local Volatility Dynamic Models

Page 11: Local Volatility Dynamic Models - Columbia University · Local Volatility Dynamic Models ... 4 Understanding Derman-Kani & Setting Dupire in Motion R.C. review article in 4th Paris-Princeton

Implied Volatility

Classical Black-Scholes frameworkOn any given day t fix

maturity T (or time to maturity τ )strike K

price is an increasing function of the parameter σ

σ � C(BS)t (τ, K ) one-to-one

In general case, given an option price C quoted on the market, itsimplied volatiltiy is the unique number σ = Σt(τ, K ) for which

Ct(τ, K ) = C.

Used by ALL market participants as a currency for options

the wrong number to put in the wrong formula to get the right price.(Black)

14th CAP 2007 Local Volatility Dynamic Models

Page 12: Local Volatility Dynamic Models - Columbia University · Local Volatility Dynamic Models ... 4 Understanding Derman-Kani & Setting Dupire in Motion R.C. review article in 4th Paris-Princeton

Implied Volatility Code-Book

{Ct(τ, K ); τ > 0, K > 0} � {Σt(τ, K ); τ > 0, K > 0}

Static (t = 0) ”No arbitrage” conditions difficult to formulate(B. Dupire, Derman-Kani, P.Carr, ....)

Dynammic ”No arbitrage conditions” difficult to check in adynamic framework

(Derman-Kani for tree models)

14th CAP 2007 Local Volatility Dynamic Models

Page 13: Local Volatility Dynamic Models - Columbia University · Local Volatility Dynamic Models ... 4 Understanding Derman-Kani & Setting Dupire in Motion R.C. review article in 4th Paris-Princeton

Search for another Option Code-Book

dSt = Stσt dWt , S0 = s0

If t > 0 is fixed, for any τ1 and τ2 such that 0 < τ1 < τ2, then for anyconvex function φ on [0,∞) we have (Jensen)∫ ∞

0φ(x)µt,t+τ1(dx) ≤

∫ ∞

0φ(x)µt,t+τ2(dx)

Orµt,t+τ1 � µt,t+τ2

{µt,t+τ}τ>0 non-decreasing in the balayage order(Kellerer) Existence of a Markov martingale {Yτ}τ≥0 withmarginal distributions {µt,t+τ}τ>0.NB{Yτ}τ≥0 contains more information than the mere marginaldistributions {µt,t+τ}τ>0

14th CAP 2007 Local Volatility Dynamic Models

Page 14: Local Volatility Dynamic Models - Columbia University · Local Volatility Dynamic Models ... 4 Understanding Derman-Kani & Setting Dupire in Motion R.C. review article in 4th Paris-Princeton

Local Volatility Code-Book

On Wiener space (in Brownian filtration)Martingale Property implies

Yτ = Y0 +

∫ τ

0Ysa(s) dBs

Markov Property implies

a(s, ω) = at(s, Ys(ω))

At each time t , I choose surface {at(τ, K )}τ>0,K>0 as an alternativecode-book for {C(τ, K )}τ>0,K>0.{at (τ, K )}τ>0,K>0 was introduced in a static framework (i.e. for t = 0) simultaneouslyby Dupire and Derman and Kani – called local volatility surface

14th CAP 2007 Local Volatility Dynamic Models

Page 15: Local Volatility Dynamic Models - Columbia University · Local Volatility Dynamic Models ... 4 Understanding Derman-Kani & Setting Dupire in Motion R.C. review article in 4th Paris-Princeton

PDE Code, I

AssumedYτ = Yτ at(τ, Yτ )dBτ , τ > 0

with initial conditionY0 = St

and µt,t+τ has density gt(τ, x).

Breeden-Litzenberger argument (specific to the hockey-stick pay-offfunction)

Ct(τ, K ) =

∫ ∞

0(x − K )+gt(τ, x)dx

Differentiate both sides twice with respect to K

∂2

∂K 2 Ct(τ, K ) = gt(τ, K ). (1)

14th CAP 2007 Local Volatility Dynamic Models

Page 16: Local Volatility Dynamic Models - Columbia University · Local Volatility Dynamic Models ... 4 Understanding Derman-Kani & Setting Dupire in Motion R.C. review article in 4th Paris-Princeton

PDE Code, II

Tanaka’s formula:

(Yτ − K )+ = (Y0 − K )+ +

∫ τ

01[K ,∞)(Ys)dYs +

12

∫ τ

0δK (Ys) d [Y , Y ]s

and taking Et - expectations on both sides using the fact that Y is amartingale satisfying d [Y , Y ]s = Y 2

s at(s, Ys)2ds, we get:

Ct(τ, K ) = (St − K )+ +12

∫ τ

0Et{δK (Ys)Y 2

s at(s, Ys)2}ds

= (St − K )+ +12

∫ τ

0K 2at(s, K )2gt(s, K ) ds.

Take derivatives with respect to τ on both sides

∂C(τ, K )

∂τ=

12

K 2at(τ, K )2gt(τ, K ).

14th CAP 2007 Local Volatility Dynamic Models

Page 17: Local Volatility Dynamic Models - Columbia University · Local Volatility Dynamic Models ... 4 Understanding Derman-Kani & Setting Dupire in Motion R.C. review article in 4th Paris-Princeton

PDE Code, III

Equate both expressions of gt(τ, K )

at(τ, K )2 =2∂τ C(τ, K )

K 2∂2KK C(τ, K )

Smooth Call Prices ↪→ Local Volatilities

14th CAP 2007 Local Volatility Dynamic Models

Page 18: Local Volatility Dynamic Models - Columbia University · Local Volatility Dynamic Models ... 4 Understanding Derman-Kani & Setting Dupire in Motion R.C. review article in 4th Paris-Princeton

PDE Code IV

From local volatility surface {at(τ, K )}τ,K to call option prices

{Ct(τ, K )}τ,K solve PDE (Dupire’s PDE)

∂τ C(τ, K ) = 12 K 2 a2(τ, K )∂2

KK C(τ, K ), τ > 0, K > 0

C(0, K ) = (St − K )+

{Ct(τ, K ); τ > 0, K > 0} ↔ {at(τ, K ); τ > 0, K > 0}

Why would this approach be better?

NEED ONLY POSITIVITY for no arbitrage

14th CAP 2007 Local Volatility Dynamic Models

Page 19: Local Volatility Dynamic Models - Columbia University · Local Volatility Dynamic Models ... 4 Understanding Derman-Kani & Setting Dupire in Motion R.C. review article in 4th Paris-Princeton

Dupire Formula

IfdSt = Stσt dWt

for some Wiener process {Wt}t and some adapted non-negaitveprocess {σt}t , then

at(τ, K )2 = Et{σ2t+τ |St+τ = K}.

14th CAP 2007 Local Volatility Dynamic Models

Page 20: Local Volatility Dynamic Models - Columbia University · Local Volatility Dynamic Models ... 4 Understanding Derman-Kani & Setting Dupire in Motion R.C. review article in 4th Paris-Princeton

HJM Prescription

Proposed by Derman-Kani in 1998, but NEVER developed!

Compute a0(τ, K ) from market call prices (Initial condition)Define a dynamic model by defining the dynamics of the localvolatility surface

dat(τ, K ) = αt(τ, K )dt + βt(τ, K )dWt

14th CAP 2007 Local Volatility Dynamic Models

Page 21: Local Volatility Dynamic Models - Columbia University · Local Volatility Dynamic Models ... 4 Understanding Derman-Kani & Setting Dupire in Motion R.C. review article in 4th Paris-Princeton

Consistency

Question Under what conditions do the Call Prices computedfrom the dynamics of at(τ, K ) come from a model of the form ofthe form

dSt = StσtdB1t

with initial condition S0 = s the underlying instrument?Answer

σt = at(0, St)

14th CAP 2007 Local Volatility Dynamic Models

Page 22: Local Volatility Dynamic Models - Columbia University · Local Volatility Dynamic Models ... 4 Understanding Derman-Kani & Setting Dupire in Motion R.C. review article in 4th Paris-Princeton

No-Arbitrage Condition

Question Under what conditions on the dynamics of at(τ, K ) arethe call prices (local) martingales?Answer

(α +‖β‖2

2) · ∂2

∂K 2 C +∂

∂t〈a,

∂2

∂K 2 C〉t =∂

∂Ta · ∂2

∂K 2 C

Recall classical HJM drift condition

α(t , T ) = β(t , T ) ·∫ T

tβ(t , s)ds =

d∑j=1

β(j)(t , T )

∫ T

tβ(j)(t , s)ds.

14th CAP 2007 Local Volatility Dynamic Models

Page 23: Local Volatility Dynamic Models - Columbia University · Local Volatility Dynamic Models ... 4 Understanding Derman-Kani & Setting Dupire in Motion R.C. review article in 4th Paris-Princeton

Main Result Statement

The dynamic model of the local volatility surface given by the system ofequations

dat(τ, K ) = αt(τ, K )dt + βt(τ, K )dWt , t ≥ 0, (2)

is consistent with a spot price model of the form

dSt = StσtdBt

for some Wiener process {Bt}t , and does not allow for arbitrage if and onlyif a.s. for all t > 0:

•at(0, St) = σt (3)

•∂τ at(τ, K )∂2KK Ct(τ, K ) = (4)(

at(τ, K )αt(τ, K ) +‖βt(τ, K )‖2

2

)∂2

KK Ct(τ, K ) +ddt〈a·(τ, K )2, ∂2

KK C·(τ, K )〉t

〈 · · 〉t quadratic covariation of two semi-martingales.

14th CAP 2007 Local Volatility Dynamic Models

Page 24: Local Volatility Dynamic Models - Columbia University · Local Volatility Dynamic Models ... 4 Understanding Derman-Kani & Setting Dupire in Motion R.C. review article in 4th Paris-Princeton

Practical Monte Carlo Implementation

Start from a model for βt(τ, K ) (say a stochastic differentialequation);Get S0 and C0(τ, K ) from the market and compute ∂2

KK C0, a0 andβ0 from its model;Loop: for t = 0,∆t , 2∆t , · · ·

1 Get αt(τ, K ) from the drift condition;2 Use Euler to get

at+∆t (τ, K ) from the dynamics of the local volatility;St+∆t from St Dynamics;βt+∆t from its own model;

14th CAP 2007 Local Volatility Dynamic Models

Page 25: Local Volatility Dynamic Models - Columbia University · Local Volatility Dynamic Models ... 4 Understanding Derman-Kani & Setting Dupire in Motion R.C. review article in 4th Paris-Princeton

Markovian Spot Models (β ≡ 0)

αt(τ, K ) =ddt

at(τ, K ).

Drift condition reads∂τ at(τ, K ) = αt(τ, K )

Hence∂τ at(τ, K ) =

ddt

at(τ, K )

which shows that for fixed K , at(τ, K ) is the solution of a transport equationwhose solution is given by:

at(τ, K ) = a0(τ + t , K )

and the consistency condition forces the special form

σt = a0(t , St)

of the spot volatility. Hence we proved:

The local volatility is a process of bounded variation for eachτ and K fixed if and only if it is the deterministic shift of aconstant shape and the underlying spot is a Markov process.

14th CAP 2007 Local Volatility Dynamic Models

Page 26: Local Volatility Dynamic Models - Columbia University · Local Volatility Dynamic Models ... 4 Understanding Derman-Kani & Setting Dupire in Motion R.C. review article in 4th Paris-Princeton

A First Parametric Family

a2(τ, x ,Θ) =

∑2i=0 piσie−x2/(2τσ2

i )−τσ2i /8∑2

i=0(pi/σi)e−x2/(2τσ2i )−τσ2

i /8

forΘ = (σ0, σ1, σ2, p1, p2)

Mixture of Black-Scholes Call surfaces for 3 different volatilitiesSingularity when τ ↘ 0

14th CAP 2007 Local Volatility Dynamic Models

Page 27: Local Volatility Dynamic Models - Columbia University · Local Volatility Dynamic Models ... 4 Understanding Derman-Kani & Setting Dupire in Motion R.C. review article in 4th Paris-Princeton

Numerical Evidence of Singularity

14th CAP 2007 Local Volatility Dynamic Models

Page 28: Local Volatility Dynamic Models - Columbia University · Local Volatility Dynamic Models ... 4 Understanding Derman-Kani & Setting Dupire in Motion R.C. review article in 4th Paris-Princeton

A Second Parametric Family

As in Brigo-MercurioStill a mixture of Black-Scholes Call surfaces for 3 differentvolatilitiesEach volatility is time dependent t ↪→ σi(t)σ0(0) = σ1(0) = σ2(0)

a2(Θ, τ, x) =(1 − (p1 + p2)τ) σe−d2(σ)/2 + p1τσ1e−d2(σ1)/2 + p2τσ2e−d2(σ2)/2

(1 − (p1 + p2)τ) 1σ

e−d2(σ)/2 + p1τ1

σ1e−d2(σ1)/2 + p2τ

1σ2

e−d2(σ2)/2

where

d(σ) =s − x +

(r + 1

2σ2)τ

σ√

τ

Θ = (p1, p2, σ, σ1, σ2, s, r)

14th CAP 2007 Local Volatility Dynamic Models

Page 29: Local Volatility Dynamic Models - Columbia University · Local Volatility Dynamic Models ... 4 Understanding Derman-Kani & Setting Dupire in Motion R.C. review article in 4th Paris-Princeton

Fit to Real Data

2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 30

1

2

30.02

0.03

0.04

0.05

0.06

0.07

log K

S&P500 April 3, 2006

T

LVol

14th CAP 2007 Local Volatility Dynamic Models

Page 30: Local Volatility Dynamic Models - Columbia University · Local Volatility Dynamic Models ... 4 Understanding Derman-Kani & Setting Dupire in Motion R.C. review article in 4th Paris-Princeton

Stochastic Volatility Models

dSt = σtStdWt

withdσ2

t = b(σ2t )dt + a(σ2

t )dWt

whered〈W , W 〉t = ρdt .

Usuallyb(σ2) = −κ(σ2 − σ2)

Special cases:

a(σ2) = γ, (Hull-White) a(σ2) = γ√

σ2 (Heston)

14th CAP 2007 Local Volatility Dynamic Models

Page 31: Local Volatility Dynamic Models - Columbia University · Local Volatility Dynamic Models ... 4 Understanding Derman-Kani & Setting Dupire in Motion R.C. review article in 4th Paris-Princeton

Local Volatility of SV Models

a2(τ, K ) =2∂τ C

K 2∂2KK C

= σ20

√1− ρ2 ·

E{

S σ2T

σTe−

d212

}E

{SσT

e−d2

12

}where σT = σT

σ0, and σT =

√1T

∫ T0 σ2

s ds

S = s0 exp(

ρσ0

σ(στ − 1)− 1

2σ2

0ρ2σ2

ττ

)and

d1 =log(s0)− log(K ) + ρσ0

σ(στ − 1) + ( 1

2 − ρ2)σ20 σ

2ττ√

1 − ρ2σ0στ√

τ

14th CAP 2007 Local Volatility Dynamic Models

Page 32: Local Volatility Dynamic Models - Columbia University · Local Volatility Dynamic Models ... 4 Understanding Derman-Kani & Setting Dupire in Motion R.C. review article in 4th Paris-Princeton

First Example: ρ = 0.5

0

1

2

3

−5

0

50.05

0.1

0.15

0.2

0.25

0.3

T

Rho=0.5

log K

LVol

14th CAP 2007 Local Volatility Dynamic Models

Page 33: Local Volatility Dynamic Models - Columbia University · Local Volatility Dynamic Models ... 4 Understanding Derman-Kani & Setting Dupire in Motion R.C. review article in 4th Paris-Princeton

Second Example: ρ = −0.1

0

1

2

3

−5

0

50

0.1

0.2

0.3

0.4

rho=−0.1

14th CAP 2007 Local Volatility Dynamic Models

Page 34: Local Volatility Dynamic Models - Columbia University · Local Volatility Dynamic Models ... 4 Understanding Derman-Kani & Setting Dupire in Motion R.C. review article in 4th Paris-Princeton

Third Example: ρ = −0.75

0

1

2

3

−5

0

50

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

T

Rho=−0.1, N=100,000

log K

LVol

14th CAP 2007 Local Volatility Dynamic Models

Page 35: Local Volatility Dynamic Models - Columbia University · Local Volatility Dynamic Models ... 4 Understanding Derman-Kani & Setting Dupire in Motion R.C. review article in 4th Paris-Princeton

Comparing SV Models

00.5

11.5

22.5

3

−5

0

50

0.05

0.1

0.15

0.2

T

Rho=−0.75, N=10,000

log K

LV

ol

0

1

2

3

−50

50

0.05

0.1

0.15

0.2

T

Rho=−0.75, N=10,000

log K/SL

Vo

l

14th CAP 2007 Local Volatility Dynamic Models