Local geometry of polypeptide chains Elements of secondary structure ( turns )

38
LOCAL GEOMETRY OF POLYPEPTIDE CHAINS ELEMENTS OF SECONDARY STRUCTURE (TURNS)

description

Local geometry of polypeptide chains Elements of secondary structure ( turns ). Levels of protein structure organization. Atom symbols and numbering in amino acids. Chirality. Enantiomers. - PowerPoint PPT Presentation

Transcript of Local geometry of polypeptide chains Elements of secondary structure ( turns )

Page 1: Local  geometry of  polypeptide chains Elements  of  secondary structure  ( turns )

LOCAL GEOMETRY OF POLYPEPTIDE CHAINS

ELEMENTS OF SECONDARY STRUCTURE (TURNS)

Page 2: Local  geometry of  polypeptide chains Elements  of  secondary structure  ( turns )

Levels of protein structure organization

Page 3: Local  geometry of  polypeptide chains Elements  of  secondary structure  ( turns )
Page 4: Local  geometry of  polypeptide chains Elements  of  secondary structure  ( turns )
Page 5: Local  geometry of  polypeptide chains Elements  of  secondary structure  ( turns )
Page 6: Local  geometry of  polypeptide chains Elements  of  secondary structure  ( turns )

Atom symbols and numbering in amino acids

Page 7: Local  geometry of  polypeptide chains Elements  of  secondary structure  ( turns )

Chirality

Enantiomers

Phenomenological manifestation of chiraliy: optical dichroism (rotation of the plane of polarized light).

Page 8: Local  geometry of  polypeptide chains Elements  of  secondary structure  ( turns )

Representation of geometry of molecular systems

• Cartesian coordinates• describe absolute geometry of a system,• versatile with MD/minimizing energy, • need a molecular graphics program to visualize.

• Internal coordinates• describe local geometry of an atom wrt a selected reference

frame,• with some experience, local geometry can be imagined

without a molecular graphics software, • might cause problems when doing MD/minimizing energy

(curvilinear space).

Page 9: Local  geometry of  polypeptide chains Elements  of  secondary structure  ( turns )

z

x yxH(6)

yH(6)

Cartesian coordinate system

Atom x (Å) y (Å) z (Å) C(1) 0.000000 0.000000 0.000000 O(2) 0.000000 0.000000 1.400000 H(3) 1.026719 0.000000 -0.363000 H(4) -0.513360 -0.889165 -0.363000 H(5) -0.513360 0.889165 -0.363000 H(6) 0.447834 0.775672 1.716667

zH(6)

C(1)

O(2)

H(3)

H(4)

H(5)

H(6)

Page 10: Local  geometry of  polypeptide chains Elements  of  secondary structure  ( turns )

Internal coordinate system

i dij ijk ijkl j k lC(1) O(2) 1.40000 * 1H(3) 1.08900 * 109.47100 * 1 2H(4) 1.08900 * 109.47100 * 120.00000 * 1 2 3H(5) 1.08900 * 109.47100 * -120.00000 * 1 2 3H(6) 0.95000 * 109.47100 * 180.00000 * 2 1 5

C(1)

O(2)

H(3)

H(4)

H(5)

H(6)

Page 11: Local  geometry of  polypeptide chains Elements  of  secondary structure  ( turns )

Bond length

Page 12: Local  geometry of  polypeptide chains Elements  of  secondary structure  ( turns )

Bond (valence) angle

Page 13: Local  geometry of  polypeptide chains Elements  of  secondary structure  ( turns )

Dihedral (torsional) angle

The C-O-H plane is rotated counterclockwise about the C-O bond from the H-C-O plane.

Page 14: Local  geometry of  polypeptide chains Elements  of  secondary structure  ( turns )

Improper dihedral (torsional) angle

Page 15: Local  geometry of  polypeptide chains Elements  of  secondary structure  ( turns )

Bond length calculation

jizzyyxxd ijijijij 222

xi yi

zi

xj

zj

xj

Page 16: Local  geometry of  polypeptide chains Elements  of  secondary structure  ( turns )

jkji

jkij

jkjijkjijkjiijk

jk

jk

ji

ji

jkji

jkji

ddzzzzyyyyxxxx

uu ˆˆ

cos

ijk

i

j

k

Bond angle calculation

Page 17: Local  geometry of  polypeptide chains Elements  of  secondary structure  ( turns )

i

j

k

l

ijkl

a

b

ba

Dihedral angle calculation

jklijkkljkij

ijkl

jklijk

jklijkklij

ijkl

dddjkklji

ddklji

sinsinsin

sinsin

coscoscos

baba

Page 18: Local  geometry of  polypeptide chains Elements  of  secondary structure  ( turns )

yx

z

342642626H(6)

342642626H(6)

42626H(6)

sinsin

cossin

cos

dz

dy

dx

3426

426

d26

C(1)

H(3)

O(2)

H(4)

H(5)

H(6)

Calculation of Cartesian coordinates in a local reference frame from internal coordinates

Page 19: Local  geometry of  polypeptide chains Elements  of  secondary structure  ( turns )

Need to bring the coordinates to the global coordinate system

localTglobal

locali

locali

locali

iii

iii

iii

globali

globali

globali

z

y

x

eeeeeeeee

z

y

x

RER

332313

322212

312111

Page 20: Local  geometry of  polypeptide chains Elements  of  secondary structure  ( turns )

i-2

i-1

i

i+1

di-1

di

di+1

i-1

i

i+1

i+2

i

Polymer chains

i-2

i-1

i

i+1

di-1

di+1

i-1

i+2

i-1

i+1

i-1

i+1

pi-1

ii 0180

i

Page 21: Local  geometry of  polypeptide chains Elements  of  secondary structure  ( turns )

1113322

1113322

344433224

2333223

12222

11

nnnnnnn

iiiiiii

rpTRTRTRTRr

rpTRTRTRTRr

rpTRTRTRrrpTRTRr

rpTRrpr

ii

iiiii

ii

i

i

i

d

cossin0sincos0

001

1000cossin0sincos

00 RTp

For regular polymers (when there are „blocks” inside such as in the right picture, pi is a full translation vector and TiRi is a full transformation matrix).

Page 22: Local  geometry of  polypeptide chains Elements  of  secondary structure  ( turns )

Ring closure

n-1

n

1

2

dn

d2

n

3

n

4

n-2

3 4

n-3

11

1

11

1212

112

11

cos

cos

nnnn

nnn

nn

n

nn

dd

dd

d

rrrr

rrrrrr

21n d1n

1 n n-1

N. Go and H.A. Scheraga, Macromolecules, 3, 178-187 (1970)

Page 23: Local  geometry of  polypeptide chains Elements  of  secondary structure  ( turns )

60% 40%

Hybrid of two canonical structures

Peptide bond geometry

Page 24: Local  geometry of  polypeptide chains Elements  of  secondary structure  ( turns )

Electronic structure of peptide bond

Page 25: Local  geometry of  polypeptide chains Elements  of  secondary structure  ( turns )

Peptide bond: planarity

The partially double character of the peptide bond results in

•planarity of peptide groups

•their relatively large dipole moment

Page 26: Local  geometry of  polypeptide chains Elements  of  secondary structure  ( turns )

Side chain conformations: the angles

1=0

1 2 3

Page 27: Local  geometry of  polypeptide chains Elements  of  secondary structure  ( turns )

Dihedrals with which to describe polypeptide geometry

main chain

side chain

Page 28: Local  geometry of  polypeptide chains Elements  of  secondary structure  ( turns )

Skan z wykresem energii

Peptide group: cis-trans isomerization

Page 29: Local  geometry of  polypeptide chains Elements  of  secondary structure  ( turns )

Because of peptide group planarity, main chain conformation is effectively defined by the and angles.

Page 30: Local  geometry of  polypeptide chains Elements  of  secondary structure  ( turns )

Side chain conformations

Page 31: Local  geometry of  polypeptide chains Elements  of  secondary structure  ( turns )

The dihedral angles with which to describe the geometry of disulfide bridges

Page 32: Local  geometry of  polypeptide chains Elements  of  secondary structure  ( turns )

Some and pairs are not allowed due to steric overlap (e.g, ==0o)

Page 33: Local  geometry of  polypeptide chains Elements  of  secondary structure  ( turns )

The Ramachandran map

Page 34: Local  geometry of  polypeptide chains Elements  of  secondary structure  ( turns )

Conformations of a terminally-blocked amino-acid residue

C7eq

C7ax

E Zimmerman, Pottle, Nemethy, Scheraga, Macromolecules, 10, 1-9 (1977)

Page 35: Local  geometry of  polypeptide chains Elements  of  secondary structure  ( turns )

Energy minima of therminally-blocked alanine with the ECEPP/2 force field

Page 36: Local  geometry of  polypeptide chains Elements  of  secondary structure  ( turns )

- and -turns

-turn (i+1=-79o, i+1=69o) -turns

Page 37: Local  geometry of  polypeptide chains Elements  of  secondary structure  ( turns )

Types of -turns in proteins

Hutchinson and Thornton, Protein Sci., 3, 2207-2216 (1994)

Page 38: Local  geometry of  polypeptide chains Elements  of  secondary structure  ( turns )

Older classification