Loads on offshore strucrures-otc-1741.pdf

download Loads on offshore strucrures-otc-1741.pdf

of 16

Transcript of Loads on offshore strucrures-otc-1741.pdf

  • 8/18/2019 Loads on offshore strucrures-otc-1741.pdf

    1/16

    OFFSHORE TECI INOLOGY CONFERENCE

    PAPER

    6200 North Central Expressway

    NUMBEROTC1741

    Dallas Texas 75206 -

    The Mean Wave W i n d and

    Cu r r en t F o r c e s o n

    O f f s h o r e

    S t r u c t u r e s a n d T h e i r R o l e i n

    t h e

    D e s i g n

    o f

    M o o r i n g

    S y s t e m s

    BY

    G

    F M Remery and G. van Oortmerssen Netherlands Ship Model Basin

    O Copyright

    1973

    American Institute

    of

    Mining Metallurgical and Petroleum Engineers Inc.

    Offshore Technology Conference on behalf of th e American In s t i tu t e of Mining Metall urgical and

    Petroleum Engineers Inc . American Asso ciation of Petroleum Geolo gists American In s t i t u t e

    of

    Chemical Engineers American Society of C iv il Engineers American So cie ty of Mechanical Engineers

    I n s t i t u t e of El ec tr ic al and Ele ctro nics Engineers Inc. Marine Technology Society Society of

    Explora tion Geoph ysicis ts and Soc iety of Naval Arch ite ct s Marine Engineers.

    ~

    This paper was prepared fo r- pr es en ta ti on a t th e F if th Annual Offshore Technology Conference

    he ld i n Houston Tex. Apr il 29-May

    2

    1973

    Perm5.ssion t o copy i s re st ri ct ed t o an abs tra ct of

    not more than 300 words.

    I l lu s t r a t io n s may not be copied.

    Such use of an abstract should con-

    t a i n conspicuous acknowledgment of where and by whom th e paper i s pr esen ted.

    A b s t r a c t

    T h e mean f o r c e s i n d u c e d by wav es win d

    a nd c u r r e n t o n t a n k e r s b a r g e s a nd o t h e r

    s t r u c t u r e s are v e r y im p or t an t f o r t h e

    s e l e c t i o n o f a n ap p r op r i a t e p a s s iv e o r

    a c t i v e p o s i t i o n i n g s ys te m. I n t h e p r es en l

    p a p e r t o o l s a r e g i v e n f o r t h e d e te rm in a-

    t i o n o f t h e s e f o r c e s e s p e c i a l l y f o r

    t a n k e r s ha pe d b o d i e s t a k i n g i n t o ac -

    c o u nt t h e m ain i n f l u e n c e o f w a t e r d e p t h .

    The way i n w hi ch t h e e s t i m a t i o n o f t h e

    mean f o r c e s h a s t o b e u se d f o r a p r e -

    l i m i n a r y d e s i g n o f

    a

    mo o r in g sy s t em w i l l

    b e d e a l t w i th .

    I n t r o d u c t i o n

    o f t h e problem.

    t

    i s a p ro b lem o f d y n a -

    m i c s a nd t h e m oored s t r u c t u r e m ay

    be

    r e g ar d e d a s a m a s s - s p r i n g s y s t e m . T h e

    t o t a l l o a d e x e r t e d b y t h e en vi ro nm en t

    c o n s i s t s o f t h e o s c i l l a t i n g wave f o r c e s

    a nd o f f o r c e s w hi ch v a r y a t a f r e q u e n c y

    much l o w e r t h a n t h e w av e f re q u e n c y : t h e

    w in d c u r r e n t a nd

    wave

    d r i f t f o r c e s .

    When d e s i g n i n g a n a n c h o r s y s t e m t h r e e

    a s p e c t s o f t h e s e v e r y s l ow l y v a r y i n g

    f o r c e s

    a r e

    o f i m p o r t a n c e .

    1

    A s w i l l b e i l l u s t r a t e d a t t h e en d of

    t h i s p a p e r t h e a l m os t s t e a d y wi nd

    c u r r e n t an d wave d r i f t f o r c e s a x e m o st

    s i g n i f i c a n t f o r t h e f i n a l d e t er mi na -

    t i o n o f t h e d ia m et e r o f t h e a nc ho r

    l i n e s . T h i s i s du e t o t h e f a c t t h a t

    m oo ri ng o r a n c ho r in g s y s t em f o r f l o a t i n g

    o f f s h o re s t r u c t u r e s i s r a t h e r c o m p l i c a t e d

    n o t

    a t

    l e a s t d ue t o t h e n on - l in ea r n a t ur e

    T he p ro b le m o f d e s i g n i n g a n a d e q u a t e

    a v er ag e p o s i t i o n . B a s i c l y t h e f o r c e

    r e q ui r e d f o r t h i s s t a t i o n k e ep in g

    e q u a l s t h e s t e ad y o r t h e s lo wl y

    t h e m ai n p u r p o s e o f a n a n c h o r i n g sys

    t e m

    i s t o h o ld t h e s t r u c t u r e on

    an

  • 8/18/2019 Loads on offshore strucrures-otc-1741.pdf

    2/16

    OTC L741

    G .F .M.

    REMERY AND

    G . VAN

    O O R T M E R S S E N

    1 171

    Description of steady forces and moments

    Wind forces and cur re n t fo r ce s a r e f r e -

    que nt ly pr esente d as being composed of a

    d r ag f o r c e , i n t h e d i r e c t i o n o f t h e f lo w ,

    and a l i f t f o r c e, p er pe nd ic ul ar t o t h e

    f low di re ct io n. However, when des cr ib in g

    th e dynamic behaviour o f a f lo a t in g ob-

    j e c t , t he equa t ions o f mot ion a r e u su a l l j

    r e l a t e d t o a s t r uc tu re bound sys tem o f

    coo rd ina t e s , w i th

    i t s

    o r i g i n i n t h e mid-

    s h i p s e c t i o n of t h e s t r u c t u r e . T h e re fo r e

    it i s conven ien t t o de sc r ibe t h e s t eady

    f o r c e s a s a l o n g i t u d i n a l and a transverse

    component applying i n th e midship sec t io r

    and a moment around th e ve r t i c a l a xi s .

    F igure

    2

    shows a ske tch i n which th e s igr

    of th e fo rc es and moment, and th e dir ec -

    t i on o f w ind , waves o r cu r r en t a r e de f in -

    ed.

    The f or ce due t o wind

    Like a l l environmen tal phenomena, wind

    has a s t oc ha s t i c na tu re which g re a t l y de-

    pends on

    t i m e

    and l o c a ti o n . f t

    i s

    usual11

    c h a r a c t e r i z e d

    by

    f a i r l y l a r g e f l u c tu a -

    t i o n s i n v e l o c i t y and d i r e c t i o n .

    I t

    i s

    common mete orolog ical pr ac t i ce t o gi ve

    th e wind ve lo c i ty i n te rms of th e average

    o ve r a c e r t a i n i n t e r v a l o f

    t i m e ,

    vary ing

    from t o 60 minutes o r more. The va ri a-

    t i o n i n mean v e l o c i t y i s very slow com-

    pared with th e wave per iod . The f luc tu a-

    t i on s a round t h e mean va lue

    w i l l

    impose

    dynamic f o r c es o n t h e s t r u c t u r e , b u t i n

    gen era l the se aerodynamic for ce s may be

    neglec ted i n compar ison wi th t he hydrody

    namic fo rc es , when c ons ide r in g th e dyna-

    t u d e and d i r e c t i o n , r e s u l t i n g i n con-

    s t a n t f o r c e s and a constant moment ac t -

    i n g on t h e s t r u c t u r e .

    The ro l e which wind p la ys i n t h e de te r -

    mina t ion of th e envi ronmenta l condi t ions

    o f f l o a t i n g s t r u c t u r e s i s twofold:

    On the p a r t o f t he s t r uc tu re exposed

    t o t h e a i r , wind f o r c e s a r e e x e r t e d

    due t o t h e stream o f a i r arou nd t h e

    v a r i o u s p a r t s . F o r t h e d e t er m i n a t io n

    o f t he se fo rc e s i n forma t ion

    i s

    r e q u i r -

    ed abou t t he l o ca l w inds on ly .

    The for ce s ex er te d by t he wind on th e

    wa te r su r f ace cause d i s tu rban ces o f th

    s t i l l w a t er l e v e l , t h u s g e n er a t i n g

    waves and cur re nt , which induc e fo rc es

    on th e submerged pa r t of t h e s t ru c t u r e

    To de te rmine t h i s e f f e c t of t h e w ind,

    in format ion i s r equ i r ed abou t t h e

    wind

    and s torm condi t ions i n a much l a r ge r

    a r e a .

    The wave and cu rr en t gen era t ing c ha ra ct e

    of

    t h e

    w i n d

    will

    be

    left

    out

    o f consider

    a t ion . The e f f e c t s of waves and cu r re n t s

    w i l l b e d e a l t w it h s e p e r a t e l y .

    Local winds a r e ge ne ra l l y de f ined

    i n

    terns

    of t he average ve lo c i t y and averag

    d i r e c t i o n r e l a t e d t o

    a

    c e r t a i n

    height

    above the s t i l l wate r l e ve l . The s t an da r

    he igh t above t he wa te r su r f ace fo r wh ich

    g e n e r a l l y t h e wind v e l o c i t y d a t a a r e

    giv en amounts t o

    1 0

    metres o r

    3

    f e e t . P

    number of emp i r ica l and th eo re t i ca l fo r -

    mulas i s a v ai l ab l e i n l i t e r a t u r e t o de-

    t e rm i n e t h e wind v e l o c i t y a t o t h e r

    h e i g h ts . An a de qu at e v e r t i c a l d i s t r i b u -

    t i o n of t h e wind speed i s r ep re sen t ed b y

    s e e r e f . 1)

    m i c behav iour o f t h e f l o a t i n g body.

    V Z )

    s 7

    Therefore ,

    w e w i l l

    con sid er t h e wind ve-

    /G

    E)

    oc i t y a s a s t eady va lue , bo th i n magni-

  • 8/18/2019 Loads on offshore strucrures-otc-1741.pdf

    3/16

    1-170 T H E /LEAN WAVE WIND A N D CURRENTOR ES OTC

    1 7 4 1

    o s c i l l a t i n g wave w ind and cu r r en t

    f o r c e s o n t h e s t r u c t u r e .

    2 . The a lmos t s t ea dy wind cu r re nt and

    wave d r i f t f o r c e s c a us e a s h i f t o f t h

    n e u t r a l p o s i t i o n o f t h e moored o b j e c t

    a ro un d w hich t h e o s c i l l a t i o n d ue t o

    waves o c c u r s . S i n c e t h e r e l a t i o n s h i p

    between t h e ho r i zo n t a l d i sp l acemen t

    a

    t h e a nc ho re d s t r u c t u r e and t h e r e s t o r

    i ng f o r ce o f t h e anchor s ys tem

    i s

    a lmost a lways non- l inea r t h e s h i f t c

    t h e n e u t r a l p o s i t i o n c a u s es a c ha ng e

    i n t h e s p r i n g r a t e and c o ns eq u en tl y

    i n t h e dynamic respo nse. However

    g e n e r a l l y t h e n a t u r a l f r e qu e nc y o f

    t h

    ho r i zo n t a l mot ion o f t h e anchor ed

    s t r u c t u r e i s cons i de r ab l y s ma l l e r tha

    t h e wave f r eguency a l s o a f t e r an i n -

    c r e a s e o f t h e s p r i n g c o n s t a n t d ue t o

    t h e mean s h i f t o f t h e s t r u c t u r e b u t

    t h i s has t o be checked f o r each spe-

    c i a l d e s ig n . T h er ef or e t

    i s

    ver y i m -

    portant to

    study this

    effect of the

    wind cu r r en t and wave d r i f t f o r c es

    a n e a r l y s t a g e o f t h e d e si g n t o b e

    s u r e t h a t r es on an ce a t t h e wave f r e -

    quency w i l l be avoided.

    3

    Sinc e th e wind cu r re nt and wave dxi f

    f o r c e s a r e s lo w ly f l u c t u a t i n g f o r c e s

    t h e

    r i s k

    e x i s t s t h a t r es on an ce o c c ur s

    a t t h e v e r y low f r e q u e n c i e s a t which

    t he s e f o r c es o s c i l l a t e . Low fr equency

    o s c i l l a t i o n s i n t h e h o r iz o n ta l p la ne

    l

    have been observed i n model exp er i -

    m ents a s w e l l a s a t f u l l s c a l e . The

    na tu re of t h i s phenomenon i s n o t y e t

    f u l l y u n de r st o od b u t i n ge n e r a l

    t

    c an b e a t t r i b u t e d t o t h e s l ow l y v a ry -

    i n g wave d r i f t f o r c e a s a r e s u l t o f

    t h e v a r yi n g wave h e i g h t i n i r r e g u l a r

    s e a s . A t t e n t i o n h a s t o be p a id t o t h e

    dynamic fo rc es due t o wind gu s t s

    w h il e t h e v a r i a t i o n i n t h e c u r r e n t

    ve l oc i t y occur s a t a much t oo low

    f requency t o be of importance .

    The f i r s t two a s p e c t s d i s c u s s e d h e r e

    h av e t o b e ta k e n i n t o a c c o un t d u ri n g t h e

    p r e l i mi na r y des i gn and

    w i l l

    b e o f s i g -

    n i f i c a n t i m po rta nc e f o r t h i s d e s ig n . For

    t h i s a s pec t t he w ind cu r r en t and wave

    d r i f t may be reg arde d a s s te ad y phenom-

    e n a i n d uc i n g o n l y c o n s t a n t f o r c e s . F o r

    t h e i nv es t i g a t i on o f t h e dynamic char ac -

    t e r

    o f e s p e c i a l l y t h e wave d r i f t f o r c e

    and

    i t s

    e f f e c t on t he dynamic r e s pons e

    of th e anchored ob je c t model t e s t s a r e

    s t i l l i nd i s pens ab l e .

    F i gu r e

    1

    shows a f low diagram de pi ct in g

    a p o s s i b l e d e s ig n pr o c es s f o r an anchor

    s ys te m. I n g e n e r a l t h e p r o c e s s w i l l hav

    t o b e re p e a t e d f o r a number o f d i f f e r e n t

    c o nd it io n s. F or a d r i l l r i g f o r i n s t a n c

    th e anchor sys tem must be s t ro ng enough

    t o w i th s ta n d t h e e xtr em e l o a d s i n t h e

    survival condition while for

    the

    maximu

    ope r a t i on a l wave con d i t i on t he mot ion o f

    t h e r i g may n o t e xc ee d a c e r t a i n v a l u e

    I n a c e r t a i n c o n d i ti o n

    t

    may be neces-

    s a r y t o cons i de r va r i o us combi na ti ons of

    wave cu r r en t and w ind d i r e c t i on s .

    I n t h i s pape r we w i l l d e a l w it h t h e de

    t e r m i n a ti o n o f t h e st e a d y f o r c e s m a in ly

    on t a n k e r h u l l s . The n a t u r e o f t h e wind

    c u r r e n t a nd wave d r i f t f o r c e s w i l l be

    b r i e f l y d i s cu s se d and d a t a w i l l be g i ven

    f o r an e s t i m a t e o f t h e s e f o r c e s .

    T h e

    problem of th e choice of th e des ign en-

    v i ronmenta l condi t ions

    w i l l

    be l e f t o u t

    of c on si de ra t i on . An example how t o use

    t h e s e d a t a f o r t h e d e s ig n of an a nc ho r

    s y s t e m

    w i l l

    be g iven .

  • 8/18/2019 Loads on offshore strucrures-otc-1741.pdf

    4/16

     

    1 172 p p THE MEAN WAVE, WINDND CURRENT FORCES

    OTC

    1 7 4 1

    l

    i n which

    V ( Z ) =

    wind s peed a t he i gh t above t h e

    w a t e r s u r f a c e

    V ( 1 0 ) = wind speed a t 1 0 m e t r e s h e i g h t

    above t h e wa t e r s u r f ace

    The t o t a l f o rc e and moment exp er ien ced

    by an obj ec t exposed t o wind,

    i s

    p a r t l y

    o f v i s cous o r i g i n ( p r es s u r e d r ag ) and

    p a r t ly due t o p o t e n t i a l e f f e c t s ( l i f t

    fo rc e and moment). For b lu nt bodie s , th e

    wind fo rc e may be reg ard ed a s independen

    of th e Reynolds number -and pro po r t io nal

    t o t h e s q u a r e o f t h e wind v e l o c i t y .

    Wind l oad d a t a f o r t an ke r s

    The f o rc e s and moment ex e rt e d by wind

    on t an ke r s can be ca lc ul a t ed from:

    2

    C X W ( ~ )

    Yw

    = p a c ( a ) . AL

    W2

    NW = +pa Vw

    Cnw(a) AL

    L

    i n which

    Xw

    = steady longitudinal

    wind force

    Yw

    = s t eady t r ans ve r s e wind f o r c e

    NW = steady yaw wind moment

    p,

    =

    d e n si t y of a i r

    Vw

    = wi nd ve l oc i t y

    = w i n d d i r e c t i o n

    ~ =

    exposed t r ansver se a r ea

    A~ = e xp ose d l a t e r a l a r e a

    .

    L =

    l e n g t h o f t h e s h i p

    C

    and Cnw a r e c o e f f i c i e n t s , de-

    Cxw yw

    pend i ng on t h e ang l e of i nc i dence o f t h e

    wind.

    I n l i t e r a t u r e t h e r e s u l t s o f wind t u n n e l

    e x pe r im e n ts a r e g i v e n f o r v a r i o u s t y p e s

    of ve sse l s . From se ve ra l paper s t h e wind

    d a t a on t a n k e r h u l l s we re c o l l e c t e d , and

    t h e f o r ce and moment c oe f f i c i e n t s Cxw,

    C

    and Cnw were expanded i n Fou r ier

    Y

    s e r i e s a s f u n ct io n o f - t h e a n gl e of i n -

    c i dence

    C

    = a0

    n COS nm

    n=1

    C

    = 1

    b s i n n a

    yw

    n z l

    n

    Cnw = 1

    b s i n na

    n=

    n

    From th e harmonic a na ly s i s i t was found

    t h a t a f i f t h o r d er r ep r e s e n ta t i o n of t h e

    wind da ta

    i s

    s u f f i c i e n t l y a c cu r at e f o r

    p r e l i mi na r y des i gn pu r pos es.

    I n Tab l e I1 th rough I V t h e F o u r i e r c o e f-

    f i c i e n t s a r e g iv en f o r t h e l o n g i tu d i n a l

    and t r an sv er se fo rc e, and t h e yawing mo-

    ment, fo r a number of t an ker s . Par t i cu -

    l a r s o f t h e t a nk e rs a r e l i s t e d i n Ta bl e

    I where a l s o t h e r e f e r en ce numbers a r e

    g i ven o f t he pu b l i c a t i o ns , from which

    t h e d a t a w ere t a k e n . F i g u r e 3 shows, as

    an example, t h e measured wind fo rc e s and

    moment tog et he r wi th t h e Four ier approxi

    ma t ion , f o r one o f t he t anke r s .

    The wind forces and moments on other

    t y pe s o f s t r u c t u r e s , a s f o r in s t a n c e

    f l oa t i ng s emi -s ubmers ib le p l a t f o r ms , can

    be appr ox ima ted by d i v i d i ng t h e s t r u c -

    t u r e i n a number o f components , a l l w i t h

    a more o r l e s s elem enta ry geometry, and

    es t i ma t i ng t h e wind f o r ce on each ele

    ment. Fo r a l o t o f s i mpl e geomet r i ca l

    fo rm s s uc h a s s p h e r e s , f l a t p l a t e s and

    c y l i n d e r s of v a r i ou s c r o s s s e c t i o n a l

    s hapes , t h e d r ag and

    l i f t

    c o e f f i c i e n t s

    a r e g i ve n i n l i t e r a t u r e . R efe re nc e

    i s

    made of th e publ i ca t ion s of Hoerner 61

    and Delany and Sorensen

    ( 7 ) .

    The t o t a l wind l o a d o n t h e s t r u c t u r e i s

    t hen f ound by add ing t he con t r i b u t i o ns

    o f a l l t h e component pa r t s .

  • 8/18/2019 Loads on offshore strucrures-otc-1741.pdf

    5/16

    1 173

    OTC 1741 G F M REMERY AND G VAN OORTMERSSEN

    The f o r c e d ue t o c u r r e n t

    There are several independent phenomena

    r e s p o n s i b l e f o r t h e o cc u r re n c e o f c u r -

    r e n t : t h e o c ea n c i r c u l a t i o n s ys te m,

    r e s u l t i n g i n a s te a dy c u r re n t , t h e c y c l i

    c a l c hange i n l u n a r and s o l a r g r a v i t y ,

    c a u s in g t i d a l c u r r e n t s , wind and d i f f e r -

    e n ce s i n d e n s i t y . The s t e a d y v e l o c i t y a t

    t h e wa t e r su r f ac e due t o wind amounts t o

    a b ou t p e r c e n t o f t h e wind v e l o c i t y ( a t

    3 0 f t h e i g h t ) . T i d a l c u r r en t s a r e of

    main im p or ta nc e i n a r e a s o f r e s t r i c t e d

    w a t e r d e pt h and c an a t t a i n v a l u e s up t o

    L0 kn ots . However, t he se ext reme velo -

    c i t i e s a r e r a r e . A 2 o r k no ts t i d a l

    c u r r e n t s p e e d

    i s

    common. The prediction

    o f t h e m ag ni tu de of t i d a l c u r r e n t s

    i s

    a

    s p e c i a l s i e n c e . Some p r e d i c t o r s t a k e n o t

    l e s s t h a n 60 p a r am e t er s i n t o a c c ou n t i n

    t h e i r p r e d i c t i o n p ro ce du re .

    Although f o r f l o a t i n g s t r u c t u r e s t h e

    s u r f a c e c u r r e n t s w i l l b e t h e g o v e r ni n g

    o ne s, t h e v e r t i c a l c u r r en t d i s t r i b u t i o n

    may a l s o be of impor tance , e sp ec ia l l y

    f o r t h e c a s e of r e s t k i c t e d w a te r d ep th .

    For th e des ign of an anchor sys tem of a

    f l o a t i n g s t r u c t u r e t h e d e s ig n e r i s espe-

    c i a l l y i n t e re s t e d i n t h e p r o ba b i l i t y

    t h a t a p a r t i c u l a r e xt re me c u r r e n t v e lo -

    c i t y w i l l b e e x c e e d e d d u r i n g a c e r t a i n

    per io d of t ime. Observa t ions obta ined

    f rom cu r r en t speed measurements a r e in -

    d i s pe n s a bl e f o r t h a t p ur po se . t may be

    u s e f u l l t o s p l i t up t h e t o t a l measured

    cu r re nt i n two o r more component s, f o r

    i n s t an ce i n a t i d a l and a non- t i da l com-

    p on en t, s i n c e t h e d i r e c t i o n of t h e v a r i -

    ous components w i l l b e d i f f e r e n t , i n

    g e n e r a l . The v a r i a t i o n i n v e l o c i t y and

    d i r e c t i o n of t h e c u r r e n t i s very slow,

    and cu r r en t may th er ef or e be cons idered

    as a steady phenomenon.

    The for ce s and moment ex er ted by cu rr en t

    on a f l o a t i n g o b j e c t

    i s

    composed of t h e

    f o l l o w i n g p a r t s :

    A

    v is c ou s p a r t , due t o f r i c t i o n be-

    tw een t h e s t r u c t u r e a nd t h e f l u i d , an d

    due

    t o

    p r e s s u r e d r a g . F or b l u n t b o d ie s

    t h e f r i c t i o n a l f o r c e may b e n e g l e c t e d ,

    s i n c e it i s sma l l compared t o t h e v i s -

    cous p r es su r e d r ag .

    A po t e n t i a l pa r t , w i t h a component due

    t o a c i r c u l a t i o n around t h e o b j e c t ,

    and an o t he r component due t o th e f r e e

    w a t e r s u r f a c e (wave r e s i s t a n c e )

    .

    I n

    mos t cases , t h e l a t t e r component i s

    sma l l i n compar ison w i t h t h e f i r s t

    The forc es and moment exe r te d by c u rr en t

    on a t a n k e r hull c a n ~ b e escribed by:

    = P VC2

    a )

    ATS

    i n whi ch

    Xc

    = s t ea d y l o n g i t u d i n a l c u r r e n t f o r c e

    Yc

    = s t ea d y t r a n s v e r s e c u r r e n t f o r c e

    Nc

    = s t ead y yaw cur re nt -moment

    Pw

    = d e n s i t y o f w a t e r

    VC = c u r r e n t v e l o c i t y

    a =

    ang l e o f i nc i d ence

    S

    = submer ged t r ansve r se a r ea

    ALS =

    submerged l a t e r a l a r e a

    =

    L

    X

    T

    L =

    l e n g t h o f t h e s h i p

    T = d r a f t of t h e s h i p

    C

    and

    Cnc

    a r e c o e f f i c i e n t s , de-

    C X C

    yc

    p en di ng on t h e c u r r e n t d i r e c t i o n .

    t th e N.S.M.B., th e cu rr en t Loads have

    been measured on se ve ra l t an ke r model s

    o f d i f f e r e n t s i z e . From t h e r e s u l t s t h e

  • 8/18/2019 Loads on offshore strucrures-otc-1741.pdf

    6/16

    OTC

    1741 G.F .M . REMERY

    AND

    G.VAN OORTMERSSEN

    1-3-75

    f rom the BernouLli e qua t ion f o r non-

    s t eady f low:

    i n w hich

    p

    =

    p r e s s u r e

    p

    =

    a t m osphe r i c p re s su re

    s v e l o c i t y p o t e n t i a l

    g

    =

    a c c e l e r a t i o n o f g r a v i t y

    V =

    ve lo c i ty o f water motion

    I n t h e t h e o r y o f p e r i o d i c s h i p ' s m o tio n

    i n waves t h e v e l o c i t y

    t e r m

    v2 i s ne-

    g l e c t e d , s i n c e

    i t

    has on ly a second or -

    d e r i n f l u e n c e on t h e o s c i l l a t o r y be ha -

    viour. However, it i s t h i s t erm wh ich i s

    r e s p o n si b le f o r t h e s te a d y d r i f t f o r c e .

    R e p re s e nt in g t h e v e l o c i t y p o t e n t i a l by a

    p e r i o d i c f u n c t io n p r o p or t io n a l t o t h e

    ampl i tude a of t he i n -c i den t

    w a y e

    s A

    .

    5,

    .

    s i n

    w t

    i n which

    w =

    frequency of waves

    i t

    f o l l o w s t h a t

    2 a @

    f p w V + pw

    < a

    s i n w t { 3)

    x

    By t a k i n g t h e a v e r a g e v a l u e o f t h e p r e s -

    2lT

    s u r e d u r i n g o ne p e r i o d (T -) it w i l l

    b e c l e a r t h a t a l l pe r io d ic

    t e r m s

    v a n i s h

    2

    and o n l y t h e v e l o c i t y t e r m

    kpwV

    g i v e s

    a con t r i bu t i o n . C onsequen tl y t h e s t ea dy

    d r i f t f o r c e on a s t r u c t u r e i n waves i s

    p r o p o r t i o n a l t o t h e s q u ar e of t h e h e i g h t

    of th e in ci de n t wave. Maruo (8) shows

    t h a t t he l a t e r a l d r i f t f o r ce

    Y

    p e r u n i t

    l e n g t h on an i n f i n i t e l y l o ng c y l i n d e r

    ( 2 -d im e ns io n al c a s e ; no d i f f r a c t i o n ) i n

    beam s e a s s a t i s f i e s :

    Y I d pwg

    car

    i n w hic h

    a r ampl i tude of wave re f l e c t e d and

    sc a t t e r e d by t he body

    He a l s o i n d i c a t e s t h a t t h e a m p l it u de of

    t h i s wave i s p r o p o r ti o n a l t o t h e r e l a -

    t i v e m otio n b etw een t h e o s c i l l a t i n g cy-

    l i n d e r and th e wave.

    Ogawa

    ( 9 )

    app l i ed Maruo 's theo ry on

    a

    c a p t i v e ser ies 60 model (block co ef f i -

    c i e n t

    0 . 7 0 )

    i n beam and bow qu at er in g

    waves and he shows th a t

    2

    y T d +pwg car s i n 2

    i n w hich

    a

    d i r e c t i o n o f waves r e l a t i v e t o s h i p

    H e c a l c u l a t e d t h e a m p l i t u d e o f t h e

    re

    f l e c t e d and s c a t t e r e d

    w v e

    using the

    s t r i p t he o ry f o r two wave d i r e c t i o n s

    (90

    and 120°) r e l a t i v e t o t h e c a p t i v e vesse l

    and found a reasonable agreement wi th

    th e measured r e s u l t s . For t h e beam wave

    d i r e c t i o n t h e r e s u l t s g i v e n by Ogawa f o r

    t he cap t i ve ve s s e l a r e com pared

    i n F i g .

    5

    w i t h t h e e x p er i m en t al v a l u e s

    of

    t h e

    wave d r i f t f o r c e on a f r e e f l o a t i n g ve s-

    s e l h a vi ng a s m a l l e r b lo c k c o e f f i c i e n t

    o f 0 .6 0. I n t h i s F ig u re t h e d r i f t fo r c e

    I

    Yd i s giv en i n a non-dimensional way by

    div id i ng th e f or ce by 4pwg

    ;

    . L and

    t a k i n g t h e s q u a r e r o o t . c a ampl i tude

    o f i n c i d e n t w a ve ).

    T h i s no n- dim en sio na l d r i f t f o r c e c o e f f i -

    i s

    p l o t t e d t o a ba se o f non-d im ens ional

    I

    wave length k.T i n w hi ch :

  • 8/18/2019 Loads on offshore strucrures-otc-1741.pdf

    7/16

    1 174

    THE

    MEAN WAVE

    WIND

    AND

    CURRENT

    FORCES OT

    74

    c o e f f i c i e n t s Cx c , C

    and Cnc w e r e c a l -

    YC

    c u l a t e d . F o r f lo w i n t h e l o n g i t u d i n a l

    d i r e c t i o n a ta n k e r h u l l

    i s

    a r a th e r s l e n t

    de r body, and consequen t ly co ns i s t s t h e

    I

    l o n g i t u d i n a l f o r c e m ain ly o f f r i c t i o n a l

    r e s i s t a n c e . T he t o t a l l o n g i t u d i n a l f o r c e

    was v e r y s m a ll f o r t h e - r e l a t i v e 3 y low

    I

    c u r r e n t s p e e d , a nd c o u ld t h e r e f o r e n o t

    be measured very a cc ur at el y. Moreover ,

    e x t r a p o la t i o n t o f u l l s c a l e d im en sio ns

    i s

    d i f f i c u l t , s i n c e th e lo n g it u d in a l

    f o r c e i s a f f e c t e d by s c a l e e f f e c t .

    For mooring problems, th e lon gi tud in a l

    c u r r e n t f o r c e w i l l ha rd ly be of impor-

    tan ce . An es t im at e of i t s magnitude can

    b e made by c a l c u l a t i n g t h e f l a t p l a t e

    f r i c t i o n a l r e s is t a n c e :

    0 075

    2

    C   ( ( l o g

    Rn

    2

    ) i pWs

    *vc

    COS

    a

    lcos a1

    i n which

    v cos

    Rn

    =

    t h e Reyn olds numbe-r =

    V

    L

    v = k i n e m a t i c v i s c o s i t y o f w a t e r

    I

    S = t h e w e tt ed s u r f a c e

    E x t r a p o l a t i o n of t h e t r a n s v e r s e f o r c e an

    yaw moment t o p ro to ty pe va lu es

    i s

    no pro

    b lem. For f16w i n t he t r ans ve r se d i r ec -

    l

    t i o n t h e t a n k er i s a b lu nt body, and

    s i n c e t h e b i l g e r a d i u s i s sma l l , f l ow

    s e p a r a t i o n o c cu rs i n t h e model i n t h e

    same way a s i n th e pro to type . The refore ,

    t h e t r a n s v e r s e f o r c e c o e f f i c i e n t and t h e

    yaw moment c o e ff i c ie n t a r e independent

    the Reynolds number.

    The c o e f f i c i e n t s f o r t h e t r a n s v e r s e f o r c

    and t h e yaw moment were expanded i n a

    I

    F o u r i e r s e r i e s , a s was d one f o r t h e wind

    l o a d c o e f f i c i e n t s :

    m

    .

    C = bn s i n nci

    Yc n=l ..

    .

    .

    m

    The aver age va l u e o f t he Four i e r co e f f i -

    c i e n t s f o r t h e f i f t h o rd e r F o ur ie r se-

    r i e s

    a r e g iv e n i n T a bl e V. These re-

    s u l t s a p pl y t o d ee p w a t e r . F or s h a l lo w

    wa ter , t h e cu r r en t fo rc e and moment coef

    f i c i e n t s h a ve t o b e m u l t i p l i e d by

    a

    coef

    f i c i e n t , w h i c h

    i s

    g iv e n i n F i g u r e

    4

    on

    a

    b a s e o f t h e w a t er d e p th - d ra f t r a t i o . I n

    t h e d a t a , g iv e n i n T a bl e V , t h e i n f l ue n c

    o f t h e f r e e w a t er s u r f a c e i s i nc luded .

    Thi s i nf lu en ce , however, depends on t h e

    wa te r de pth and on th e Froude number,

    and consequen t ly changes i f t he c u r r e n t

    ve l o c i t y o r t h e t anke r d imensi ons change

    F or t h e c o n d i t io n t o which t h e s e d a t a

    app ly, deep wate r and

    a

    pr o t o t ype

    cur-

    r e n t s pe ed i n t h e o r d e r o f k n o t s , t h e

    e f f e c t of t h e f r e e w at er s u r f a c e

    i s

    ver y

    smal l . Fo r a case o f a s ma l l unde rkee l

    c l e a r a n c e a nd a c u r r e n t d i r e c t i o n o f 90

    degrees damming up of th e wate r a t t h e

    weather - s ide and a l oweri ng of t h e wa te r

    l e v e l a t

    t h e

    l e e s i d e o f

    t h e s h i p

    o c c u r s

    The c u r r e n t l o a d on o t h e r t y p e s o f f l o a t

    i n g s t r u c t u r e s

    c an b e e s t i m a t ed i n t h e

    same way as was d es cr ib ed f o r t h e wind

    l o a d i n a p r e vi ou s s e c t i o n .

    ave d r i f t f o r c e s

    A s t r u c t u r e f l o a t i n g i n waves e x p er ie n ce :

    fo rc e s and moments which can be d et e r-

    mined i f t he v e l o c i t y p o t e n t i a l o f t h e

    wat e r mo ti on a round t he s t r uc t u r e i s

    known. B y i n t egra t ing the component of

    t h e p re s su re i n a p a r t i c u l a r d i r e c t i o n

    o ve r t h e h u l l of t h e s t r u c t u r e , t h e

    f o r c e component i n t h i s d i r e c t i o n c an b e

    ca l cu l a t e d . The p r es s u r e can be ob t a i ned

  • 8/18/2019 Loads on offshore strucrures-otc-1741.pdf

    8/16

     

    1-176

    OTC

    f7K

    k = - -T

    wave number

    X

    wave length

    l l r e s u l t s a pp ly t o d ee p w a te r . s il

    l u s t r a t e d i n F ig .

    5

    t h e d r i f t f o rc e on

    t h e f r e e f l o a t i n g v e s s e l c or re sp on ds

    q u i t e w el l wi t h t h e f o r c e on an i n f i n i t e

    l y l ong f l a t v e r t i c a l p l a t e ( s ee

    10)

    w ith a d r a f t e q ua l t o t h e v e s s e l s d r a f t

    and o v er a l e n g t h t h a t e q u a ls t h e l e n g t h

    o f t he ve s s e l be tw ee n pe r pe nd i c u l a r s .

    The d r i f t f o r c e on t h e r e s t r a i n e d v e s s e l

    i n de e p w a te r c a n be com pared q u i t e w e l l

    w i t h t h e r e s u l t s g i ve n of t h e o r e t i c a l

    c a l c u l a t i o n s c on du ct ed b y

    e i

    and Black

    11)

    f o r a r e c t a n g u l a r c a p t i v e c y li n d e r

    e x t r a p o l a t e d t o t h e same beam o v e r d r a f t

    r a t i o

    B/T

    2 .5) a s t h e v e s s e l h a s and

    t o d eep w a t er . T h is i n d i c a t e s t h a t t h e

    i n f l u en c e of d i f f r a c t i o n d ue t o t h e r e -

    s t r i c t e d le ng th /b ea m r a t i o of t h e v e s s e l

    prob ably may be ne gl ec ted .

    The c o n s i d e r ab l e l a r g e r d r i f t f o r c e on

    t h e c a p t i v e r ec t a n g u la r c y l i n d e r r e l a -

    t i v e t o t h e f l a t p l a t e d em on stra tes t h e

    i m p o r t a n t e f f e c t o f t h e beam o r t h e b o t -

    tom o f t h e ve s s e l a nd c ons e que n tly o f t h

    r e l a t i v e v e r t i c a l m o tio n betw een

    the

    ob-

    j e c t and t h e wave motion. The ra t h e r go01

    a gr ee me nt b et we en t h e f r e e f l o a t i n g ve s -

    s e l and t h e v e r t i c a l p l a t e seems t o i n d i

    c a t e t h a t t h e d r i f t f o r c e c o n t ri b u te d by

    t h e r e l a t i v e h e a v e m o t i o n o f t h e v e s s e l

    i

    s m al l i n t h i s p a r t i c u l a r c a s e . The in -

    f l u e n c e o f t h e w a t e r d e p t h - d ra f t r a t i o

    i

    i n d i c at e d i n F ig u re

    6 ,

    where some re su l t ,

    a r e g i v en o f m ea su rem en ts c a r r i e d o u t a t

    t h e N.S.M.B. on a se r i e s 60 model , b lock

    0 . 8 0, be a m /d r af t r a t i o 2.5 Length/beam

    r a t i o 7 . From t h i s f i g u r e t w i l l b e

    c l e a r t h a t i n d eep w ate r t h e d r i f t f o r c e

    i n beam waves on t h e b lock 0 .80 ve ss e l

    c o r r es ponds a l s o r e a s ona b ly w e l l w i th thc

    f o r c e on a v e r t i c a l p l a t e . However, a t

    t h e ve r y r e duce d w a te r de p th o f 1 1

    t i m e s

    t h e d r a f t o f t h e v e s s e l , v er y h i g h

    d r i f t f o r c e s a r e measu red f o r wave f r e -

    q u e n c i e s n e a r t h e n a t u r a l f r eq u e n cy of

    th e r o l l m ot ion . Th i s may be e xp l a in e d

    by t h e much h igh e r r o l l dam ping ( t h e

    d a m p i n g c o e f f i c i e n t

    i s

    approx.

    t i m e s

    l a r g e r ) a t t h i s w a t e r d e p th , w hic h means

    t h a t t h e r o l l g e ne ra te d waves a r e h i g h e r

    an d c on s eq u en tl y t h e s t e a d y d r i f t f o r c e

    t o o .

    F or a n a pp ro xi ma ti on o f t h e l a t e r a l d r i f

    f o r c e i n d e ep w a t er i n r e g u l a r waves t h e

    fo l low ing exp ress ion may be used:

    2

    yd 4pW9

    L

    s i n 2

    a

    i n w hic h

    ca

    a m pl i t ude o f i n c i de n t wave

    R d r i f t f o r c e co e f f ic i e n t f o r a v e r t i -

    c a l p l a t e w i t h d r a f t T . i s a func-

    t i o n o f t h e d i m e n s io n l es s wave

    le ng th kT

    a w a v e d i r e c t i o n

    F or t h e d e t e rm i n a t io n of t h e mean d r i f t

    f o r c e o r t h e r e s i s t a n c e i n h ead

    waves

    r e f e r e n c e i s made t o t h e me thod de sc r i bed

    by Gerritsma and Beukelman 12). T h i s

    method i s b a se d o n t h e d e t e r m i n a t i o n o f

    o f t h e r a d i a t e d e ne rg y by c a l c u l a t i n g t h e

    ampl i tude of th e waves gen e ra t ed

    by

    t h e

    r e l a t i v e v e r t i c a l mo ti on betw een s h i p and

    waves. I n c a se o f a r a t h e r f l a t

    b ow

    a l s o

    t h e i n f l u e n c e o f t h e r e l a t i v e s u r g e mo-

    t i o n h a s t o b e ta k en i n t o a c co u nt

    as i s

    shown i n

    ( 1 3 ) .

    Up t o now o n l y t h e d r i f t f o r c e on s h i p

    s hape d bod i e s ha ve bee n d e a l t w i th .

    F or t h e d r i f t f o r c e on s e m i s ubm e r s ib l e

  • 8/18/2019 Loads on offshore strucrures-otc-1741.pdf

    9/16

    t y p e s t r u c t u r e s no d a t a a r e a v a i l a b l e on

    t h i s moment. Probably t h e be s t way t o

    es

    t im at e t h e d r i f t f o rc e

    i s

    t o s p l i t up t h

    c o n s t r u c t i o n i n e l em e nt s c o n s i s t i n g of

    c i r c u l a r o r r e c t a n g u la r c y l i n d e r s a nd t o

    e s t i m a te t h e d r i f t f o r c e on e a ch e le me nt

    s e p a r a t e l y . I n

    14)

    d a t a a r e g iv en f o r

    t h e d r i f t f o r c e on a r e s t r a i n e d v e r t i c a l

    c y l i n d e r .

    Wave d r i f t f o r c e i n i r r e s u l a r waves

    When t h e d r i f t f o r c e on a s t r u c t u r e i s

    known as

    a

    f unc t i on o f t he wave f r eq ue nc ~

    e i t h e r from c a l c u l a t i o n s o r model

    t e s t s

    t h e l a t e r a l mean d r i f t f o r c e i n i r r eg u l a l

    waves, desc r ibed by a pa r t i c u la r wave

    spectrum, can be determined from:

    A s an emper ica l approx ima ti on f o r s h i p

    s haped bod i es t h e f o l l owi ng expr es s i on

    m a y

    be u s e d for

    an

    i r r e g u l a r se

    d e s c r i b

    ed by a narrow spectrum :

    i n which

    ;

    1 3

    s i g n i f i c a n t wave h e i g h t c r e s t -

    t rough)

    R ( ) d r i f t f o rc e c o e f f i c i e n t f o r f l a t

    p la te f o r mean wave f r e -

    quency ~

    Design of t h e anchor sys tem

    I f t h e s te a d y fo r c e on a s t r u c t u r e i n a

    p a r t i c u l a r se a s t a t e

    i s

    known and t h e

    lay-out of th e anchor sys tem has been se-

    le c te d th e minimum thi ck ne ss of th e an-

    c h o r l i n e s i s dete rmin ed by t h e mean ex-

    t e r n a l f o r c e a s

    w i l l

    be i l l u s t r a t e d

    below.

    S up po se t h e a nc ho r sy s te m h a s t o s a t i s f y

    t h e f ol lo wi ng c r i t e r i a

    1 . The maximum allowable excursion

    max

    o f t h e s t r u c t u r e from i t s i n i t i a l un-

    l o a d e d e q u i l i b r i u m p o s i t i o n i s g i ven

    a s a c e r t a i n pe r c en t a ge o f t h e w a t er

    dep t h .

    2 .

    The maximum al low able te ns io n i n t h e

    anchor l i n e s may not exceed a c e r t a i n

    p e r ce n t ag e o f t h e b re a k in g s t r e n g t h .

    The th i ckn ess of t he anchor cha in s i s

    p r o p o r ti o n a l t o t h e w ei gh t p e r u n i t

    le ng th sp e c i f ic we ig ht ) . The minimum

    wei gh t r equ i r ed

    w i l l

    be a t t a in ed when

    t h e p r e t en s io n i n t h e a nc ho r l i n e s i s

    s uc h t h a t a t a n e x c u r s io n w hic h e q u a l s

    th e maximum al low able exc urs ion a l so th e

    maximum al lowable load i n t h e he av ie s t

    l o a d e d a n c h o r l i n e i s a t t a i n e d .

    From t h e non-dimensional ca te na ry cha-

    r a c t e r i s t i c s t h e te ns io n i n t h e l i n e

    To

    di vi de d by w.ha and th e ang le between

    t h e l i n e and t h e h o r i z o n t a l p l a n e

    b o t h

    measured at the attachment

    p o i n t

    of

    t h e

    l i n e t o t h e s t r u c t u r e , c an b e de te rm in ed

    as a f u nc t i o n o f t he excur s i on x / ha o f

    t h e s t r u c t u r e .

    W submerged weight of anchor l i n e

    per

    u n i t l e n g th

    ha he ig ht of a t t achment po in t above

    bottom

    S i n c e t h e b r e a k in g s t r e n g t h o f a pa r t i - -

    c u l a r t y p e o f a n ch or l i n e

    i s

    propor t ion-

    a l t o t h e s p e c i f i c we ig ht W , t h e e x cu r -

    s i o n of t h e s t r u c t u r e c an be d e t er m in e d

    a t which th e t ens ion To/w.ha equ al s

    t h e

    maximum allowable tension. Then the re-

    q u i r e d p r e t e n s i o n a n g le 8 can be r ead o f

    a t an excur s i on which i s

    X

    s m a l l e r .

    max

    The us ua l non- li nea r r e l a t i o ns h i p be-

    tween t he excur s ion o f t he s t r uc t u r e and

    t h e h o r i z o n t a l l o a d FH/w.ha r e q u i r e d f o r

    t h a t e x cu rs io n c an b e c a l c u l a t e d f o r t h e

  • 8/18/2019 Loads on offshore strucrures-otc-1741.pdf

    10/16

    1 178

    TEE

    MEAN NAVE

    WIND AND

    CUXRENT FORCES

    OTC

    74

    s e l e c t e d p r e t en s i o n .

    Su bt rac t in g th e maximum expec ted f lu c t u -

    a t i n g motion f rom th e maximum al lo wa bl e

    e xc ur s ion X g i v e s t h e e x cu r si o n o f t h

    max

    s t r u c t u r e wh ic h c an b e a l l ow e d a s a r e -

    s u l t o f t h e mean f o r c e d ue t o w in d ,

    waves a nd c u r r e n t . The t o t a l h o r i z o n t a l

    f o r c e F H r

    =

    FH/w.h, a t t h i s e x c u rs i o n

    c an be r e a d o f .

    Then t h e minimum re q u ir ed submerged

    w ei gh t of t h e an ch or l i n e s h a s t o s a t i s f

    ~ h e ' a b o v e e s cr i be d p ro ce du re w i l l be

    i l l u s t r a t e d by means o f a n exam ple .

    Qu es ti on Determine t h e minimum wei gh t of

    t h e a n c h o r - l i n e s o f a n an ch or -

    i n g s y s te m f o r a t u r r e t mo orin g

    of a drilling v e s s e l h a v i n g t h e

    fo l low ing ma in d imens ions:

    .

    . .

    .

    1-ength

    =

    150 m

    beam =

    26

    m

    d r a f t

    = 8

    m

    w ind e xpos e d t r a ns ve r s e a r e a

    =

    750 m

    2

    disp lacement

    =

    17500 m e t r i c t ons

    w a t e r d e p t h = 7 0

    m

    lThe de s ign ha s t o be ba s ed ori a s e a s t a t e 1

    de scr ib ed by a Pierson-Moskowitz spec trum

    w i t h a s i g n i f i c a n t - wave h e i g h t o f 4 .5

    m

    a n d a mean p e r io d o f

    8

    s e c . The maximum

    w i n d s p e s d . i s

    4

    k n o t s ,

    the^

    c u r r e n t s p e e d

    2 kn ot s. The maximum all ow ab le ex cu rs io n

    i s

    9 % o f t h e w a t e r d e p t h . The f o r c e s i n

    th e l i n e s may no t e xc ee d 50% o f t h e

    b r ea k in g . s t r e n g t h . A lt ho ug h t h e v e s s e l

    i s

    e q ui p ed w i t h bow a nd s t e r n t h r u s t e r s t o

    c o n t r o l t h e h ea di ng , s i n c e t h e t u r r e t i s

    l o c a t e d a m ids h ips , t h e a nc hor s yst e m ha s

    to be de s igne d f o r t h e combined a c t i on

    of beam wave, wind and c u r re n t . The

    s y st em c o n s i s t s o f

    8

    a n ch o r l e g s e q u a l l y

    d i s t r i b u t e d o v e r t h e c ir c u m f e re n c e - o f

    t h e t u r r e t . From model t e s t d a t a on s i -

    m i l a r - s h i ps t he maximum os c i l l a t o r y e x -

    c u r s i o n o f t h e v e s s e l i s e s ti m at e d t o

    be approxima te ly4 .35

    m

    b e i n g

    7 %

    o f t h e

    h e i g h t h a o f t h e a tt a ch m e n t p o i n t s o f

    t h e a nc hor c ha ins a bove t h e bo tt om .

    S o l u t i o n

    The mean fo rc e on t h e ve ss e l d e te rmined

    a cc o rd in g t h e d a t a g iv e n i n t h i s p ap e r

    a r e a s f o ll o w s

    :

    due t o a 40 kn ot s beam wind 17 to n

    d ue t o a

    2

    kno t s

    beam

    c u r r e n t

    4 9

    t on

    due t o 4 .5 m s i g n i f i c a n t h e i g h t

    waves

    4 8

    t o n

    T o t a l

    l14

    t o n

    From t h e c h a r a c t e r i s t i c s o f t h e c a t e n a r y

    t c a n be de t er m ine d t h a t t h e a nc hor Leg

    h av e t o c o n s i s t o f a p pr o x.

    5 0 0 m 8 h )

    a nchor c ha in (U-3 q ua l i t y ) o r

    1050 m 17

    h ) s t e e l w i r e ( h = w a t e r d e p t h - d r a f t =

    62

    m

    i n o r d e r t o be s u r e t h a t t h e t a n-

    g e n t of t h e l i n e a t t h e a nc ho r c o in c id e s

    w i th t h e bo tto m a t

    a

    t e n s io n wh ic h e qua l

    h a l f t h e b r ea k in g s t r e n g t h .

    he p r e t e ns ion a ng l e

    O

    r e q u i r e d t o ob-

    t a i n a t e n s i o n w hich e q u a l s h a l f t h e

    b r e a k ing s t r e ng th a t t h e maximum a l l ow -

    a b l e e x c u r s i o n o f 9 % of t h e he igh - t ha ,

    am ou nts t o t h e f o l l o w in g v a l u e s

    for 500

    m

    U-3 q u a l i t y s t u d l i n k c h a i n :

    Opre t .

    = 26.2 degrees

    for 1050

    m

    s tee lwire : Opre t ,

    =

    10.7 de-

    g r e e s .

    The non-dimens iona l r e la t i o ns h ip s be -

    tw een t h e e x c u rs i o n o f t h e v e s s e l a nd t h

    l

    h o r i z o n t a l f o r c e r e q u i r e d ha ve b ee n c a l -

    c u l a t e d f o r b o t h t y p es o f a n ch or l i n e s .

    l F or U-3 s t u d l i n k c h a i n t h e r e s u l t i s

  • 8/18/2019 Loads on offshore strucrures-otc-1741.pdf

    11/16

    1 179

    RTMRRSSRN

    l

    shown i n Fi g.

    6 .

    A t an excurs ion of 9

    o f t h e h e i g h t h a, t h e t e n s i on i n t h e

    h e a v i e s t l o ad ed an ch or l i n e a t t a i n e s

    h a l f t h e b r e a ki n g s t r e n g t h

    Tobr

    f o r U-3 qu a l i t y ch ain Tobr

    4 X

    f o r t e e l w i r e

    Tobr

    17500

    X

    W

    Su btr ac t in g t h e maximum expected os ci l -

    l a t o r y e xc urs ion from t h e maximum allow-

    a b l e e x c u r s io n l e a d s t o an e x c u rs io n of

    2

    of th e he ig h t ha , t h a t may be al lowed

    a s a r e s u l t o f t h e mean f o r c e of 108 t o n

    on th e vess e l . The d imens ion less hor i -

    zon ta l load on the sys tem cor responding

    t o t h i s

    2

    exc urs i on amounts t o :

    f o r U-3 cha in 8.7

    f o r s t e e l w i r e

    5 9 1

    The r e s u l t i n g minimum req ui re d submerged

    w e ig h t o f t h e a n ch or l i n e s i s g i v e n i n

    Table VS . The corresponding approximate

    d i am e te r s o f t h e l i n e s a r e al s o mention-

    e d i n T a bl e V I

    The method de scr i bed h er e has t o be

    adapted fo r each sp ec ia l case . However,

    t h e example i l l u s t r a t e s c l e a r l y t h e im -

    po rt an t r o l e which t h e mean f or ce may

    p la y f o r t h e d e t e r m in a t i o n o f t h e a nc ho r

    system.

    ~~~

    - -

    Nomenclature ..

    .

    F o u r i e r c o e f f i c i e n t s

    dept h of water

    he ig ht of a t tachf t ient po in t of

    anchor l i n e above bot tom

    wave number = 2x/X

    p r e s s u r e

    a tmospher ic p ressure

    t i m e

    submerged weight of anchor l i n e

    e x c u r s io n

    max

    maximum allowable excursion of

    l

    s t r u c t u r e

    X , y , z r i g h t handed sys tem of coord i -

    n a t e s

    z v e r t i c a l c o o r d in a t e , u pward pas-)

    i t i v e

    l

    ~

    l a t e r a l a r e a above w at e r s u r f a c e

    s u b m e r g e d l a t e r a l a r e a

    c

    t r a n s v e r s e a r e a ab ov e w a te r s u r -

    f a c e

    A~~

    submerged t ransverse a rea

    B b r e a d th o f s h i p

    nw

    yaw wind moment coefficient

    nc

    yaw cur re nt moment co ef f i c ie nt

    Cxw

    l o n g i t u d i n a l wind f o r c e c o e f f i -

    c i e n t

    l o n g i t u d i n a l c u r r e n t f o r c e c oe f-

    f i c i e n t

    C

    t r a n s v e r s e wind f o r c e c o e f f i -

    yw

    c i e n t

    C t r a n s v e r s e c u r r e n t f o r c e c o e f f i -

    Y

    c i e n t

    -

    F t o t a l mean loa d on anchored

    s t r u c t u r e

    F~

    ho r iz on ta l load on anchor sys -

    t e m

    I

    yaw c u r r e n t moment

    Nc

    yaw wind moment

    R

    n on -d im en sion al d r i f t f o r c e

    c o e f f i c i e n t

    l d r a f t of s h i p

    To

    t e n s i o n i n a nch or l i n e

    V

    ve lo c i ty o f wa te r mot ion

    vw

    wind ve loc i ty

    c u r r e n t v e l o c i t y

    c

    l o n g i t u d i n a l c u r r e n t f o r c e

    .

    x

    l o n g i t u d in a l win d f o r c e

    Y c

    t r a n s v e r s e c u r r e n t f o r c e

    I

    t ra n sv e rs e d r i f t f o r ce

    mean t ra n s v e r s e d r i f t f o r c e i n

    i r r e g u l a r w aves

  • 8/18/2019 Loads on offshore strucrures-otc-1741.pdf

    12/16

    1 180

    THE: MEAN-WAVE,

    WIND

    AND

    CURRENT

    FORCES

    OT

    174

    a a n g l e o f i n c i d e n c e

    a

    a m p l i t u d e o f i n c i d e n t wave

    c a r

    a m p l it u d e o f r e f l e c t e d an d s c a t -

    t e r ed wave

    W 113

    s i g n i f i c a n t wave h e i g h t

    a n g l e be tw e en a n c h o r l i n e a nd

    h o r i z o n ta l p l a n e a t t h e a t t a c h -

    ment p o i n t t o t h e s t r u c t u r e

    e p r e t

    p r e t e n s i o n a n g l e = a n g l e

    8

    f o r T

    0

    i s e q u a l t o p r e t e n s io n

    cP

    v e l o c i ty p o t e n t i a l

    P

    a

    d e n s i t y of a i r

    PW

    d e n s i t y o f w a t e r

    W

    wave f requency

    mean wave frequency of an i r r e g u -

    l a r s e a

    w

    mean t r a n sv e r se wind f o r c e

    L i s t o f r e f e r e n c e s

    7 . Delany,

    N .K .

    and Sorensen , N.E.

    Low sp e e d d r a g o f c y l i n d e r s o f

    va

    1

    B r e t s c h n e i d e r ,

    C.L.

    Wave and wind l o a d s

    S e c t i o n 1 2 of Handbook of ocean and

    u n d e r w a t e r e n g i n e e r i n g , MC Graw-Hill

    Book Company, New York (1 9 6 9 ) .

    2 . R es ea rc h i n v e s t i g a t i o n f o r t h e

    i m -

    r i o u s s h a p e s

    NACA, Te chn ica l Note 3038.

    8. Maruo,

    H.

    The d r i f t o f a body f l o a t i n g o n w ave s

    J .

    o f sh i p r e se a r c h ( De c. 1 96 0 ) V o l .

    9. Ogawa,

    A

    The d r i f t i n g f o r ce and moment on a

    s h i p i n o b l i q u e r e g u l a r w aves

    P u b l i c a t i o n n o. 3 1. D e l f t S h i p b u i l d i n

    L a b o r a t o r y . . I . S . P . V o l .

    1 4 ,

    no. 149

    January 1967 .

    1 0 .

    Wehausen, J . V . a n d La i t o n e , E.V.

    Handbuch der Physik

    1 96 0, s e c t i o n 1 7 , B e r l i n : S p r i n g e r -

    V e r l a g

    11. M e i , C.C. and Black, J . L .

    S c a t t e r i n g o f s u r f a c e w av es

    J . F lu id Mech. (1969) Vol. 38 P a r t 3.

    1 2 . G e r r i t s m a , P r o f . I r . J and

    Beukelman,

    W.

    A n al ys is o f t h e r e s i s t a n c e i n c r e a s e

    i n w aves o f a f a s t c a rg o s h i p

    I .S .P . Vo l . 1 9 , Sept. L972 no. 217.

    3 Remery, G F M and Hermans, A J

    p ro ve me nt o f s h i p m oo ri ng m eth od s The s lo w d r i f t o s c i l l a t i o n s of

    a

    Report No. A-3 of t h e Hydro- and Aero-

    dynamics L ab or at or y, Denmark, May 1971

    5 . Gould, R.W.F.

    B.S.R.A. R eport NS. 256 .

    3. Wagner, B

    Windkrz f t e an Ueberwasse r sch i f f en

    Schif f und Hafen, Hef t 12/1967.

    4 . Aage, C .

    Wind c o e f f i c i e n t s f o r n i n e s h i p

    models

    Measurements of t h e wind fo rc e s on

    a

    se r i e s

    of mode l s o f merchan t sh ips

    N.P.L. Aero Re port 1233, A p ri l 1967.

    6 . Hoerner , Dr . Ing . S .F.

    Flu id-dynamic drag

    moored o b j e c t i n random s ea s

    S o c i e t y o f P e t r ol e u m En g i n e e r s Jo u r n a

    (1972) Vol. 12 , no. 3.

    1 4 . Oor tmer ssen , G . van

    The i n t e r a c t i o n b etw ee n a v e r t i c a l

    c y l i n d e r a nd r e g u l a r w a ve s

    Symposium on O ffs ho re Hydrodynamics

    i n Wageningen. August 1971.

    P u b l i c a t i o n n o. 375 o f t h e

    N S M B

    P u b l i s h e d b y t h e a u t h o r i n 1 9 65 .

  • 8/18/2019 Loads on offshore strucrures-otc-1741.pdf

    13/16

    T BLE -

    DATA OF TANKERS

    TABLE

    -

    COEFFfCfENTS

    FOR PHE

    LOEiGIlVDINAL FORCE ON TANKWS

    m

    To

    w

    TABLE

     

    COEWIZ:E iTS FOX THE TRANSVERSE

    FORCE ON

    TABLE

    4

    COEFFICIENTS

    FOR THE YBW

    MOhEXT

    X TANKFRS

    DUE

    TO

    KIXiJ

    TANKERS DUE TOWITD

    .

    S h i p

    No.

    2

    4

    5

    7

    8

    9

    1 0

    NO.

    - 0 . 131

    0 . 738 - 0.058 0.059

    0 . 108 - 0 . 001

    - 0.079

    0 . 6 1 5

    0.104 0.085 0.076 0 . 0 2 5

    -

    0.028 0.799 0.077 0.054 0 . 018 0 . 018

    0.014 0.732

    0.055 0.017

    0 . 018

    5 - 0.074 1.010 0.017

    0 . 062 0 . 080 0 . 110

    L e n g t h

    -

    225

    m

    1 7 2

    m

    150

    m

    ' Type

    b r i d g e a n i d s h.

    b r id g e a f t

    b r i d g e a m i d s h .

    6

    b r i d g e

    a f t

    p

    I

    6

    7

    8

    9

    1 0

    TABLE COEFFIClEaPS FOR TFE

    TRANSVERSE WZCE

    Am YAW

    MOK3NT

    ON TANKERS DUE TO

    CVRRENT FORCE

    FOR

    THE

    LOADED

    CONDITION

    I N DEZP WATER -

    l

    t r a n s v e r s e 1 y a w

    C o n d i t i o n

    '

    D a t a t a k e n

    f r o m

    r e f .

    ~.

    0.055

    -

    0.038

    -

    0.039

    0 . 042

    0.075

    - 0 . 051

    b 5

    - 0.019

    0.003

    - 0 . 023

    0.020

    0.044

    0.025

    0.040

    0.017

    - 0.003

    - 0 , 0 3 2

    0.029

    loac led

    .

    b a l l a s t

    l o a d e d

    b a l l a s t

    l o a d e d

    b a l l a s t

    Loaded

    b a l l a s t

    l o a d e d

    l o a d e d

    b a l l a s t

    S h i p

    NO.

    2

    4

    5

    6

    7

    8

    9

    10

    TABLE

    6 -

    THE

    MMPUM

    REQUIRED

    8UBMERGED W IGm

    AND TXE

    APPROXIMATE DlRMETERS OF TH ANCIWR LINES

    2

    2

    2

    2

    3

    '

    3

    3

    3

    4

    5

    5'

    0.748

    0 . 830

    0 . 646

    0 . 487

    0 . 7 1 1

    0.577

    b2

    0.039

    0.004

    0 . 036

    0.014

    0 . 013

    - 0.014

    0 . 032

    0 . 003

    0.037

    0 , 0 5 1

    0.026

    b l

    0.786

    0.880

    0.697

    0 . 785

    0.707

    0 . 7 3 1

    0.718

    0 . 735

    0.764

    0.819

    0.879

    S h i p

    NO.

    2

    3

    4

    5

    6

    7

    8

    9

    1 0

    0 . 018

    0 . 0 3 1

    0.034

    0 . 072

    0 . 082

    0 . 058

    bl

    0 . 0451

    0 . 0338

    -

    0 . 0765

    0.0524

    0.0216

    0 . 0059

    0.0526

    0 , 0335

    0 . 1025

    -

    0 . 0881

    -

    0.0644

    b3

    0.003 0.034

    U-3 s t u d l i n k c h a i n

    s t e e l w i r e

    0.003-

    0.018

    0.014

    0.028

    0.016

    0.010

    0.004

    0 . 052

    0.023

    0.014

    -

    0 . 012

    0 . 012

    0 . 024

    0 . 109

    0 , 0 4 3

    0 . 051

    b2

    0.0617

    0.0800

    0 . 0571

    0.0738

    0 . 0531

    0.0730

    0.0596

    0.0722

    0 . 0721

    -

    0 . 0681

    0.0726

    0.004

    0.028

    0.015

    0.007

    0.001

    -

    0 . 0 0 1

    0.005

    0.016

    0.032

    0.031

    s u b m er g e d w e i g h t

    p e r m e t e r l e n g t h

    2 1 1 k g

    3 1 . 2 k g

    0 . 015

    0 . 021

    -

    0 . 031

    0 . 075

    0.064

    0 . 062

    b3

    0.0110

    0.0080

    0.0166

    -

    0.0175

    - 0.0063

    - 0.0035

    0 . 0111

    - 0.0090

    0.0345

    -

    0.0202

    0.0244

    d i a m e t e r

    107

    P

    4 1/4

    0.151

    - 0 . 072

    -

    0.090

    0 . 047

    0 . 038

    0 . 0 0 6

    -

    b4

    0.0110

    0.0096

    0.0146

    0.0089

    0 . 0073

    0.0017

    0.0113

    -

    0.0047

    0.0127

    0.0145

    0.0076

    92

    mm

    3 5,'s

    b5

    - 0.0010

    0 . 0013

    0 . 0021

    0.0021

    0.0024

    0 . 0 0 1 3

    0 , 0099

    0 . 0067

    -

    0 . 0022

    0.0039

    0.0024

  • 8/18/2019 Loads on offshore strucrures-otc-1741.pdf

    14/16

    OBTAIN ENVIRONMENTAL DATA

    I

    ESTABLISH DESIRED WORKABILITY

    l

    I

    DETERMINE DESIGN CRITERIA

    SELECT DESIGN CONDITION

    WITH RESPECT TO:

    LOADING CONDITION

    WATER DEPTH etc

    I

    DETERMINE SURVIVAL

    ENVIRONMENTAL CONDITIONS

    CALCULATE STEADY FORCES

    OF STRUCTURE WlTH RESPECT

    o

    CHECK AND OR

    ADAPT

    ANCHOR SYSTEM

    DETERMINE DlMENSlONS

    AND PRETENSIONS O F

    VARIOUS ANCHOR SYSTEMS

    SELECT PROP R

    ANCHOR SYSf E M

    no

    FOR SURVIVAL

    DESIGN CONDITION

    ADAPT ANCHOR

    SYSTEM FOR

    ARE ALL

    WORST

    CRITERIA

    CONDITION

    SATISFIED

    y s

    4 INALIZE DESIGN

    Fig The design

    of

    an anchor system

    CHECK DYNAMIC BEHAVIOUR

    IN IRREGULAR SEA CONDITIONS

    BY M ODEL TEST

  • 8/18/2019 Loads on offshore strucrures-otc-1741.pdf

    15/16

  • 8/18/2019 Loads on offshore strucrures-otc-1741.pdf

    16/16

    DRIFTFORCE COEFFICIENT R=

    DEEP WATER

    VERTICAL PLATE

    RECTANGULAR CYLINDER

    .T

    Fig. - Drift force coefficient in

    be m waves

    A OGAWA SERIES 6 0 C g= 0. 70 CAPTIVE

    2.5

    1.2

    0 8

    0.4

    b / w h a = T NSION

    I N

    HEAVIEST

    LOADED

    L I N

    /

    \

    I I

    6

    I

    EXCURSION

    X/ h

    LALANGAS SERIES 60 Cg=0 .60 FREE

    2.5

    MEASUREMENTS ON A SERIES 60

    MODEL IN BEAM WAVES

    Cgs0.80

    ;

    L16.7

    ;

    B/T=2.5

    WATER DEPTH = 4

    X

    DRAFT

    m = 1 1

    x

    DRAFT

    . FLAT PLATE theory)

    2 Pw g 5

    L

    Fig. 6 Influence of water depth on

    the

    drift force Coefficient.

    Fig. 7 Characteristics of the eight leg anchor system.

    /

    /

    //

    /'

    /'

    I

    I

    l

    I t

    I \

    I

    I

    I

    l

    0.5

    1

    O

    -

    .T

    RECTANGULAR

    CYLINDER

    /

    /

    ;/i

    "0'

    0.2 0.4

    0 6

    0.8

    1

    O