Loads

10
Loads evaluation terrace: Crt. No. Layer name Thicknes s d(m) Technical heavy (kN/m 3 ) Normed Load ( kN/m 2 ) Load coefficien t Design load (kN/m 2 ) 1. Interior mortar plaster M50 0,02 19 0.38 1,35 0.513 2. RC plate 0,15 25 3.75 1,35 5.0625 3. Equalization layer 0,015 21 0.32 1,35 0.38 Water vapour barier 2C +3b 0.02 2 0.18 1.35 0.22 Thermal insulation 0.15 40 0.06 1.35 0.76 Equalization concrete layerM100 0.03 21 0.62 1.35 0.76 Hidroinsulation3c+ 4b 0.03 2 0.06 1.35 0.08 Protection layer(sand gravel) 0.03 22 0.66 1.35 0.79 6. Total 5.48 7.87 Plate with warm floor: Crt. No. Layer name Thicknes s d(m) Technical heavy (kN/m 3 ) Normed Load ( kN/m 2 ) Load coefficien t Design load (kN/m 2 ) 1. Interior mortar plaster M50 0,01 19 0.38 1,35 0.513 2. RC plate 0,13 25 3.75 1,35 5.0625 3. Layer of sand 0,015 16 0.48 1,35 0.648 4. P.F.L. hard 0.015 9 0.18 1.35 0.243 5. Foliated parquet 0,02 8 0.176 1,35 0.238 6. Total 4.966 6.704

Transcript of Loads

Page 1: Loads

Loads evaluation

terrace:

Crt.

No. Layer name

Thickness

d(m)

Technical heavy

(kN/m3)

Normed Load ( kN/m2)

gn=d⋅γ

Load coefficient

n

Design load (kN/m2)

gc=gn⋅n1. Interior mortar plaster M50 0,02 19 0.38 1,35 0.513

2. RC plate 0,15 25 3.75 1,35 5.0625

3. Equalization layer 0,015 21 0.32 1,35 0.38

Water vapour barier 2C +3b

0.02 2 0.18 1.35 0.22

Thermal insulation 0.15 40 0.06 1.35 0.76

Equalization concrete layerM100

0.03 21 0.62 1.35 0.76

Hidroinsulation3c+4b 0.03 2 0.06 1.35 0.08

Protection layer(sand gravel)

0.03 22 0.66 1.35 0.79

6. Total 5.48 7.87

Plate with warm floor:

Crt.

No. Layer name

Thickness

d(m)

Technical heavy

(kN/m3)

Normed Load ( kN/m2)

gn=d⋅γ

Load coefficient

n

Design load (kN/m2)

gc=gn⋅n1. Interior mortar plaster M50 0,01 19 0.38 1,35 0.513

2. RC plate 0,13 25 3.75 1,35 5.0625

3. Layer of sand 0,015 16 0.48 1,35 0.648

4. P.F.L. hard 0.015 9 0.18 1.35 0.243

5. Foliated parquet 0,02 8 0.176 1,35 0.238

6. Total 4.966 6.704

Page 2: Loads

Plate with cold floor:

Crt.

No. Layer name

Thickness

d(m)

Technical heavy

(kN/m3)

Normed Load ( kN/m2)

gn=d⋅γ

Load coefficient

n

Design load (kN/m2)

gc=gn⋅n1. Interior mortar plaster M50 0,01 19 0.38 1.35 0.513

2. RC plate 0,13 25 3.75 1,35 5.0625

3. Equalisation plaster M100 0,02 18 0.54 1,35 0.729

4. Mosaic 0,02 21 0.42 1,35 0.567

5. Total 5.09 6.872

Exterior BCA wall:

Crt.

No. Layer name

Thickness

d(m)

Technical heavy

(kN/m3)

Normed Load ( kN/m2)

gn=d⋅γ

Load coefficient

n

Design load (kN/m2)

gc=gn⋅n1. Interior mortar plaster M50 0,02 19 0.285 1.35 0.385

2. BCA 0,20 6 1.5 1,35 2.025

3. polystyren 0.10 0.8 0.08 1,35 0.010

4. Exterior mortar plaster M100 0,02 19 0.27 1,35 0.3645

5. Total 2.075 2.801

Interior BCA wall type 1:

Crt.

No. Layer name

Thickness

d(m)

Technical heavy

(kN/m3)

Normed Load ( kN/m2)

gn=d⋅γ

Load coefficient

n

Design load (kN/m2)

gc=gn⋅n1. Mortar plaster M100 0,01 19 0.285 1.35 0.385

2. BCA 0,20 6 0.60 1,35 0.891

3. Mortar plaster M50 0,01 19 0.285 1,35 0.385

5. Total 1.17 1.58

Page 3: Loads

Interior BCA wall type 2:

Crt.

No. Layer name

Thickness

d(m)

Technical heavy

(kN/m3)

Normed Load ( kN/m2)

gn=d⋅γ

Load coefficient

n

Design load (kN/m2)

gc=gn⋅n1. Mortar plaster M100 0,01 19 0.285 1.35 0.385

2. BCA 0,10 6 1.5 1,35 2.025

3. Mortar plaster M50 0,01 19 0.285 1,35 0.385

5. Total 2.07 2.795

Stairs:

Crt.

No. Layer name

Thickness

d(m)

Technical heavy

(kN/m3)

Normed Load ( kN/m2)

gn=d⋅γ

Load coefficient

n

Design load (kN/m2)

gc=gn⋅n1. Lower side plaster 0,015 19 0.27 1.35 0.350

2. RC step 0,08 24 3.6 1,35 4.86

3. RC ramp 0,13 25 3.75 1,35 5.063

4. I mosaic 0,02 21 0.42 1,35 0.385

5. Total 7.825 10.564

Balcony:

Crt.

No. Layer name

Thickness

d(m)

Technical heavy

(kN/m3)

Normed Load ( kN/m2)

gn=d⋅γ

Load coefficient

n

Design load (kN/m2)

gc=gn⋅n1. Exterior mortar plaster M100 0,015 18 0.27 1.35 0.3645

2. RC Plate 0,15 25 3.75 1,35 5.0625

3. Equalisation plaster M100 0,03 0.18 0.54 1,35 0.729

4. Mosaic 0,01 21 0.42 1,35 0.567

5. Total 4.98 6.723

Page 4: Loads

elevator

Layer name

Thickness

d(m)

Tecnical heavy

(kN/m3)

Normed Load ( kN/m2)

gn=d⋅γ

Load coefficient

n

Design load (kN/m2)

gc=gn⋅n1. Exterior mortar plaster M100 0,01 18 0.27 1.35 0.3645

2. RC Plate 0,30 25 3.75 1,35 5.0625

3. Equalisation plaster M100 0,01 0.18 0.54 1,35 0.729

5. Total 4.98 5.309

b)Variable loads

Live loads:

Crt.

No. Layer name

Normed Load ( kN/m2)

Load coefficient

n

Design load (kN/m2)

gc=gn⋅n1. Superior slab 0.75 1.5 1.125

2. Current floor 3 1.5 4.5

3. Stairs 4 1.5 6

Standard loads on plate:

without human circulation: p1n=0.75 [ kN /m2 ]

with human circulation and furniture: p1n=3 .00 [kN /m2 ]

pc=pn⋅n [ kN /m2 ]

Where n = 1.5 – load coefficient

Page 5: Loads

p1c=0 .75⋅1.5=1 .125 [ kN /m2 ]

p2c=3 .00⋅1.5=4 .50 [ kN /m2 ]

Standard loads on balcony

pn = 2 [ kN /m2 ]

n = 1.4pc=n⋅pn=1 .4⋅2=2 .8 [kN /m2 ]

pc=n⋅pn=1 .4⋅2=2 .8 [kN /m2]Snow’s action:

= 0 .8⋅1⋅1⋅2=1.6 [ kN /m2 ]; n=1.5;

Sd=n⋅Sk=1 .5⋅1.6=2 .4 [ kN /m2 ]

mi - shape coefficient; mi = 0.8;

ce - exposure coefficient due to the site of the construction; ce=1;

ct - thermal coefficient; ct=1;

s0,k – characteristic value of snow load on the soil;

s0,k=2 [ kN /m2 ];

sk - characteristic value of snow load;

sd - design value of snow load.

Wind’s load:

w ( z )=qref⋅Ce( z )⋅c p

w(z) – wind pressure at z height over terrain on rigid surfaces

qref=0.5 [kN /m2 ]−reference pressure in Iasi

Ce( z )− exposure factor at z height over terrain

Page 6: Loads

C e( z )=0 .65( z10 )c p=0 .7− aerodynamic pressure coefficient

w ( z )=0 . 5⋅2 . 47⋅0. 7=0 .86 [ kN /m2 ]

a) C) Exceptional loads

i) Seismic action evaluation according to P100 – 2006:

In the modal computation, the seismic action si evaluated using the response spectra corresponding to horizontal unidirectional ground movements, described by accelerograms. The seismic action is described using two horizontal components evaluated starting from the same design response spectrum.

When a spatial model is used, the seismic action is applied on all relevant horizontal directions, and on the central principal directions. For the buildings with structural elements on two normal directions, these directions are considered relevant.

In the computation, only the vibration modes with a significant contribution to the total seismic response will be considered. This condition is fulfilled if:

the sum of the effective modal masses for the considered modes of vibration is at least 90% from the total mass of the structure;

all modes of vibration with an effective modal mass greater than 5% of the total mass have been considered.

The shear force applied at the base of the building on the direction of the seismic action:

where:

γi = 1.20 – the building is classified as an importance class III;

Sd(T) – the ordinate of the design response spectrum corresponding to the fundamental period T;

T – the fundamental period of vibration in the plane of the horizontal direction considered;

Page 7: Loads

m – the total mass of the building;

λ = 0.85 – the correction factor which takes into account the contribution of the fundamental mode of vibration through the effective modal mass associated (chose for T1<Tc and for buildings having more than two levels);

ag = 0.20g – the ground acceleration;

Tc = 0.7 s – the corner period;

– the behaviour factor of the structure (H ductility class);

For multispan and multistorey buildings:

β(T) – elastic normalized response spectrum for Tc=0.7 s

The mass on each level is computed using the software Robot Millennium.

Page 8: Loads

ii) Combination of the modal responses

The modal responses for two consecutive vibration modes, k and k+1 are considered independent if their periods of vibration Tk and Tk+1 (where Tk+1≤Tk) satisfy the condition: Tk+1≤0.9Tk.

For the maximum independent modal responses, the total maximum effect is obtained using the modal composition relation:

where:

EE – the effect of seismic action (internal force, displacement);

EE,k – the effect of the seismic action in mode k.

If the modal responses are not independent, other means of combining the effects of seismic action for each mode of vibration will be considered (complete quadratic composition etc.).

iii) The spatial modal computation

In the case of buildings with a non-uniform distribution structural elements masses and stiffness, the design will be made using a spatial model of the structure. The seismic movement described in the design response spectrum must be considered along at least two directions. The main action directions are defined by the direction of the resultant of the base seismic force from the first mode of vibration and the normal to this direction. The response of the structure may be obtained by composing the responses along these two directions.

iv) Hypothesis for design of structures with floors infinitely rigid in their own plane:

The influence of the vertical component of the seismic movement is neglected;

The seismic action is represented by the ground movement along one of the principal directions x or y or along any other direction in the horizontal plane;

For each level, the centers of mass and the centre of stiffness are different, and they may or may not be on the same vertical line;

Page 9: Loads

In the centre of mass of each floor, three DDOFs are considered: two translations, ux and uy and a rotation about the vertical axis, uθ.