Load test on soil

52
Prof. Samirsinh P Parmar Research Scholar , Civil Engineering Dept., IIT Kanpur, India Mail: [email protected] 1 LOAD TEST ON SOIL

Transcript of Load test on soil

Page 1: Load test on soil

1

Prof. Samirsinh P ParmarResearch Scholar , Civil Engineering Dept., IIT Kanpur, India

Mail: [email protected]

LOAD TEST ON SOIL

Page 2: Load test on soil

2

PLATE LOAD TEST

Page 3: Load test on soil

3

Load Tests on Soils

Page 4: Load test on soil

4

Plate Load Test• Conducted to determine ultimate bearing pressure (or bearing capacity) of a

soil in-situ, when soil strata is reasonably uniform.• To determine the modulus of subgrade reaction of a soil strata, used in the

design of raft foundations and pavements• Conducted at proposed foundation level in a test pit, which is at least 5 times

the plate size• If the water table is above the test level, it may be lowered down artificially by

adopting pumping• All the dead loads, viz., ball and socket, loading column, jack, test plate, etc.

should be properly accounted for eccentricity.

Page 5: Load test on soil

5

Size of plate

• Circular or square plates of 300-750 mm size (mild steel), thickness not less than 25 mm, or equivalent concrete blocks

• with chequered or grooved bottom for better contact

• Single size of plate may be sufficient for testing in clays

• Three plates of different size are suggested for testing in gravelly and dense sands (to understand the size effect), and results are extrapolated for real footings.

• Side of the plate should be greater than 4 times the maximum size of particle present at the location

Page 6: Load test on soil

6

Loading• Stress controlled loading in cumulative equal increments upto 1 kg/sq.cm. (100

kPa) or one-fifth of the estimated ultimate bearing pressure (qu).• Ex., Load on the plate should be 100 kPa in the first stage, followed by 200

kPa in the second stage, 300 kPa in the third stage, and so on, till the final load is reached; or

• 1/5qu in the first stage, followed by 2/5qu in the second stage, 3/5qu in the third stage, 4/5qu in the fourth stage, and qu in the last loading stage.

• Gravity loading• Reaction loading in the form of

• Kentledge• Anchored piles

Page 7: Load test on soil

7

Hydraulic or mechanical Jack• A hydraulic jack of required capacity to apply and maintain to

maximum estimated load but not less than 50 tonnes.

7 kPa

1/5qu

2/5qu

3/5qu

4/5qu

qu

Time

0

24 h

ours

48 h

ours

72 h

ours

96 h

ours

120

hour

s

Sea

ting

load

Pressure

Page 8: Load test on soil

8

Limitations of plate load tests

• Size of the foundation influences the load-settlement response of shallow foundations. This is very particular in case of cohesionless soils, wherein the modulus of elasticity increases with depth.

• Bearing capacity increases with increase in size of plate for cohesionless soils.

• In cohesive soils, particularly those that are saturated, the plate load test will not be able to capture the ultimate settlements under any load application, which may require more time than 24 hours, used in the plate load test.

Page 9: Load test on soil

9

Influence zone

• Influence zone in case of plate load test is extended to smaller depths, in the order of two times the width of the plate. However, in case of real footings, whose width is many times higher than the plate size, soil at deeper depths can also significantly contribute to the bearing capacity of soil.

Page 10: Load test on soil

10

Influence zone

Plate width =Bp

Footing width=Bf

Bf>>Bp & N1≈2

N1B

p

N2Bp N1B

f

N2Bf

100 kPa 100 kPa

Page 11: Load test on soil

11

Scale effect

100 kPa 100 kPa

EsEs

Es=Young’s modulus of soil

For cohesionless soils, Es is a function of overburden pressure

Page 12: Load test on soil

12

Scale effect

100 kPa 100 kPa

Loose Sand

Bed Rock

Dense Sand

Soft clay

Page 13: Load test on soil

13

Scale effect100 kPa 100 kPa

Medium to Dense Sand

Bed Rock

Geologic surprise

Page 14: Load test on soil

14

Page 15: Load test on soil

15

Gravity Loading Platform

Source: IS:1888-2002

Page 16: Load test on soil

16

Reaction Loading Platform

Source: IS:1888-2002,

pg-6

Page 17: Load test on soil

17

Load vs. settlement behavior

St taken as permissible settlement of footing

Source: IS:1888-2002,

Page 18: Load test on soil

18

Plate load test

Supports for dial gauges should not be located in the vicinity of plate.

Adapted from V.N.S. Murty (2007)

Page 19: Load test on soil

19Source: Cerato (2005)

Interpretation of Bearing Capacity from Load-Settlement Data

From this observation stress value or qu = 380 kpa

Page 20: Load test on soil

20Source: Cerato (2005)

Interpretation of Bearing Capacity from Load-Settlement Data

From this observation stress value or qu = 275 kpa

Page 21: Load test on soil

21Source: Cerato (2005)

Interpretation of Bearing Capacity from Load-Settlement Data

From this observation stress value or qu = 460 kpa

Page 22: Load test on soil

22

Source: Cerato (2005)

Interpretation of Bearing Capacity from Load-Settlement Data

Page 23: Load test on soil

23

Adapted from Brand et al. (1972)

The ultimate load is defined as the point where the load displacement becomes practically linear

Interpretation of Bearing Capacity from Load-Settlement Data

Page 24: Load test on soil

24

PILE LOAD TEST

Page 25: Load test on soil

25

References

IS 2911 Part 4 (1985): Design and Construction of Pile Foundations; Load Test on Piles, Reaffirmed 2006, Bureau of Indian Standards.

ASTM D1143-81: Standard Test Method for Piles under Static Axial Compressive Load.

GEO Publication No.1/2006: Foundation Design and Construction, GEO, HK.

Page 26: Load test on soil

26

Page 27: Load test on soil

27

Pile load tests More reliable method to determine the pile capacity, being an in-situ test

Test should be conducted at cut-off levels (the level where the installed pile is cut-off to support pile caps or beams or any other structural component)

Pile load test are usually carried out to fulfill one or some of the following objectives :

To determine ultimate and safe loads on piles To countercheck results from static and pile driving formulae To determine the load-settlement behavior of a pile, especially in the region

of the anticipated working load that the data can be used in prediction of group settlement.

To verify structural soundness of the pile.

Page 28: Load test on soil

28

Types of Load Tests

• Vertical load test (compression test)• Pullout test • Lateral-load test

Page 29: Load test on soil

29

Types of TestsInitial test and Routine test• Initial test:

• Conducted to achieve one or more of the following objectives• to determine the ultimate load capacity and safe capacity• to provide guidelines for setting up the limits of acceptance for routine tests• to study the effect of piling on the stability of adjacent structures, and assess

the suitability of type of piles to be used• to get an idea of suitability of piling system• to check on the calculated loads by static and dynamic formulae

• Conducted in case of important and major projects• Number of tests may be one or more depending on the availability of information

on strata and past experience

Page 30: Load test on soil

30

Types of Tests• Routine test:

• Conducted to achieve one or more of the following objectives• To determine the safe load on the pile• To check the extent of safety for the specific functional requirement of the pile

at working load• Detection of any unusual performance contrary to the finding of the initial test

• Number of tests may generally be 0.5% of total number of piles at the site• May be increased up to 2%, depending on the importance of the project, and

subsoil conditions• For single piles: carried out for a test load of at least one and half times the

working load; the maximum settlement under the test loading in position not exceeding 12 mm.

• For group piles: carried out for a test load of at least equal to the working load; the maximum settlement under the test loading in position not exceeding 25 mm.

Page 31: Load test on soil

31

Methods of Application of Loading

• Maintained Load Method (MLT)• Constant Rate of Penetration Method (CRP)• Cyclic Load Method

The most common types of test loading procedures are maintained load test (MLT) and Constant rate of penetration (CRP) test

Page 32: Load test on soil

32

Maintained Load Method (MLT)

• Suggested method for determining safe load• Reaction load should be 25% more than the final test load, proposed to be applied• Vertical downward incremental load• Each increment 20% safe (working) load• Each stage of loading is maintained till the rate of displacement measured at the

top of the pile is either 0.1 mm in first 30 minutes 0.2 mm in first 60 minutes 2 hours, whichever is earlier.

Test load (final load) shall be maintained for 24 hours

Page 33: Load test on soil

33

Maintained Load Test

Releasing of load for next increment

Elastic rebound after releasing of load

Page 34: Load test on soil

34

Safe LoadCompression loading (MLT)Safe load on single piles from initial test should be lesser of the following:

• Two-thirds of the final load at which the total settlement attains a value of 12 mm

• 50% of the final load at which the total settlement equals to 10% of the pile diameter, in case of uniform diameter piles, and 7.5% of the bulb diameter in case of under-reamed piles.

Page 35: Load test on soil

35

Constant Rate of Penetration Test

Elastic rebound after releasing of load but of small magnitude

Page 36: Load test on soil

36

CRP Test

Predominantly friction piles

Predominantly end bearing piles

Ultimate (or peak) load: Load corresponding to Point A.

Ultimate load: Load corresponding to the penetration equal to 10 percent of the diameter of the pile base

Maximum skin friction mobilizes at small penetration of 5 to 10 mm

Maximum base resistance mobilizes at relatively large penetration

Page 37: Load test on soil

37

CRP (constant rate of penetration)

• Test pile is jacked into the soil, the load being adjusted to give constant rate of downward movement to the pile. This is maintained until point of failure is reached.

• Failure of the pile is defined in to two ways that as the load at which the pile continues to move downward without further increase in load, or

• According to the BS, the load which the penetration reaches a value equal to one-tenth of the diameter of the pile at the base.

Page 38: Load test on soil

38

PILE LOAD TEST SET-UP

Page 39: Load test on soil

39

MLT (Maintained load test)

• Kentledge or adjacent tension piles or soil anchors are used to provide a reaction for the test load applied by jacking(s) placed over the pile being tested.

• Load is increased in definite steps

• Load is sustained at each level of loading until all settlements has either stop or does not exceed a specified amount in a certain given period of time.

Page 40: Load test on soil

40

Pile load tests (refer figure on the next page)

Load tests are performed to determine or verify the design capacity of piles and the designs are revised accordingly.

Test piles in clays should not be loaded until some time (at least several weeks) has passed after the piles were driven.

Test piles in sands may be loaded several days after they were driven.Load is applied in increments of estimated safe load.Each stage of loading is maintained till the rate of movement of pile top is not more than 0.1

mm/hr in cohesion-less soil and 0.02 mm/hr in clay for a maximum of 2 hrs whichever is earlier.

The loading is continued up-to twice the safe load or the load at which the total settlement of the pile top equals the appropriate value as indicated in the criteria below : The allowable load on single pile shall be lesser of the following :

1. Two thirds the final load at which the total settlement attains a value of 12 mm. 2. 50 % of the load at which the total settlement equals 10% of pile diameter

Page 41: Load test on soil

41

Page 42: Load test on soil

42

Pile driving equipment Piles are commonly driven by means of hammer or occasionally by a vibratory force

generator. The hammer operates between a pair of parallel guides suspended on a standard lifting

crane.

Impact hammer• Steam hammers contain a ram lifted by steam pressure and allowed to fall by gravity with

or without the assistance of steam pressure.• If the fall is due to gravity alone, the hammer is called single acting as shown in Figure. 1• If steam pressure adds to the energy, the hammer is called double acting.• The ram as shown in fig. 1 strikes a hammer cushion position in the base of the hammer.• The original purpose of the cushion was to prolong the life of the hammer by reducing

impact stresses.

Page 43: Load test on soil

43

Figure. 1

SINGLE ACTING HAMMER

Page 44: Load test on soil

44

In other hammers the ram strike directly on the base of the anvil. The top of the pile itself is protected by a drive head suspended from the base of the

hammer and fitted to the dimensions of the pile. Between the drive head and the pile, may also be inserted pile cushion. These various elements not only protect the top of the pile from local overstress, but

have a significant influence on the stress waves developed in the pile during driving. The selection of suitable cushion affects the driving characteristics of a pile, the depth

to which it can be driven and to some extent, its load carrying capacity

Pile driving equipment Continue …

Page 45: Load test on soil

45

Diesel hammers

Are of two types : open ended and close ended as shown in fig. 2 The ram of either types is lifted by explosion of fuel and compressive gas in a

chamber between the bottom of the ram and an anvil block in the base of the housing.

In the open ended hammers, the ram falls by gravity and delivers energy to the anvil by direct impact.

As it descends, however, fuel is injected into the space, known as combustion chamber, between the ram and the anvil.

At approximately the instant of impact, the fuel ignites and again lifts the ram. For a significant time, the pressure of burning gases also acts on the anvil and

increases the magnitude and duration of the driving force. In this aspect, the driving characteristics of diesel hammers differ appreciably

from those of steam hammers.

Page 46: Load test on soil

46

Page 47: Load test on soil

47

Continue … In the close ended hammers, the housing extends over the cylinder to form a

bounce chamber in which air is compressed by the rising ram. The compressed air acts as a spring that limit the rise of the ram and thereby

shortens the stroke. It returns its stressed energy to the ram on the down stroke. On account of a shorter stroke, the number of blows per minute is increased

with respect to that for open ended hammer.

Page 48: Load test on soil

48

Vibratory drivers Piles are also driven by force generators consisting of static weight and a pair of

counter rotating eccentric weights as shown in the figure. 3 The horizontal components of centrifugal forces cancel each other whereas the

vertical components are additive. The vibrating part of the machine is positively attached to the head of the pile to be

in driven but the remaining of the machine is isolated from the vibrator by spring so that it does not participate in the vibratory motion.

The pulsating force facilitates penetration of the pile under the influence of the constantly acting downward weight.

When the frequency of the dynamic force becomes equal to the frequency of the system consisting of the pile, the driven and the soil, the condition of resonance development.

The frequency of the driven must therefore be adjustable. The resonant frequency is often within the range of 50-150 Hz.

Page 49: Load test on soil

49

Page 50: Load test on soil

50

Continue …

Then the system is at resonance, the pile exhibits energetic ups and downs displacements, limited only by the damping furnished by the surrounding soil.

Almost the full downward weight of the driver and the pile are then effective in causing the point of the pile to penetrate the underlying material.

Penetration may be very rapid unless the resistance to the point penetration exceeds the weight of the pile driving assembly.

Page 51: Load test on soil

51

PILE LOAD TEST

Page 52: Load test on soil

52

THANK YOU !