LNG Example

48
ENSC3019 Unit Operations S2 2015 LNG / Gas Process Engineering Example for Process Modules Acknowledgments: Dr. John Boxall (2012) Various Slides adapted from Terry Edwards, Process Modules lectures Wesfarmers process slides for Process Modelling course Figures GPSA Handbook and Campbell, Gas Conditioning and Process Vol2

description

Lecture Notes - LNG example

Transcript of LNG Example

Page 1: LNG Example

ENSC3019 Unit Operations S2 2015

LNG / Gas Process Engineering Example for Process Modules

Acknowledgments: Dr. John Boxall (2012) Various Slides adapted from Terry Edwards, Process Modules lectures Wesfarmers process slides for Process Modelling course Figures GPSA Handbook and Campbell, Gas Conditioning and Process Vol2

Page 2: LNG Example

Liquefied Natural Gas (LNG) Background

http://energy.gov/sites/prod/files/2013/04/f0/LNG_primerupd.pdf

Page 3: LNG Example

Liquefied Natural Gas (LNG) Background

http://energy.gov/sites/prod/files/2013/04/f0/LNG_primerupd.pdf

Page 4: LNG Example

Liquefied Natural Gas (LNG) Background

https://www.spe-qld.org/useruploads/files/aug_2011_final_lng_presentation_rev3_%5Bcompatibility_mode%5D.pdf

Page 5: LNG Example

Not necessary on NWS

LNG Processing

LNG Storage and Sales

LPG Extraction LPG

Sales

Domestic Pipeline Sales

Ethane Extraction

Petrochemicals & Gas to Liquids

Separation and Processing of Well Fluids

Page 6: LNG Example

LNG Production – Cascade Refrigeration

Inlet Gas: Methane (and some N2) •  Always requires some front end treatment

–  acid gas removal –  dehydration –  mercury removal

•  Liquid hydrocarbon removal –  Distillation and absorption

•  Liquefaction through a refrigerant cycle

–  Refrigeration –  Heat Exchangers

6 Phillips Optimized Cascade LNG Process

-161 °C

Page 7: LNG Example

GAS TREATING (SWEETENING)

7

Page 8: LNG Example

Gas sweetening (CO2 removal, also H2S)

8

Page 9: LNG Example

Gas Sweetening Absorption Processes

•  Separate CO2 from NG –  Gas supply at high pressure (>35 bar) –  Typically also removes hydrogen sulphide (H2S) as well

•  Removal specifications –  < 2 % (pipeline) –  < 50 ppm (LNG plant feed)

9

Covered in Gas-liquid absorption columns

Page 10: LNG Example

Gas sweetening: Example

•  CO2/H2S Removal using amine based solvent

•  Information: –  1,000 Sm3/day gas @ 6000 kPa –  0.4% H2S, 3.0% CO2 –  20% solution of DEA

•  What circulation rate is required?

•  Estimate the plant requirements

10 Simplified Design Calcs: GPSA Handbook

Dr, Dc in mm, Q in MSm3/day, P in kPa

Page 11: LNG Example

Gas sweetening: Example •  QDEA = 360(Qy/x) = 360(1.0*3.4/20) = 61.2 m3/h

–  Add both acid gas concentrations –  1 MSm3 = 1000 Sm3

•  Dc = 10750*sqrt(1.0/√6000) = 1221 = 1200 mm (1.2 m)

–  Based on gas flowrate and density (pressure) –  Quite reasonable diameter for a column

•  Dr = 160*sqrt(61.2) = 1251 = 1300 mm (1.3 m) –  Based on amine flowrate –  Above feed point regen diameter ~67% or 900 mm

•  Reboiler –  H = 93*61.2 = 5690 kW –  A = 4.63*61.2 = 286 m2

–  etc. for other process equipment

Page 12: LNG Example

Simulation tools providing greater design flexibility/accuracy – Example VMGSim

12

Page 13: LNG Example

DEHYDRATION

13

Page 14: LNG Example

Dehydration to get Natural Gas & Condensate to Shore: 1.  To prevent hydrate formation which would block subsea pipeline

2.  To prevent internal corrosion of subsea pipeline

Dew-point Control or

Glycol Dehydration

Glycol and Molecular Sieve

Dehydration

Dehydration onshore: 1.  As above – but may need even tighter dew-point control

2.  Meet a sales gas water content spec.

Export Gas Pipeline

Page 15: LNG Example

Dehydration of a gas stream, TEG absorption and regeneration

15

Page 16: LNG Example

16

What is the saturated water content for a sweet gas that is at 50 °C and 15000 kPa if the gas has a molecular weight of 45 g/mol?

If the first gas processing stage will decrease the temperature to 10 °C without significantly changing the pressure, is dehydration critical prior to this initial processing stage, and if so why?.

Gas Dehydration: Water Content

Page 17: LNG Example

17

Information: Temp 50 °C Pressure 15000 kPa Molecular weight of 45 g/mol

Gas Dehydration

Uncorrected Water Content: 1050 mg water/sm3 wet gas

Corrected Water Content: = 1050 * 0.93 = 977 mg water/sm3 wet gas

Correction for molecular weight of gas / gas density: 0.93

50 °C 0.93

Page 18: LNG Example

18

If the first gas processing stage will decrease the temperature to 10 °C without significantly changing the pressure, is dehydration critical prior to this initial processing stage, and if so why?.

Gas Dehydration

Page 19: LNG Example

19 (Petrobras Hydrate Plug Removed from Pig-Catcher)

Page 20: LNG Example

TEG Dehydration example

20

A Natural gas stream saturated with water enters a triethylene glycol (TEG) contactor at 50 °C. The gas leaving the contactor must have a water dew point below 0°C. What is the minimum concentration of TEG solution coming back from the regeneration required to dehydrate the gas if a 10 °C approach to equilibrium in the column is assumed? Equilibrium data for TEG contactors is provided in the Figure.

Page 21: LNG Example

TEG Dehydration example

21

Information: Temperature 50 °C Leaving water dew point 0°C 10 °C approach to equilibrium Temperature

~ 99.4 wt% TEG

Page 22: LNG Example

Physical properties of glycols

22

Page 23: LNG Example

Hysys Example of a TEG Stripper and Regeneration – Process Modelling

23

Page 24: LNG Example

Why are Glycols not enough for LNG?

24

Page 25: LNG Example

Other Dehydration

•  Gas adsorption –  Molecule Sieves common in gas processing –  As pointed out adsorption topics not considered in process

modules

•  Gas Permeation –  Membrane dehydration

25

Page 26: LNG Example

26

Packed in a tower

Wet Feed Gas in at top

Dry Feed Gas out at bottom

Between 5000kg & 10000 kg in each tower

Mole Sieve gas dehydration

Page 27: LNG Example

Adsorption and Regeneration Cycling

27

Page 28: LNG Example

Dehydration at Apache’s plant at Varanus Island, NWS

Wet gas

Dry gas

Page 29: LNG Example

GAS PROCESSING

29

Page 30: LNG Example

Successive distillation/absorption to remove heavier components – mostly just methane for LNG

30

Absorption De-ethanizer De-propanizer De-butanizer

To LNG

Page 31: LNG Example

Westfarmers Straddle NGL plant: Distillation fractions heavier components to LPGs

31

Page 32: LNG Example

Simulation (Hysys etc.) would typically be used for multi-component distillation (MCD) But, McCabe-Thiele Approach for MCD can give initial estimate.

•  Example: de-propanizer

–  0.01 ethane, 0.64 propane, 0.3 butanes, 0.05 pentanes –  top product with < 0.01 butane, bottom <0.02 propane

•  Light Key – Propane

•  Heavy Key – n-Butane

•  Relative Volatility, α = 3.0

•  Non key components: ethane, n-pentane

32

Page 33: LNG Example

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Equilibrium line - relative volatility of key components

Y

X

Propane Liquid Composition

Propane Vapour Composition

Page 34: LNG Example

Also need: Operating lines, Reflux Ratio, Feed

34

Example Feed: Saturated Vapour – leaving an expansion and heat removed through heat exchanger Assume 65% propane

Lecture 2

Example Reflux Ratio: 1.3

Goal: top product with < 0.01 butane, bottom <0.02 propane

Page 35: LNG Example

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Rectifying section operating line using reflux ratio

35

Y

X

intercept 0.99/(1.3+1) = 0.43

0.99,0.99

(< 0.01 butane)

Page 36: LNG Example

Feed line for the saturated vapour

36 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Y

X

Saturated Vapour – Horizontal Line

(Feed = 65% propane)

0.65 feed (0.64 + 0.01)

Page 37: LNG Example

Operating line for stripping section

37 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Y

X

Bottom composition: 0.02, 0.02

Feed and operating line intersection

(< 0.02 propane)

Page 38: LNG Example

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

McCabe-Thiele MCD w/ binary of Key components

Y

X

Draw in Stages

Page 39: LNG Example

McCabe-Thiele MCD w/ binary of Key components •  Theoretical stages - 29

–  In reality would require more stages –  Efficiency of each stage not 100% - not at equilibrium –  And of course this is only an estimate

39

Page 40: LNG Example

Example Hysys simulation for the production of natural gas liquids (NGL)

40

Page 41: LNG Example

REFRIGERATION

41

Page 42: LNG Example

LNG Production: Refrigeration required to −160 °C

-161 °C

Even NGL significant cooling required LNG - MCHE

Page 43: LNG Example

Wesfarmers example: Turbo-expander

43

Page 44: LNG Example

44

Example using the information provided: Expansion from 5900 kPag to 2800 kPag. Inlet Temperature -45 °C, Exit -75 °C (~230, 200 K). Draw Process on P-h diagram (methane) and Estimate Isentropic Efficiency

Page 45: LNG Example

45

out in isentropic isentropich h h ε= +Δ

Expansion in a turbo expander

Need: hout hin hisentropic

Δhisentropic

650 750

605 645 670

605

645

670

-65

( ) /isentropic out in isentropich h hε = − Δ

40 %

Turbo-expansion process

Page 46: LNG Example

40% Isentropic efficiency reasonable?

•  Short answer, no –  Typically greater than 80%

•  Why?

•  Methane used as the refrigerant for the P-h diagram, example from Wesfarmers is on their NGL train and would contain other components

46

Page 47: LNG Example

Interested in process design? http://www.arrowenergy.com.au/__data/assets/pdf_file/0003/1938/0620-20Project20Description20-20LNG20Plant.pdf

Page 48: LNG Example

Interested in learning more? http://www.arrowenergy.com.au/__data/assets/pdf_file/0003/1938/0620-20Project20Description20-20LNG20Plant.pdf