LNG Cyrogenic Heat Exchanger Design Report

download LNG Cyrogenic Heat Exchanger Design Report

of 21

description

An analysis of material selection when designing liquefied natural gas heat ex changers

Transcript of LNG Cyrogenic Heat Exchanger Design Report

  • i

    ME492MATERIALSINENGINEERINGDESIGN

    April5,2012

    MaterialsandProcess

    SelectionforaCryogenic

    HeatExchanger

    GROUP#4DawsonJamesJeffreyPowellJamesStevensonDerekVisvanathan

  • i

    ExecutiveSummary

    Thereisanincreasingdemandfornaturalgasasitisthecleanestburningofallfossilfuels.

    Whenpipelinescannotbeusedtotransportthenaturalgasitisliquefied(liquefaction

    temperature163)asithasagreatlyreducedvolume,makingtruckandnavaltransportation

    morefeasible.Inordertoachievethelowtemperaturesrequiredtoliquefythenaturalgasa

    cryogenicheatexchangermustbeused.Thisreportoutlinestheselectionprocedureforthe

    type,materialandprocessesrequiredtofabricateacryogenicheatexchanger.

    Aspiralinshellheatexchangerutilizesthintubesfilledwithcoolantwoundontheinsideofa

    cylindricalshell.Thisdesignmaximizestheamountofsurfaceareabetweenthetubingandthe

    naturalgasallowingforahighheatflowfromthegastothecoolant.Thetubesrequireless

    advancedprocessestofabricatethanfinsandthespiralshellheatexchangerrequires

    significantlylessmaintenancethanaplateandfinexchanger.Heatexchangersusedforthis

    purposearequitelargewithlengthsupto500manddiametersof5m.

    Wroughtaluminum2026wasfoundtobethebestmaterialforthetubinginsidetheheat

    exchanger.Aluminumalloyshaveahighthermalconductivityresultinginthedesiredheatflow

    inthecoolant.Aluminumisalsolessexpensivethannickelalloysandwillnothaveadverse

    reactionswiththenaturalgaswhichwasaproblemwithcopperandbrass.Alongwiththe

    thermalconductivityandcost,aluminumwillbeabletowithstandthepressuresinsidetheheat

    exchangerpassingallobjectives.

    Tomaximizeheattransferthinwalledtubingwillbeused.Therearemanyprocessesthatare

    abletocreatethethinwalledtubingbutwiredrawingwasfoundtobethebestoption.Wire

    drawingcancreatesmallcrosssectionalareasrequiredforthethinwalltubingandis

    compatiblewiththeselectedaluminumalloys.Wiredrawingcanalsoyieldtighttolerances.

    Anotherprocessthatissuitableisrollforming.Withsimilarspecificationsaswiredrawingitwill

    alsoperformtherequiredfunction.Wiredrawinghaslowertoolingandcapitalcoststhanroll

    formingandisthereforethemostidealprocess.

  • ii

    TableofContentsExecutiveSummary........................................................................................................................................i

    ReasonsandProcessofLiquefyingNaturalGas...........................................................................................1

    IntroductionandDesignStatement..............................................................................................................1

    DesignConstraintsandSelectionCriteria.....................................................................................................2

    Function:...............................................................................................................................................2

    Constraints:..........................................................................................................................................2

    Objectives:............................................................................................................................................2

    FreeVariables:......................................................................................................................................2

    MaterialIndices:...................................................................................................................................2

    Conceptualdesigns.......................................................................................................................................4

    MaterialSelectionforHeatExchangerTubes...............................................................................................5

    Limits:.......................................................................................................................................................5

    MaterialSelectionSummary....................................................................................................................6

    ProcessSelectionforHeatExchangerTubes................................................................................................8

    JustificationforMaterialsandProcesses.....................................................................................................9

    CostEstimation...........................................................................................................................................11

    FinalDesignandMaterials..........................................................................................................................11

    SummaryandConclusion...........................................................................................................................12

    Bibliography................................................................................................................................................13

    Appendix.....................................................................................................................................................14

    MaximizeHeatFlowPerUnitArea:........................................................................................................14

    MaximizeHeatFlowPerUnitMass:.......................................................................................................15

    MaximizeHeatFlowPerUnitCost:........................................................................................................16

    Costestimationresults...........................................................................................................................18

  • 1

    ReasonsandProcessofLiquefyingNaturalGas

    Naturalgasconsumptionisincreasingduetothedemandforcleanerenergyproduction.Inmanycases

    pipelinesarenotavailabletosupplythenaturalgasdirectlyfromtheextractionplant.Initsnatural

    gaseousstate,naturalgastakesupalargeamountofvolumewhichmakestransportationvery

    expensive.Inordertodecreasetheshippingvolume,naturalgascanbeliquefiedwhichreducesits

    volumetoapproximately1/600thofitssize.Themaindifficultyinliquefyingnaturalgasisits

    classificationasacryogenicfluid,meaningitcondensesatbelow150C.

    Anotherreasonforliquefyingnaturalgasisthattheprocessremovesimpuritieswhichmeanonceit

    reachesitsdestinationitonlyneedstoberegasifiedpriortodistribution.Liquidnaturalgasisalsonon

    toxicandnoncorrosivehowever;itisexplosivewhenputincontactwithwater.Oncenaturalgasis

    extracted,itfirstgoesthroughseveralcleaningprocesses.AnycondensatesareremovedalongwithCO2

    mercury&H2S.Thenaturalgasalsogoesthroughadehydrationstagetoremoveanytraceamountsof

    water.Thegasthengoesthroughseveralcoolingstageswithairfinheatexchangersandcompressors

    untilitreachesthefinalcryogenicheatexchanger.Thecryogenicheatexchangerusesanotherliquefied

    gas,typicallyliquidnitrogenoroxygenintheliquefactionprocess.Finally,theliquidnaturalgasisput

    intocryogenicseacarriersorcryogenicroadtankersandshippedtothefinaldestination.

    IntroductionandDesignStatement

    Thematerialsandprocessselectionwillbedeterminedforacryogenicheatexchangerusedinthe

    liquefactionofnaturalgas.Theprocessofliquefyingnaturalgasrequiresatemperaturebelow163

    degreesCelsiusandinthisprocesstheothertraceelementspresentinthenaturalgasareseparatedout

    leavingpureliquidmethane.Thisprocessoccursatambientpressureonthenaturalgassidebutthe

    refrigerantthattravelsthroughtheheatexchangermaynotoperateatthispressuredependingonthe

    typeofprocessutilized.Thereforethestressduetopressuredifferencemustbeconsideredalongwith

    thethermalconductivityofthetubingmaterial.Therearetwotypesofheatexchangersusedinthis

    application,oneisacoiledtubeheatexchangerandtheotherisfinandplateheatexchangertheyare

    commonlymanufacturedusingaluminumandtitaniumalloys,thisreportwillinvestigatetheoptimum

    materialforthistypeofheatexchanger.Theoptimumprocessformanufacturingwillalsobe

    determined.

  • 2

    DesignConstraintsandSelectionCriteria

    Function: Cryogenic heat exchanger used to cool natural gas to its saturation temperature (-163C) at

    which point it will liquefy and become liquefied natural gas (LNG).

    Constraints:

    Withstandthepressuredifferencebetweenworkingfluids, Operateattemperaturebelowto163 Moderateductilitysotubingcanbebent Doesnotcorrodeduetoworkingfluidsorbyproducts(suchasH2S) Haveexcellentlowtemperature(cryogenic)durability

    Objectives:

    Maximizetheheattransfer/flowperarea, Minimizecost,

    FreeVariables:

    Wallthicknessoftubing, Materialchoice

    MaterialIndices:

    Themethodofheattransferthroughthetubingwillbeconductionwhichisgivenby:

    Where: istheheatflux( ),

    isthethermalconductivity( ),

    isthetemperaturedifferencebetweentheworkingfluids(,and

    isthetubewallthickness().

    Heatflow,,isgivenby:

    Where: istheheatflow(),and

  • 3

    isthesurfaceareaofthetubing() 2.

    Substitutingtheheatfluxfromconductionyieldsthefollowing:

    Wallthicknessisaremainingfreevariablewhichrelatesthepressuredifferencesbetweentheworking

    fluids.

    Where: isthematerialsyieldstrength(),

    istheradiusofthetube(),

    isthepressuredifferencebetweentheworkingfluids(),and

    isthewallthickness.

    Finallybysubstitutingthicknessamaterialindexbasedonbothyieldstrengthandthermalconductivity

    canbeattained.

    Inordertheminimizecosttheheatflowperunitmassisused(/).

    2

    /

    2

    /

    2

  • 4

    / 2

    /

    2

    Oncethisindexisderivedmultiplyingmassbycostwillresultintheindexforcost.

    Conceptualdesigns

    Thereareseveraltypesofheat

    exchangersthatareeffectivefor

    theliquefactionofnaturalgas.

    Eachexchangerwillusethe

    coolantliquidmethaneinorder

    tobringthenaturalgastoits

    saturationtemperaturethrough

    theuseofatypicalvapour

    compressionrefrigerationcycle.

    Oneofthesimplestheat

    exchangerisashellandtubeheatexchangerwheremanysmalltubesareranthroughareservoirof

    coolant.Thesmalltubesallowformaximumsurfaceareatobeincontactwiththecoolantallowingfor

    thehighestheatflowfromnaturalgastothecoolant.Themajorityofheatexchangersarecounterflow

    inwhichtheworkingfluidsarepumpedinoppositedirections.Sotheinletsideofthenaturalgaswillbe

    theoutletsideofthecoolantandviceversa.Multipletubepassescanbeusedtoincreasetheamountof

    surfaceareaandheattransferthatoccurs.Amodificationoftheshellandtubeheatexchangeristhe

    Figure1 Shellandtubeheatexchanger

  • 5

    spiralwoundheatexchanger.Inthiscasethenaturalgasisintheshellarea(AAshellstream)while

    coolantrunsthroughthetubestreams.Thisconfigurationhasaveryhightubesurfaceareabutisfar

    morecomplexthanatypicalshellandtubeheatexchanger.Plateandfinheatexchangerscanhave

    highersurfaceareaforheattransfer.Theyarealsoabletowithstandhighpressures.Platesare

    sandwichedtogetherwithsmallfinsinbetweentofurtherincreasethesurfacearea.Thistypeofheat

    exchangerismoredifficulttomanufacturethanthosethatutilizetubing.Inadditiontomanufacturing

    complicationstheincreasedsurfaceareamakesthefluidpathwaysverysmall.Thiscanleadtoan

    increaseincloggingdependingontheworkingfluidsbeingused.

    MaterialSelectionforHeatExchangerTubes

    WhiledeterminingthematerialsneededforthetubesintheLNGcryogenticheatexchangerthreeobjectiveswereconsidered:

    MaximizeHeatFlowperUnitArea MaximizeHeatFlowperUnitMass MaximizeHeatFlowperUnitCost

    Limits:Elongation:>20%Strain

    MaximumServiceTemperature:

  • 6

    ThermalConductororInsulator:GoodConductor

    TolerancetoCryogenicTemperatures:Excellent

    MaterialSelectionSummaryUsinglevel2CESEduPackwiththelimitsstatedabove,thefollowingaretheninematerialsthat

    passthelimitstage:

    AgehardeningwroughtAlalloys Brass Bronze Commerciallypurelead Copper Leadalloys Nickel Nickelbasedsuperalloys NonagehardeningwroughtAlalloys

    Thetopfivematerialsusinglevel2foreachobjectiveare:

    MaximizeHeatFlowperUnitArea:

    AgehardeningwroughtAlalloys Brass Copper Nickel NonagehardeningwroughtAlalloys

    MaximizeHeatFlowperUnitMass:

    AgehardeningwroughtAlalloys Brass Copper Nickel NonagehardeningwroughtAlalloys

    MaximizeHeatFlowperUnitCost:

    AgehardeningwroughtAlalloys NonagehardeningwroughtAlalloys Brass Bronze

  • 7

    Copper Breakingdowneachalloyusinglevel3CESEduPackallowedforamoreaccuratematerial

    selectionforeachofthestatedobjectives.Copper,brass,andbronzewererejectedfromthe

    materialselectionprocessastheyhaveanadversereactionwithH2Swhichisabyproductof

    theliquefactionprocess.Thefollowingarethetoptenmaterialsinorderofperformanceindex

    forAluminumandNickelalloys:

    MaximizeHeatFlowperUnitArea(seeFigure2):

    1) Aluminum,2026,wrought,T3511 2) Aluminum,2024,wrought,T4 3) Aluminum,6082,wrought,T4 4) Nickel,DuranickelAlloy301,annealed&aged 5) NickelCoCralloy,UDIMET700,bar 6) Nickel,PermanickelAlloy300,annealed7) NickelFeCralloy,UDIMET630,bar 8) NickelCoCralloy,AEREX350,coldworked,aged9) 45Ni3MoFesoftmagneticalloy10) Nickel,commercialpurity,grade200,soft(annealed)

    MaximizeHeatFlowperUnitMass(seeFigure4):

    1) Aluminum,2026,wrought,T3511 2) Aluminum,2024,wrought,T4 3) NickelFeCralloy,UDIMET630,bar 4) NickelCoCralloy,AEREX350,coldworked,aged 5) Nickel,DuranickelAlloy301,annealed&aged 6) NickelCoCralloy,UDIMET700,bar 7) NickelCoCralloy,EP741NP 8) Aluminum,6082,wrought,T4 9) NickelFeCralloy,D979,bar 10) 45Ni3MoFesoftmagneticalloy

    MaximizeHeatFlowperUnitCost(seeFigure6):

    1) Aluminum,2026,wrought,T3511 2) Aluminum,2024,wrought,T4 3) Aluminum,6082,wrought,T4 4) Aluminum,S520.0:LM10TB,cast 5) Aluminum,5154,wrought,O

  • 8

    6) Aluminum,6060,wrought,T4 7) Aluminum,2024,wrought,T0 8) Aluminum,5251,wrought,O 9) Aluminum,commercialpurity,1080,wrought,O 10) 45Ni3MoFesoftmagneticalloy

    Materialsthatmeeteachofthethreedesignobjectivesare:

    1) Aluminum,2026,wrought,T3511 2) Aluminum,2024,wrought,T43) Aluminum,6082,wrought,T44) 45Ni3MoFesoftmagneticalloy

    ProcessSelectionforHeatExchangerTubes

    Thefieldofavailableprocesseswasfirstnarrowedusingthetreeselectiontouseonly

    processescompatiblewithaluminum.Usinglimitselectionthelistwasnarrowedtoinclude

    onlyprimaryshapingprocesses,circularprismaticobjectsandcontinuousmethods.Finallydue

    tothethinwallthicknessrequired,processeswhichcouldntprovideathicknessoflessthan1

    mmwereremoved.Thefinalfiveprocesseswerethenrankedaccordingtotherangeof

    thicknessavailablebelow1mm.

    Thetopfiveprocessesforshapingthetubesare:

    1. Wiredrawing

    2. Rollforming

    3. Shapedrawing

    4. Coldshaperolling

    5. Powderextrusion

    Wiredrawingconsistsofpullingasolidcylindricalblankthroughahardeneddieinorderto

    reduceitscrosssectionalarea.Tubedrawingisasubsetofwiredrawingwherethecylindrical

    blankhasahollowcenterandamandrelisplacedinsidetokeeptheinteriordiameteratthe

    valuethatisrequired.Thisprocessallowsforawallthicknessdownto0.1mmandatolerance

    of0.010.04mm.Rollformingconsistsoffeedingacontinuoussheetofmetalthroughrollers

    inordertocreatetheshape.Fortheheatexchangertubes,anadditionalweldingprocess

  • 9

    wouldhavetobedoneinordertosealtheseambetweenthesections.Shapedrawingissimilar

    towireortubedrawingwhereacontinuousblankispulledthroughadietocreatethefinal

    geometry.Thedifferenceisthatamandrelisnotusedtocreatethedesiredwallthickness

    whichlimitstheminimumwallthickness.Coldshaperollingissimilartorollformingexceptthe

    processisdoneatroomtemperatureandproducesbettersurfacefinish.Thedownsidetocold

    shaperollingisthehigherstressesinvolvedwhichdontallowforasectionthicknesslessthan1

    mm.finally,powderextrusionusesheatedloosemetalpowdereitherformedintoabilletor

    placeddirectlyintoachamber.Thematerialisthenpressedthroughadiewhichformsitinto

    therequiredshape.Powderextrusionhasthesameproblemascoldshaperollingwherethe

    sectionthicknessmustbegreaterthan1mm.

    JustificationforMaterialsandProcesses

    Inordertodetermineappropriatematerialsforthecryogenicheatexchangertubes,objectives

    andconstraintshadtobedefined.Themainconstraintsassociatedwiththeheatexchanger

    tubematerialare:

    MinimumElongationof20%Strain MaximumServiceTemperatureLessThan163C GoodThermalConductor ExcellentTolerancetoCryogenicTemperatures

    Additionally,objectivesweredeterminedtoincorporateperformanceindiceswithourmaterial

    selections.Sincetheheatexchangertubesmainpurposeistotransferheatfromonefluidto

    another,thermalconductivityisamajoraspectwiththismaterialselection.Therefore

    consideringmass,area,andcostwiththermalconductivity;threeobjectiveswereconsidered:

    MaximizeHeatFlowperUnitArea MaximizeHeatFlowperUnitMass MaximizeHeatFlowperUnitCost

    Usinglevel2CESEduPack2011withthelimitsandobjectivesstatedabove,thetopfive

    materialsdeterminedwerefoundtobe:

  • 10

    AgehardeningwroughtAlalloys Brass Copper Nickel NonagehardeningwroughtAlalloys

    Duetohighcorrosionrateswithhydrogensulphide,whichisabyproductofnaturalgas,

    copperandbrasswereeliminatedfromourselection.Withcopperandcopperalloysremoved

    fromourselectionlist,alevel3CESEduPackanalysisofthetopmaterialswasconducted

    incorporatingthethreeperformanceindicesstatedearlier.Thisproducedthetopthree

    materialswhichallperformedwellineachobjective.Therefore,thetopthreeoverallmaterials

    fortheheatexchangertubes,inorderofperformanceindex,are:

    5) Aluminum,2026,wrought,T3511

    6) Aluminum,2024,wrought,T4

    7) Aluminum,6082,wrought,T4

    Wiredrawingwaschosenforitswiderrangeofavailablecrosssectionalareas.Thisprocessisalso

    simplerthanrollforming,whichmakesitlessexpensive.Wiredrawingalsoconsistsofoneprocess

    doneinstepsunlikerollformingwhichwouldrequireanextraweldingstep.Wiredrawingallowsa

    rangeofcrosssectionalareasof.01to10mmwithanexcellenttolerancerangeof0.01to0.04mm.

    Theprocessisalsocontinuouswhichallowsfortheproductionofverylongtubes,thisisidealdue

    toatypicalheatexchangerbeing500minlength.

    Figure3Wiredrawingprocess

  • 11

    CostEstimation

    Thetotalamountoftubingwasbasedonanaverageweightof91000kg.Thecomparisonof

    potentialmaterialscanbeseeninTable1oftheappendix.Fromthetableitcanbeseenthat

    Aluminum6082isthecheapest,withacostperunitweightof$1.258/kgwhichbringsthetotal

    costofthematerialto$243,780.Thiscostdoesnotincludethecontainmentvesselandthe

    weldedmountingstructure.

    Forthechosenmaterialmorefactorswereconsideredsuchasthermalconductivityand

    aluminum,2026,wrought,T3511waschosen.Outofthetwoavailableprocesses,onlythe

    capitalcostandthetoolingcostcouldbeconsidered.Thecheapestprocessturnedouttobe

    wiredrawingasseeninTable2withacombinedcostof$104,720.Thetotalcostoftheheat

    exchangertubingincludingmaterialandprocesscameto$360,430.

    FinalDesignandMaterials

    Astherearesignificantbyproductscreatedintheliquefactionofnaturalgastheplateandfin

    heatexchangerwasrejectedbecausethesmallpathwaysmaybecomecloggedduring

    operation.Itwasdecidedthataspiralwoundheatexchangerwouldbettersuitedforthis

    application.Thisheatexchangerhasmuchhighersurfaceareaoftubingresultinginhigherheat

    flowfromthenaturalgastothecoolantwhencomparedwithamoreconventionaltubeinshell

    exchanger.Also,thermalexpansionandcontractioncanoccurinaspiraltubeheatexchanger

    withoutbreaking.Thetubingforthisheatexchangerwillbemadeoutofthefollowing

    aluminumalloys(inorderfrommosttoleastdesirable):

    1) Aluminum,2026,wrought,T3511

    2) Aluminum,2024,wrought,T4

    3) Aluminum,6082,wrought,T4

    Aluminumhasahighthermalconductivityallowingformaximumheattransferthroughoutthe

    heatexchanger.Aluminumalloyswillnotreactwithanyofthecoolants,naturalgasorby

    productsfromtheliquefactionsothereisnoriskofcorrosion.Aluminumisalsoreadily

    availableandinexpensivematerialthatiswidelyusedinheatexchangersandother

  • 12

    mechanism.Thereisanaddedadvantagebecausealuminumcanbebenttocreatecomplex

    pipingnetworkswithoutbreakingandiscompatiblewiththeprocessselected,wiredrawing.

    Aluminumhasloweryieldstrengththannickelalloysbutthe2000seriesaluminumalloyswill

    besufficientforthisfunction.Typicallytheheatexchangersusedtoliquefynaturalgasare5m

    indiameterandrangebetween200mand500mlong.Usingaluminumwillkeepweightand

    costdownwhilethespiralheatexchangerwillreducethemaintenancerequiredwhich,

    consideringitssize,isvital.

    SummaryandConclusion

    Themostdesirablematerialswereallagehardenedaluminumalloyswhicharelowincost,

    havehighyieldstrengthandhighthermalconductivity.Thesematerialsweresimilartothose

    currentlyusedinthesetypesofnaturalgasheatexchangerswhichtypicallyusealuminum.

    Othermaterials,suchascopper,wouldbeattractivehadtheynothavehadadversereactions

    withbyproductsofthereaction.Aluminumisalsoductilesoitcanbebentintothespiral

    shapesonceithasbeenmanufacturedintothinwalledtubes.Perhapsthemostimportant

    constraintthataluminummetwasitslowminimumoperatingtemperature(below200C).

    Afterpassingallconstraintsaluminumscoredhighinallthreeofthematerialindices:heatflow

    perunitarea,heatflowperunitmassandheatflowperunitcost.

    Wiredrawingistheprocessthatbestfitstherequirementsformakingsmallthinwalledtubes

    whilestillhavinglowcostswhencomparedtoothermethods.Asanaddedbenefittherewillbe

    noadditionalprocessesrequiredotherthanthefinalassembly.Afterresearchingcurrent

    materialsandprocesswefoundthatthemethodsandmaterialsselectedforthecryogenicheat

    exchangeraresimilartowhatiscurrentlyused.

  • 13

    Bibliography

    AirProducts.(2008,February).RetrievedMarch23,2012,from

    http://www.airproducts.com/~/media/Files/PDF/industries/energylngbrochure0408.ashx

    Ashby,M.F.(2011).MaterialsSelectioninMechanicalDesign4thEd.Burlington:Butterworth

    Heinemann.

    TheLindeGroup.(2008,December09).GryogenicHeatExchangersforLNGPlants.Retrieved

    March23,2012,from

    http://www.hts.org.uk/downloads/Linde_LNG_HEX_09Dec2008_Extract.pdf

  • 14

    Appendix

    MaximizeHeatFlowPerUnitArea:MaterialIndices: Slope=1

    Figure4Level2CESEduPack2011Materials

    Figure5Level3CESEduPack2011Al,NiAlloys

  • 15

    MaximizeHeatFlowPerUnitMass:

    MaterialIndices:

    Slope=1

    Figure6Level2CESEduPackMaximizeHeatFlowperUnitMass

    Figure7Level3CESEduPack2011Al,NiAlloys

  • 16

    MaximizeHeatFlowPerUnitCost:

    MaterialIndices:

    Slope=1

    Figure8Level2CESEduPackMaximizeHeatFlowperUnitCost

    Figure9Level3CESEduPack2011Al,NiAlloys

  • 17

    Figure10Level3CESEduPackProcessrankofsectionthicknes

  • 18

    Costestimationresults

    Table1Materialcost

    Material UnitCost($/kg) Avg.TubingWeight

    (kg)

    TotalCost

    ($)

    Aluminum,2026,wrought,

    T3511

    2.81 91,000 255,710

    Aluminum,2024,wrought,T4 2.85 91,000 259,350

    Aluminum,6082,wrought,T4 2.58 91,000 234,780

    Table2Processcost

    Process CapitalCost

    ($)

    ToolingCost

    ($)

    TotalCost($)

    WireDrawing 95,200 9,520 104,720

    RollForming 667,000 19,000 686,000