LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates...

153
DOE/ID-01570-5 LITFIRE USER'S GUIDE Third Edition D.S. Barnett April 1989 Plasma Fusion Center Massachusetts Institute of Technology Cambridge, MA 02139 U.S.A. *This work was supported by EG&G Idaho, Inc. and the U.S. Department of Energy, Idaho Operations Office under DOE Contract No. DE-AC07-7611D01570 Reproduction, translation, publication, use and disposal in whole or in part, by or for the United States government is permitted PFC/RR-89-4

Transcript of LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates...

Page 1: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

DOE/ID-01570-5

LITFIRE USER'S GUIDEThird Edition

D.S. Barnett

April 1989

Plasma Fusion CenterMassachusetts Institute of Technology

Cambridge, MA 02139 U.S.A.

*This work was supported by EG&G Idaho, Inc. and theU.S. Department of Energy, Idaho Operations Office

under DOE Contract No. DE-AC07-7611D01570

Reproduction, translation, publication, use and disposalin whole or in part, by or for the United States

government is permitted

PFC/RR-89-4

Page 2: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

Abstract

This document contains instructions for using the LITFIRE lithium firesimulation code in its form as of April 1989. The code is capable of simulatingfires in a single compartment connected to an optional second compartment, orin an insulated pan suspended in one compartment. Lithium or lithium-leadeutectic may be used as the fuel, reacting with an atmosphere of oxygen, ni-trogen, water vapor, or any mixture thereof. Any inert gas may be includedin the compartment atmosphere and lithium only may be burned in a carbondioxide atmosphere without oxygen. An option for liquid metal-concrete inter-action exists as well as the following options for mitigating the effects of thefire: gas flooding, emergency space cooling, emergency floor cooling, aerosolremoval and gas injection. The guide also includes the following:

" a description of the workings of the code, including the various optionsavailable to the user

" a description of the physics of lithium fires and heat and mass transfer

" instructions for running the code

" a list of sample input ifies

" a listing of the code with a glossary defining code variables

1

Page 3: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

Contents

Abstract

Table of Contents

List of Figures

1 Introduction

2 Program Description2.1 Initial Routine .....................

2.1.1 Input Data . . . . . . . . . . . . . . . . . .2.1.2 Print out the Input . . . . . . . . . . . . . .2.1.3 Variable Initialization . . . . . . . . . . . . .2.1.4 Spray Fire Calculations . . . . . . . . . . . .

2.2 Dynamic Cycle . . . . . . . . . . . . . . . . . . . .2.2.1 Preliminary Calculations . . . . . . . . . . .2.2.2 Radiative Heat Transfer . . . . . . . . . . .2.2.3 Gas Node Temperature Determination . . .2.2.4 Natural Convection Heat Transfer . . . . . .2.2.5 Conductive Heat Transfer . . . . . . . . . .2.2.6 Temperature Rates of Change . . . . . . . .2.2.7 Lithium Combustion . . . . . . . . . . . . .2.2.8 Overpressure, Leakage, and Aerosol Behavior2.2.9 Integrals . . . . . . . . . . . . . . . . . . . .2.2.10 Termination Checks . . . . . . . . . . . . . .2.2.11 Time Step Control . . . . . . . . . . . . . .2.2.12 Output Section . . . . . . . . . . . . . . . .2.2.13 Error Pointers . . . . . . . . . . . . . . . . .

2.3 Modeling Options . . . . . . . . . . . . . . . . . . .2.3.1 One Cell Option . . . . . . . . . . . . . . .2.3.2 Two Cell Option . . . . . . . . . . . . . . .2.3.3 Pan Option . . . . . . . . . . . . . . . . . .2.3.4 Concrete Reaction . . . . . . . . . . . . . .2.3.5 Lithium-Lead Combustion . . . . . . . . . .2.3.6 Steam-Air Atmosphere Option . . . . . . . .2.3.7 Torus Fire Option . . . . . . . . . . . . . . .2.3.8 Mitigation Options . . . . . . . . . . . . . .

3 Execution of LITFIRE3.1 Obtaining Copies of LITFIRE and the Input3.2 Organization of LITFIRE for Execution . .

Data Files.

2

1

2

3

192122

Page 4: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

3.2.1 One Cell Option ........................ . 223.2.2 Two Cell Option . . . . . . . . . . . . . . . . . . . . . . . . . 243.2.3 Pan, Concrete Reaction and Lithium-Lead Combustion . . . . 253.2.4 Gas Flooding, Emergency Space Cooling, Emergency Floor Liner

Cooling and Gas Injection . . . . . . . . . . . . . . . . . . . . 263.2.5 Steam Injection to Containment . . . . . . . . . . . . . . . . . 263.2.6 Torus Fire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 PFCVAX Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . 283.4 MFE Crays Execution . . . . . . . . . . . . . . . . . . . . . . . . . . 293.5 Sample Input and Output Files . . . . . . . . . . . . . . . . . . . . . 30

A Nomenclature 31

B Variable Listing 32

C Troubleshooting 59

D Sample Input Data Files 60

E Sample Output Data Files 62

F Listing of the LITFIRE code 63

Bibliography 152

List of Figures

1 One-cell option in LITFIRE ...... ....................... 142 Two-cell option in LITFIRE ........................ 153 Mass flow in LITFIRE .......................... 164 Pan option in LITFIRE ........................ . 175 Torus fire option in LITFIRE ...... ...................... 20

3

Page 5: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

1 Introduction

LITFIRE is a computer code which simulates lithium fires in fusion reactors by gen-erating the time histories of the temperature and pressure profiles occurring in areactor containment in response to a lithium or lithium-lead eutectic spill and fire.The fire may take place in a single cell connected to an optional second cell, or inan insulated pan in a single cell. The lithium or lithium-lead may react with anymixture of oxygen, nitrogen or water vapor; an inert gas may also be included inthe cell atmospheres. Lithium only may be burned in a carbon dioxide atmospherewithout oxygen. An option for liquid metal-concrete interaction is available as wellas the following options for mitigating the effects of a fire: gas flooding, emergencyspace cooling, emergency floor cooling, aerosol removal and gas injection. This user'sguide includes a brief description of the physics of lithium fires, the workings of thecode and the options available to users, and also includes a listing of the code with acomplete glossary of variables used in LITFIRE.

The present version of LITFIRE is available on the PFCVAX at MIT and onthe Crays at the National Magnetic Fusion Energy Computer Center (NMFECC,hereafter referred to as MFE) It is written in FORTRAN 77 and is compatible withthe computing facilities at which it is located. The instructions present in this guidewill enable a user to execute the code at either location.

Other information on LITFIRE such as more detailed descriptions of physicalmodels or correlations used in the code are available in the references listed in thereference section of the guide.

2 Program Description

To assist the new user of LITFIRE in understanding the code, a brief descriptivesection is included. The description of the code sections is presented in the order thatthey are executed. For a description of code options, see Section 2.3. This section isbroken down into an initial routine and a dynamic cycle. The initial routine preparesthe code for execution; then the dynamic cycle integrates the time rate of change ofthe code variables over the time step to calculate their values. The dynamic cycle isrepeated until execution is terminated either by the code or as predetermined by theuser.

2.1 Initial Routine

The four parts of the initial routine are:

1. read in the input data

2. write the input data to a file

4

Page 6: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

3. initialize the variables

4. spray fire calculation

2.1.1 Input Data

The input data consists of titles and headings, control flags for the choice of options,geometries, initial conditions and material properties. User chosen options are de-scribed in Section 2.3. Input variables are described in Section 3 and examples of theinput data files are given in Appendix D.

2.1.2 Print out the Input

The input is printed out to a file, which should be examined by the user to ensurethat the input was properly entered into the input files. Misaligned input data is acommon source of error that can easily be caught by examining the printed input.

2.1.3 Variable Initialization

The initialization section sets all time rates of change to zero for the first step. Someconstants are defined and initial conditions are applied using the input data. Inaddition there is a short sub-section where the units of the input data are changed tothe following to become consistent with the rest of the code:

BTU, pounds mass, feet, seconds

2.1.4 Spray Fire Calculations

The spray fire calculation simulates the effect of lithium reacting as a spray at thebeginning of a spill. The amount reacted in the spray is user specified. A difficultydoes arise in that the specific heats of the reaction products are calculated as func-tions of temperature. The spray fire calculation is not a spray fire model per se inthat the lithium reacting in the spray is consumed instantaneously, adiabatically andstoichiometrically, with the equilibrium temperatures being determined by iteration.

2.2 Dynamic Cycle

The dynamic cycle in LITFIRE calculates the temperature, pressure and mass profilesof the reactor containment over the time of the run. Most of the dynamic cycleconsists of calculating the thermal admittances between nodes, which are then usedin conjunction with the nodal temperatures, to determine the time rates of change ofthe nodal temperatures. The heat flow to or from a node is determined by calculatingthe thermal resistances to conduction or convection between adjacent nodes and thenadding on radiative heat transfer to or from nodes within a line of sight. All of the

5

Page 7: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

calculations performed in the dynamic cycle are listed below in the order which theyare performed:

1. Perform gas injection if necessary

2. Calculate temperature dependent heat capacities

3. Calculate individual gas fractions

4. Calculate gas emissivities and radiative interchange factors

5. Perform an energy balance to determine the gas temperature if the steam incontainment option is used

6. Calculate natural convection gas heat transfer coefficients

7. Calculate thermal admittances

8. Perform steam injection if necessary

9. Perform lithium-lead diffusion calculation if necessary

10. Test for and calculate lithium or lithium-lead combustion

11. Calculate temperature rates of change from heat flow

12. Calculate lithium-concrete reaction if necessary

13. Calculate gas overpressure and leakage

14. Calculate aerosol removal rate via aerosol sticking

15. Perform integrations

16. Check for terminating execution

17. Perform time step control

18. Write the output to data files

19. Display error pointers if necessary

Short descriptions of the subsections appear below.

6

Page 8: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

2.2.1 Preliminary Calculations

Before any calculations are performed by the code, the material properties of all of thenodes must be calculated. Most properties are assumed to be constant with respect totemperature, but the specific heats of some gases and combustion products, and mostlithium properties, are calculated as functions of temperature. These are calculatedat the beginning of each time step. The mass fraction and total mass of each of theindividual gases is also calculated so that the total heat capacity of the gas may becalculated.

2.2.2 Radiative Heat Transfer

Radiative heat transfer rates in LITFIRE are calculated using the following basicequation:

Q1--.2 = f Aio(T' - T2) (1)

where Q1-.2 = heat transfer rate (W) from node 1 to node 2A1 = exposed area of node 1f = radiative interchange factor based on A10 = Stefan-Boltzmann constantT,, = temperature of node n

The radiative interchange factor f is determined by the emissivities of the surfacesof the two nodes and the view factor between them. Thus the radiative emissivity ofeach node is required to account for radiative heat transfer within the containmentbuilding.

The emissivities of the solid elements in the containment building are specified bythe input data and are assumed to be constant. The emissivity of the lithium pool isassumed by the code to be governed by the buildup of reaction products (Li 20, Li3 Nand Li2 CO 3 ) on the pool surface.

The emissivity of the cell gas (in the absence of steam) is determined by theaerosol size and concentration in the gas and by the optical path length in the cell.The aerosol particle area and the optical path length are defined by the user in theinput data and the concentration is calculated from the amount of aerosol reactionproduct generated by the fire. In the presence of steam the emissivity of the cell gasis also governed by the partial pressure of the water vapor in the cell. Radiative heattransfer is discussed in greater detail in reference[2].

2.2.3 Gas Node Temperature Determination

If the steam in containment option is being used, the presence of a condensible gasrequires that a different method be used to determine the temperature of the gas thanthe integral method described in Section 2.2.9, as the latent heat of vaporization ofthe steam must be taken into account. In this option, the code performs an iterative

7

Page 9: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

energy balance by solving the equation:

TEMP = U, - Mci.T - Mu, (2)

where U, is the total internal energy of the gas, At is the mass of the non-condensiblegas, c, is the specific heat of the non-condensible gas, M, is the mass of the steamand u, is the specific internal energy of the steam. Values of the temperature areguessed, and along with the specific volume of the steam (which is known), are usedto determine the other properties of the steam. These values are then used to solve forthe error, TEMP. When TEMP is a sufficiently small fraction of the total gas internalenergy, the final guess is taken as the gas temperature. For further discussion, seereference[2].

2.2.4 Natural Convection Heat Transfer

The heat transfer coefficients for convective heat transfer between surfaces and gasesh are calculated from the temperature of the surface T,, the temperature of the gas

T9, and the density of the gas p,:

h = CF(T,,T, pg) (3)

where C is a user defined constant. In the presence of steam the hest transfer co-efficients used are the Uchida heat transfer coefficients determined empirically asfunctions of the ratio of the mass of water to the mass of non-condensibles in the cellatmosphere. A more detailed description is given in reference[2].

2.2.5 Conductive Heat Transfer

Once the heat capacities, the radiative interchange factors and the convective heattransfer coefficients for all of the nodes have been calculated, the thermal resistancesbetween the nodes are calculated. Knowledge of the thermal resistance allows thetemperature rate of change due to heat conduction and heat convection to be calcu-lated. In LITFIRE the thermal resistance between adjacent nodes i and j is calculatedas follows:

+ (4)2kA 2k, A

orI. 1

i A = + _A (5)

where 1, = characteristic length (thickness) of node nkn = thermal conductivity of node nA = area of contact between nodes i and jhij = convective heat transfer coefficient between nodes i and j,

depending on whether or not node j is a solid (Equation 4) or a gas (Equation 5).

8

Page 10: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

The thermal resistance between the lithium pool and the combustion zone isdetermined somewhat differently, as the lithium is considered to vaporize and thenreact with the gases in the combustion zone. Details of the calculation are given inreference[2].

2.2.6 Temperature Rates of Change

The rates of heat transfer between all thermally adjacent nodes are calculated fromthe temperatures of the nodes, and the thermal resistances and radiative interchangefactors between them. Once the rates of heat transfer to and from all of the nodeshave been calculated, they are summed for each node, and the temperature rate ofchange of each node is calculated using its own heat capacity. The heat flow to orfrom a given node is determined by summing the heat flow by conduction, convectionand radiation to and from thermally adjacent nodes:

Q (T1-Ti)+Z fT p 6Q1 = (T O+ AifIjo(T14 - T ) (6)

where: Q, = heat flow rate to or from node 1T, = temperature of node ni = designation for physically adjacent nodeRli = thermal resistance between nodes 1 and i

(see Eqns. 4 and 5)j = designation for optically adjacent nodeA1 = surface area of node 1fij = radiative interchange factor between nodes 1 and j

Temperature rates of change for each node are calculated by dividing the energygain or loss rate by the heat capacity of the node:

dT1 Q, (7)dt - ii

where t is time, mI is the mass of node 1 and cp is the specific heat of node 1. Thecombustion zone node adds the heat of combustion and the heat of vaporization ofthe lithium combusted to the above terms, while the lithium pool subtracts the heatof vaporization of the lithium combusted. That is due to the assumption that thelithium reaction takes place in the vapor phase.

2.2.7 Lithium Combustion

The temperature rates of change in the containment can differ greatly dependingwhether or not the lithium pool is actually combusting (reacting with the containmentatmosphere). The criteria used to determine whether or not the lithium is combustingare:

9

Page 11: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

9 Liquid lithium must be available (between 180 and 13470C)

" Oxygen, nitrogen, carbon dioxide or water vapor must be available

* If only nitrogen is present, the combustion zone temperature must be less than11270C

If none of the above conditions are met, then the combustion zone is consideredto be nonexistent, and heat transfer from the lithium to the rest of the containmentbuilding is performed normally. If combustion is occurring, then the combustion rateand the heat liberated by the lithium reactions is calculated.

In LITFIRE the lithium combustion rate is governed by the flow rate of gas or (iflithium-lead is being burned) the diffusion of lithium to the combustion zone. Thegas flow rate is determined by natural convection using Reynold's analogy betweenheat and mass transfer.

Once the gas flow rate to the combustion zone has been calculated, the lithiumreaction rate may be calculated. The lithium is assumed to react with the gas quicklyas it flows to the combustion zone, unless the chemical kinetics serves to further limitthe reaction rate. The unhindered lithium reaction rate is given by:

RRu = Apoo RR; (8)

whereRR, = hmpiR., (9)

where Apool = surface area of the lithium pool

hm = natural convection mass transfer coefficientp; = total density of the gas i (mass/containment volume)R1, = stoichiometric combustion ratio between lithium and the gas i

(mass of lithium/mass of gas)The kinetics of the lithium reactions with nitrogen, oxygen and steam may serve

to either reduce the reaction rates below those expected from the gas flow rate to thereaction site. After the gas flow rates of each of the constituent gases of the atmo-sphere have been determined, reaction kinetics effects are applied to the preliminaryreaction rates to determine their final values. Lithium reaction kinetics are coveredin detail in reference[2].

Once the reaction rates have been calculated, the heat generated by combustionis calculated by summing the products of the reaction rates RR; and the heats ofcombustion AH; of each of the reacting gases:

Q= RR.AHi (10)

10

Page 12: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

2.2.8 Overpressure, Leakage, and Aerosol Behavior

The masses of each cell gas component and the cell gas temperature are integratedin the integration section. From this, the cell gas pressure is determined and thusleakage from containment can be calculated. Aerosol adhesion to the containmentwalls is a user specified option and changes the concentration of aerosol combustionproducts in the containment atmosphere.

2.2.9 Integrals

All time rates of change are integrated over each time step to calculate the values ofthe quantities during the execution of the code. The form of the integrals is:

P = INTGRL P., - (11)

where P, is the initial value of function P (mass, temperature or energy), and 4 isthe time dependent rate of change of P.

INTGRL is an integration function that uses a fourth order Runge-Kutta Methodor Simpson's Rule (user specified) to simultaneously solve all of the differential equa-tions used in the code. For a more detailed description, see the listing of the code,Appendix F.

2.2.10 Termination Checks

The conditions that will terminate the code are:

" the lithium temperature reaches a value at which the lithium vaporizes (13470C)or solidifies (1800C)

" the primary cell gas temperature returns to ambient temperature with no over-pressurization

" the code reaches the user specified stopping point (TIME>TIMEF)

2.2.11 Time Step Control

Three criteria are used to determine the size of the time step used during each dynamiccycle. They are:

1. The time step must be smaller than a user defined fraction of the inverse ratesof change:

DELT < RELERR T/ (-)

11

Page 13: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

2. The conduction heat transfer limit must be satisfied:

aLatat< 0.3(AX)2

3. The user imposed maximum and minimum time steps must be observed. Themaximum time step is indicated by DELOUT and the minimum by DTMIN.DELOUT and DTMIN are read from the first input file.

2.2.12 Output Section

The output from LITFIRE is written into data files as the code is executed. Examplesof the output files are shown in Appendix E, generated by the input files found inAppendix D.

2.2.13 Error Pointers

This section is not actually part of the dynamic cycle, although if an error duringexecution should occur, an error message would be written into file outl.dat and codeexecution would halt.

2.3 Modeling Options

The basic version of LITFIRE is capable of simulating a wide variety of spill conditionsas indicated by the user in the first input data file. The containment volume, height,wall and floor areas, atmosphere, and material composition may be specified as well asthe mass and surface area of the lithium spilled. Optional reaction geometries includea primary cell containing the lithium, surrounded by a larger secondary cell; a partiallyinsulated pan holding the lithium inside the basic primary cell; or a primary cellsurrounded by blanket and shield structures producing decay heat, further surroundedby a larger secondary cell. A concrete floor and wall for the containment are optionalas is a liquid metal-concrete reaction routine. Also instead of elemental lithium, alithium-lead eutectic may be selected for the spill with the composition chosen by theuser. Finally an option to simulate a lithium or lithium-lead spill in the presence ofa steam-air atmosphere may be chosen.

In addition to the above options, several options involving the mitigation of lithiumfires are available. These include:

" gas flooding

" emergency space cooling

" emergency floor liner cooling

" aerosol removal

12

Page 14: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

* gas injection

Each option is discussed below.

2.3.1 One Cell Option

The single cell model is the simplest version of LITFIRE that may be run. All otheroptions are constructed as subroutines added on to the one cell version of the code.The nodes existing in the one cell version are shown in Figure 1 There may be upto twenty concrete wall or floor nodes of any thickness. As stated earlier all materialproperties may be chosen by the user as may the composition of the containmentatmosphere. Lithium or lithium-lead may react with any mixture of oxygen, nitrogenor water vapor and lithium only may react with carbon dioxide in the absence ofoxygen. Any inert gas may also be included in the cell atmosphere. Lastly, anycontainment or spill geometry may be chosen as stated above.

The heat transfer correlations are fixed by the code so that accurate results maybe obtained, although some modification is possible from the input data as shown inSection 2.2.4. The heat transfer pathways are also fixed by the code and are shownin Figure 1. The heat transfer mechanisms and their applications to the code arefurther discussed in reference[2].

2.3.2 Two Cell Option

The two cell option was developed to model the effects of a fire inside a tokamak fusionreactor and to determine its effects on the structural integrity of the the torus. Inthis option a separate secondary cell with its own material composition, atmosphereand geometry exists surrounding the primary cell. (See Figure 1) The provision fora crack between the primary and secondary cells, allowing the exchange of cell gasesalso exists. The code follows the composition, pressure and temperature of both cellgases during the run. The heat and mass flow paths in two cell LITFIRE are shownin Figures 2 and 3. High velocity gas flows, as would be encountered in the eventof a breach in a vacuum torus have been successfully modeled by LITFIRE. (Seereference[3])

2.3.3 Pan Option

Figure 4 shows the pan option available in LITFIRE. This option may be used witheither the one or two cell option, but not with the concrete reaction option. Thisoption was created to model the lithium fire experiments performed at HEDL. Thepan dimensions and composition are user defined. The pan is surrounded by twoseparate insulation nodes.

13

Page 15: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

Wall Liner

Ambient Cell Gas

Combustion Zone-

iAhUM JPool

Conret WYl lor LinerCConcrete FWalr

Concete loor- Conductive Heat Transfer

-- Convective Hent Transfer----- Radiative Heat Transfer

Figure 1: One-cell option in LITFIRE

14

H

Page 16: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

Ambient

Concrete Wall

Secondary Cell Gas

Primary Wall

Primary Cell GasCrack.

SS

SS

SS

SS

I rimary Floor

Combustion Zone

Secondary Wall Liner

__ N

Concrete Floor

Secondary Floor Liner

- Conductive Heat Transfer

- Convective Heat Transfer

--- 0.Radiative Heat Transfer

Figure 2: Two-cell option in LITFIRE

15

Page 17: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

Inert GasStorage

InertGasFlooding

H2 ,OsN Cjand innt gases viaconvection anddiffusion

Solid ReactionProducts (LiN,Li20, Li 2C2,Li2CO3, an C)

rge AmbientCG2

InjectionGass mGame andAeosols vialeakage

Cell GasConsti-blents

via Crack

Combustionzone

UithiumPool

AmolRemovol viasticking to WaI

PrimaryWal

Reaction Products (LiOH,Li3N, LiW, H2. Li2CO)

UWhimn via vqpri" anddiffusion

Figure 3: Mass flow in LITFIRE

16

PrimaryCell Gas

SecondaryCell Gas

Gas StN2, 02,

Page 18: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

Ambient

N1

Concrete Wall

] II

Combustion Z

Steel Pan

PanInsulation

Cell Gas Wall Liner

s...

)L P'

Lithium Pool

I

a

Floor Liner

Concrete Floor- Conductive Heat Transfer

- Convective Heat Transfer

Radiative Heat Transfer

Figure 4: Pan option in LITFIRE

17

Page 19: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

2.3.4 Concrete Reaction

The liquid metal-concrete reaction subroutine allows for the reaction of lithium withthe concrete floor under the liner. This includes lithium reactions with water drivenfrom the concrete and certain components of the concrete itself. For further discus-sion, see reference[2].

2.3.5 Lithium-Lead Combustion

This option allows for the substitution of a lithium-lead eutetic in the place of ele-mental lithium as the source of the fire. All LITFIRE options are compatible withthe lithium-lead combustion option except for the initial spray fire calculation. Inaddition, this option allows the user to choose either a layered or turbulent pool re-action, allowing for optimistic or pessimistic results respectively, depending on theuser's view of lithium-lead fires. Reference[2] discusses the lithium-lead option ingreater detail.

2.3.6 Steam-Air Atmosphere Option

The steam-air atmosphere option allows for the reaction of lithium or lithium-leadwith a mixture of steam and other non-condensible gases. It also includes modifica-tions of the convective heat transfer coefficients to account for condensation and theprovision for steam condensation into a water pool node above the cell floor liner.Gas temperature is determined by an iterative energy balance routine (as shown inSection 2.2.3) to account for the presence of the condensible vapor, rather than in theusual integral method described earlier. The steam in the atmosphere may be presentas humidity or may be injected into the primary or secondary cell atmosphere, withthe time, mass flow rate and enthalpy of the steam injected selected by the user. Thedevelopment of the steam-air atmosphere option is discussed in reference[2].

2.3.7 Torus Fire Option

This option allows LITFIRE to model a lithium or lithium-lead fire inside the plasmachamber of a tokamak during a loss of flow or loss of coolant accident. The reactorblanket and shield structures are represented by six extra nodes surrounding theprimary cell, shown in Figure 5. During a loss of flow accident the nodes are thermallyconnected via conduction. During a loss of coolant accident some of them are alsoconnected via radiation as shown in the figure. The emissivities of, and the viewfactors between the nodes are user specified. The radioactive decay heat generatedin the first wall (primary wall and floor) and the blanket and shield structures isincluded as an extra heat generation term for each node:

dT- q__ (12)dt ,.picpi

18

Page 20: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

where: i = individual noder = each individual isotope in the node i<L" = initial decay heat density of an isotope rA = decay constant of an isotope rpi = density of node i

Up to three different isotopes may be modeled in each node; the initial decay heatdensity and the decay coefficient are specified by the input data for each isotope. Inthe coding of the torus fire option, the breeder region of the blanket (see Figure 5) isrepresented by the node, in the two-cell option, that normally represents the secondaryextraneous heat capacity. In the torus fire option, the extraneous heat capacity in theouter cell is represented by the magnets node. The torus fire option is incompatiblewith the two-cell, pan and concrete reaction options.

2.3.8 Mitigation Options

The following is a list of options available to evaluate the effectiveness of certaintechniques used to attempt to mitigate the consequences of a lithium fire:

* gas flooding

* emergency space cooling

* emergency floor liner cooling

* aerosol removal

* gas injection

Each option allows the user to select additional heat removal mechanisms as de-sired. These options are discussed further in reference[4].

3 Execution of LITFIRE

The execution of the LITFIRE code requires certain system commands dependingupon the location at which it is being run. The specific commands for compiling,loading (linking), and running the code will be discussed in this section in the followingorder:

1. Obtaining the source code and sample input files

2. Execution on the PFCVAX

3. Execution on the MFE Crays

19

Page 21: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

to Sec

to Secondary Cell Floor- Convective Heat Transfer

Radiative Heat Transfer

Except across the vacuumgap, all adjacent nodes areconnected via thermalconduction.

Figure 5: Torus fire option in LITFIRE

20

to Secondary Cell Wall

ondary Cell Gas Crack

Plasma First.... Chamber Wall-

First Wall

Breeder

Manifold

Shield

Vacuum Gap Blanket Back WallNN

Page 22: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

3.1 Obtaining Copies of LITFIRE and the Input Data Files

There are currently two locations at which a copy of the source code of LITFIRE canbe found: the PFCVAX at MIT, and the MFE FILEM disk storage.

To use the PFCVAX copy, the user must first obtain a PFCVAX account. Thismay be done by contacting the Plasma Fusion Center at MIT. Introductory informa-tion may be found on the VAX by using the HELP command, which will define mostof the commands used on the PFCVAX.

To get a copy of LITFIRE for personal use, the following commands must be used:

copy [barnett.litfire]litfire.for [username]*. *

This will copy the code litfire.for into the user's main directory.To get a copy of the sample input files, the copy command must also be used,

substituting the following filenames for litfire.for:

head.datuwmak.wutumak.xutwmak.yuwmak.zsteamop.torus.

After obtaining copies of the input files, they may be viewed by using the type com-mand or edited by using any line or text editor. (e.g. EMACS or EDT).

To obtain a copy of the LITFIRE source code on one of the MFECC machines,the user must be logged onto a machine and then use the flem command to obtain apersonal copy:

filem read .15467 litfire

This will copy litfire into the user's personal directory on that particular machine.To obtain copies of the input files, the command

read .15467 flename

must be used for each input file (the names are the same for MFE and the PFCVAX)while still in filem.

Once copies of LITFIRE and the sample input files have been obtained, they maybe moved to a different machine 'n' by using the netout command as follows:

netout flename site=nma

21

Page 23: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

3.2 Organization of LITFIRE for Execution

One of the most important steps in the execution of LITFIRE is the preparation ofthe input data files. Most errors in code execution occur due to mistakes in the inputdata files. The input data files and the options they control are listed below. Asstated in Section 2.3, some options are incompatible with each other.

uwmak.w: one celluwmak.x: two celluwmak.y: pan, concrete reaction and lithium lead combustionuwmak.z: gas flooding, emergency space cooling, emergency floor liner

cooling, aerosol removal and gas injectionsteamop.: steam injection with steam-air atmospheretorus.: torus fire

3.2.1 One Cell Option

The one cell option is the simplest version of LITFIRE. The first input file must existto run any other code options. The order in which the input variables must appearin the file uwmak.w is shown below (British units are given in the Glossary, SI unitsmay be used for all input data files by setting the input variable IFLAGISI = 1):

22

Page 24: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

line variables1 IFLAGW,IFLAGF,IFLAGP,IFLAG2,IFLAGS,IFLAGC,

IFLAGU,IFLAGB,IBLOW,IESC,ISFLC,ISWICH,IAROSL,IFLAGD,IFLAGISI,IFLAGCO,IFLAGTIFLAGR

2 NL,NL13 L(1) to L(NL)4 L1(1) to L1(NL1)5 VP,CHP,CPAP,XMOLA6 TEHCZP,XMEHCPAEHCPCPEHCP,HINECP7 THWC,THFC,GAP,KGAP,KLEAK8 ESTLWP,CPSWP,KSTLWP,RHSWPAWP,THWP9 ESTLFP,CPSFP,KSTLFP,RHSFP,AFPTHFP10 EMLI,CPLI,AKLI,RHLI11 EMCONC,CPCON,KCON,RHCON12 RHOLIO,RHOLIN,RHOLIH,EMGPF,EMCZ,TAUCZ13 QCO1,QCO2,QCN,QCW,QCW214 RCMB01,RCMBO2,RCMBN,RCMBW,RCMBW2,RCMBH215 TMELT,TVAP,QVAPPERCEN16 CONF1,CONF2,C2FAC,FLIOH,FLI2017 HIN,HINGSPHINGSS,HINPS,HINSAM,HINFAN18 HINFGS,HINFSG19 ASLI,SPILL,SPRAY,FRA,RA20 TCZI,TGPZER,TSPZER,TSFPI,TA,TLII21 PAPZER,WO2P,HUM,WAPWCP22 IMETH,DTMIN,TIMEF,RELERR,DELOUT,OUTPUT

The formats for the input lines are:

line format1 (1x,14(il,1x))2 (i4,i4)3,4 (10f5.3)5 (f12.2,3f12.4)6-21 (6f12.4)22 (i4,5f12.4)

An example of this data file (British units) is uwmak.w in Appendix D.

PFCVAX The statement:

open(unit=2,file='uwmak.w',status='old'

must be included in the code for the code to execute, assuming that the input data fileis named uwmak.w. A similar OPEN statement must be included for each input data

23

Page 25: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

file used by the code. These statements are currently located after the "common"blocks at the beginning of the code.

MFE Crays For these machines the statement:

call link("unit1=filename,read1//")

must be used for each input data file. These statements are also currently locatedafter the "common" blocks at the beginning of the code.

3.2.2 Two Cell Option

If the two cell option is chosen, the following are the variable listing and formats forthe second data file (units are given in the glossary as for the first input file):

line variables1 VS,CHS,PASZER,TGSZER,TSSZER,TFSZER2 CRACK,HUM2,WO2S,WAS,CPAS,WCO2S3 TEHCZS,XMEHCS,AEHCS,CPEHCS,HINECS4 ESTLWS,CPSWS,KSTLWS,RHSWS,AWS,THWS5 ESTLFS,CPSFS,KSTLFS,RHSFS,AFS,THFS6 TSWICH

The format for all lines is: (6f12.4)

PFCVAX If this option is used, the statement:

open (unit=3,jle= flen. ame',status='old')

must be included in LITFIRE in the same place as the OPEN statement for the firstinput data file. An example of this data file (British units) is given in Appendix D.

MFE Crays For these machines, the statement:

call link("unit3=flename,read3//")

must be used in the same location as the CALL LINK statement for the first inputdata file.

24

Page 26: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

3.2.3 Pan, Concrete Reaction and Lithium-Lead Combustion

The following is a variable listing for each of the above options (British units aregiven in the Glossary):

Pan Optionline variables1 KPAN, RHPAN,CPPAN,RHINS,CPINS,EMINS2 TPANZO,APAN,BREDTH,AINS,HINGPF3 THKPAN,THKIN1,THKIN2

Concrete Reaction Optiontline variables1 ZZDIN,QCCONC,CRACON,XMH2OI,TCIGNI,RCMBC

Lithium-Lead Optiontline variables4(1) CPLEAD,KLEAD,RHLEAD,ALLOYI,QDISS,CPLIPB5(2) DFLVAR

t: The pan option cannot be chosen with the concrete reaction option.

t: Lithium-lead data is entered on line 1 if the concrete reaction option is not chosen.

The format for all lines except 5(2) for the lithium-lead option is: (6f12.4) The

format for line 5(2) is: (e12.5)

PFCVAX The statement:

open(unit=4,fle= 'len. ame ',statu='old')

must be used. An example of this file (British units) is given in Appendix D.

MFE Crays For these machines, the statement:

call link("unit4=flename,read4//")

must be used in the same location as the CALL LINK statement for the first inputdata file.

25

Page 27: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

3.2.4 Gas Flooding, Emergency Space Cooling, Emergency Floor LinerCooling and Gas Injection

Each of these options is included in one input data file. The following is a variablelisting for each of the options. Only the variable lines of the options used need beentered, although the lines used must be in the order shown below (British units aregiven in the Glossary):

line1 (gas flooding)23 (emerg. space cooling)4 (emerg. floor cooling)5 (aerosol removal)6 (gas injection)

The format for lines 1-5 is:(3f10.2,6f8.4).

variablesWO2B,WWAB,WN2B,XMOLAB,CPAB,TBLOWBLOWV,EXHSTV,TBLIN,TBLOUT,WABESCR,ESCTIN,ESCENDSFLCR,SFLTIN,SFLENDBETATONE,TTWO,TTHREE,DP1,DP2,DP3,FCT1,FCT2,FCT3

(6f12.4). For the gas injection option (line 6) it is:

PFCVAX The statement:

open(unit=5,file='filen.ame',status='old')

must be used. An example of this file (British units) is given in Appendix D.

MFE Crays For these machines, the statement:

call link("unit5=filename,read5//")

must be used in the same location as the CALL LINK statement for the first inputdata file.

3.2.5 Steam Injection to Containment

The following is a variable listing for the steam injection to containment available inthe steam-air atmosphere option (British units are given in the Glossary):

line variables1 STMIN,STMOUT,MINJR,HINJ2 STMIN2,STOUT2,MINJR2,HINJ2

The format for all lines is: (6f12.4)

26

Page 28: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

PFCVAX The statement:

open (unit=6,file=' ilen. ame',status='old')

must be used. An example of this file (British units) is given in Appendix D.

MFE Crays For these machines, the statement:

call link("unit6=filename,read6//")

must be used in the same location as the CALL LINK statement for the first inputdata file.

3.2.6 Torus Fire

The following are the variable listing and the formats for the torus fire option. (Britishunits are given in the Glossary).

line variables1 VS,CHS,PASZER,TGSZER,TSSZER,TFSZER2 CRACK,HUM2,WO2S,WAS,CPAS,WCO2S .3 TEHCZS,XMEHCS,AEHCS,CPEHCS,HINECS,KEHCS4 ESTLWS,CPSWS,KSTLWS,RHSWS,AWS,THWS5 ESTLFS,CPSFS,KSTLFS,RHSFS,AFS,THFS6 CLEHCS,EEHCS,EBLI,EFWI,VIEWM7 TSHLZ,THSHL,KSHL,XMSHL,CPSHL,ASHL8 ESHL,HINSHL,TMAGZ,AMAG,XMMAG,CPMAG9 HINMAG,KHE,THE,LOCA,VIEWG,VIEWB10 KBLI,THBLI,CPBLI,ABLI,XMBLI,TBLIO11 TSHIO,TSHOO,THSHI,THSHO,XMSHI,XMSHO12 THMAN,XMMAN,CPMAN,AMAN,TMANO,KMAN13 QOFW1,EXPFW1,QOFW2,EXPFW2,QOFW3,EXPFW314 QOBL1,EXPBL1,QOBL2,EXPBL2,QOBL3,EXPBL315 QOBL4,EXPBL4,QOBL5,EXPBL5,QOBL6,EXPBL616 QOBLI1,EXPBI1,QOBLI2,EXPBI2,QOBLI3,EXPBI317 QOSH1,EXPSH1,QOSH2,EXPSH2,QOSH3,EXPSH318 QOSHI1,QOSHI2,QOSHI3,QOSHO1,QOSHO2,QOSHO3

The format for lines 1-12 is: (6f12.4)The format for lines 13-18 is: (6e9.2)

27

Page 29: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

PFCVAX If this option is used, the statement:

open (unit=7,file= 'fien.ame',status='old')

must be included in LITFIRE in the same place as the OPEN statement for the firstinput data file.

MFE Crays For these machines, the statement:

call link("unit7=fiename,read7//")

must be used in the same location as the CALL LINK statement for the first inputdata file.

3.3 PFCVAX Execution

To execute LITFIRE on the PFCVAX, the user must ensure that all necessary OPENstatements are included for the data files necessary to run the code as indicated inSection 3.2. The input data file head.dat must always be included as it providesheadings for the output data files that LITFIRE will create. The statement necessaryto include head.dat is:

open(unit=1,fie='head.dat',status='old')

It should be noted that all input data files must be in the same directory as LITFIREin order to execute the code.

OPEN statements are also needed for the output files created by LITFIRE. Thesestatements are placed right after the OPEN statements for the input data files andtake the form of:

open (unit=1 Ofile='outl.dat',status= 'new')

There are ten output data files named outl.dat through outlO.dat, and an OPENstatement is needed for each one.

Optional output files may be created to allow graphs to be made of code variablesvs. time. These files may be used in conjunction with the graphics routines availableon the PFCVAX to create the actual graphs. The optional files require OPEN state-ments like the ones for outl.dat through outlO.dat, but use the filename forOnn.dat,where nn is any number from 01 to 99. Steps must be added to the code in the outputsection to write values of TIME and the variable desired to the file. Some optionaloutput file OPEN and WRITE statements which have been commented out may befound in the appropriate sections of the code. The output files created may be usedwith the McCool graphics routine available on the PFCVAX to create the graphs.

There are three separate steps involved in the execution of LITFIRE: compiling,linking and running the code.To compile LITFIRE, the command:

28

Page 30: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

for litfire.for

must be used and will create the file litfire.obj.To link LITFIRE, the command:

link litfire.obj

must be used and will create the file litfire.exe.To run LITFIRE, the command:

run litfire.exe

must be used. If the input data files were entered properly, the code should rununtil terminated by a user defined time limit (i.e., TIME=TIMEF) or by the codeitself. (e.g., 'the temperature of the lithium pool has reached the melting point'). Ifthe code stops due to an error, an error message will be given. Refer to AppendixC-Troubleshooting.

3.4 MFE Crays Execution

To execute LITFIRE on the Crays, the necessary CALL LINK statements must bepresent for all of the input data files as indicated in Section 3.2 The input data filehead. dat must be included to provide headings for the output data files that LITFIREwill create. The statement needed to include head.dat is:

call link("unitl =head. dat,readl//")

CALL LINK statements are needed for the ten output files as well. Those statementstake the form of:

call link("unitl0=(outi, text, create),printl//")

for each of the ten output files outi through out10. They should be placed directlyafter the CALL LINK statements for the input data files.

To compile, load and run LITFIRE on the Crays, the following commands shouldbe used:

rcftti=itfire,x=xlitfire / t pxitfre / t p

where t is the total CPU time allowed in minutes and p sets the priority of the run.One minute and a priority of 2 should be sufficient to run xlitfire unless the steamoption is being used, in which case up to five minutes may be required (and thepriority would be 10).

t: on the b machine, civic should be used instead of rcft.

29

Page 31: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

3.5 Sample Input and Output Files

To check whether LITFIRE has been properly executed, a set of sample input andoutput files are given in Appendices D and E. Execution of the code using the sampleinput files on the PFCVAX or the Crays will produce approximately the same resultsas given in the sample output files.

Using the input data files:

head.dat, uwmak.w, uwmak.x, uwmak.y, uwmak.z, steamop., torus.,

the following output files should be generated:

outl.dat, out2.dat, out3.dat, out4.dat, out5.dat, out6.dat, out7.dat, out8.datout9.dat, outlO.dat, blank

It should be noted that only the input files head.dat, uwmak.w and uwmak.x wereused for the examples in the Appendices.

30

I

Page 32: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

A NomenclatureA heat transfer surface areasC user defined heat transfer correlation constant

C, specific heatc', specific heat at constant volume

f radiative interchange factor, including emissivityAH heat of combustionh convective heat transfer coefficienth. convective mass transfer coefficientk, ki thermal conductivityL, l;, characteristic lengthMm mass

q'" decay heat densityQ, dq/dt heat flow rateR;,j thermal resistanceRR reaction ratet timeT temperatureU specific internal energy

U, total internal energyx linear distancea thermal diffusivity

0 coefficient of volumetric expansionp densitya Stefan-Boltzmann constant

31

Page 33: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

B Variable Listing

32

AA Exponent used in expression for GRPR or GRPRFABLI Cross sectional area of the blanket back wall (ft2 )ACTVTY Calculates activity of lithium in lithium-lead eutecticAEHCP Surface area of primary extraneous heat capacity (ft2)AEHCS Surface area of secondary extraneous heat capacity (cross sectional

area of breeder with torus fire option) (ft2 )AFP Surface area of primary floor liner, must be equal to or greater than

the area of the lithium spill ASLI. (ft2 )AFS Surface area of the secondary floor liner (ft2 )AHT Area of the lithium pool-pan interface (ft2)AINS Outside exposed area of insulating layer on the pan (ft2 )AIRFAC Density weighting factor for calculating steam-air mixture propertiesAK Product of thermal conductivity and Prandtl number of the primary

gas (BTU/sec-ft deg. F.) See associated film temperature T1.AKEXX Function used to calculate heat transfer coefficientsAKLEAD Thermal conductivity of lead (input as BTU/hr-ft deg. F.)AKLI Thermal conductivity of lithium (input as BTU/hr-ft deg. F.)AKLIX Thermal conductivity of lithium used during LC-2 lithium transfer

simulation (BTU/sec-ft-deg. F.)AKVAP Product of thermal conductivity and Prandtl number of water vapor at

the lithium pool surface (BTU/sec-ft deg. F.)ALLOYI Initial atom percent of lithium in lithium-leadALPHA Used to determine whether or not LILP should be fixed at an amount

equal to AKLI/(RHLI*CPLI)ALPHA2 Used in determining PYU. Also tests conduction limit on time step for

the pan or floor liner.AMAG Surface area of the magnets (secondary extraneous heat capacity) (ft2)AMAN Cross sectional area of the blanket manifold (ft2 )AMIN1 FORTRAN function that determines the minimum of the arguments usedAPAN Pan external heat transfer area (ft 2)ASHL Outer surface area of the reactor shield (ft2 )ASLI Surface area of the lithium spilled (ft2)ASURF Surface area of the liquid water pool (ft2)AWP Surface area of the primary wall liner (ft2 )AWS Surface area of the secondary wall liner (ft2)B Used in calculating the thermal resistance between the wall liner, the gap

and the wall concreteBB Analogous to B, but for the floor liner, gap and concreteB1 Coefficient of volumetric expansion for gas (0)

(1/deg. F.) See associated film temperature T1

Page 34: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

BETABETABBETAFBIL

BILGE

BLINBLOUTBLOWRBLOWVBREAKS

BREDTHCxxx

C1C2C3C4(i)0506C7C8C9C10(i)C11C12013C14C15C16C17018C19C20C21C22C23C2FACCA'C'BIMAN

Inverse sticking coefficient for particles impinging on the wall (sec.)Volumetric expansion coefficient 3 for the water pool-gas boundary (1/deg. F.Volumetric expansion coefficient P for the water pool (1/deg. F.)Fractional change between BILGE and DELT, used in determining minimumtime stepEqual to the minimum value of DT1,DT2,DT3,DT4 or DT5, used incalculating the time step length (sec.)Time after spill at which inert gas flooding and exhaust begins (sec.)Time after spill at which inert gas flooding and exhaust ends (sec.)Inert gas input rate (lbm/sec)Inert gas volumetric input rate (ft3 /sec)Outer cell gas temperature rate of change due to gas flow betweencells and leakage. (deg. R./sec)Perimeter of the pan (ft)'C' is used to indicate a thermal admittance between nodes (i.e., theinverse of the product of effective thermal resistance between thenodes and the heat capacity of one of them (hA/mc,) (sec-)Primary gas to primary wall liner in gasPan to primary gas in gasWall liner to concrete in concreteConcrete wall node i to node i+1 in concreteConcrete wall to ambient in concretePrimary gas to primary wall in wall linerWall liner to concrete in wall linerFloor liner to concrete floor in floor linerFloor liner to concrete floor in concreteConcrete floor node i to node i+1 in concreteWall liner to ambient (no concrete option) in wall linerFloor liner to ambient (no concrete option) in floor linerPan to primary gas in panSecondary floor liner to secondary gas in floor linerSecondary floor liner to secondary gas in gasPrimary floor liner to primary gas in floor linerPrimary floor liner to primary gas in gasPrimary floor liner to secondary gas in floor linerPrimary floor liner to secondary gas in gasPrimary wall liner to secondary gas in wall linerSecondary wall liner to secondary gas in wall linerPrimary wall liner to secondary gas in gasSecondary wall liner to secondary gas in gasFraction of Li-CO 2 reaction which produces Li 2C2Coefficient in expression for GRPR or GRPRFBlanket back wall to manifold in manifold

33

Page 35: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

'C'BLMANCCZ'C'CZPCD'C'EHCGP'C'EHCGS'C'EHCSH'C'EHCFP'C'EHCWP'C'FPEHC'C'GCZ'C'GLI'C'GPEHC'C'GSEHC'C'GSMAG'C'GSSHLCHPCHS'C'IN1PN'C'IN12'C'IN21CLEHCS'C'LIG'C'LIPAN'C'LIST'C'MAGGS'C'MANBI'C'MANBLCMBRCMBRC2CMBRCO

CMBRHCMBRHHCMBRHICMBRNCMBRNHCMBROCMBRO1CMBRO2

CMBROHCMBRW

Breeder to manifold in manifoldHeat generation rate in the combustion zone (BTU/sec)Lithium pool to combustion zone in poolCoefficient of discharge between the two cells (nea.r unity)Primary extraneous heat capacity to primary gas in gasSecondary extraneous heat capacity to secondary gas in gasBlanket back wall to shield inside region in shield inside regionFirst wall (floor) to breeder in first wall (floor)First wall to breeder in first wallFirst wall (floor) to breeder in breederCombustion zone to primary gas in combustion zoneLithium Pool to primary gas (no combustion) in poolPrimary gas to primary extraneous heat capacity in heat capacitySecondary gas to secondary extraneous heat capacity in heat capacitySecondary gas to magnets in magnetsShield outside region to secondary gas in shield outside regionPrimary cell optical path length (ft)Secondary cell optical path length (ft)Pan to inner insulation in insulationInner pan insulation to outer pan insulation in inner insulationInner pan insulation to outer pan insulation in outer insulationThickness of the breeder node (ft)Lithium pool to primary gas (no combustion) in gasLithium pool to pan in pool (suspended pan option)Lithium pool to primary floor liner in poolMagnets to secondary gas in secondary gasManifold to blanket back wall in blanket back wallManifold to breeder in breederTotal combustion rate (lb Li/sec-ft2 )Combustion rate for the carbon reaction (lb Li/sec-ft 2)Combustion rate for the lithium-carbonate producing reaction(lb Li/sec-ft2 )Total combustion rate (lb Li/hr-ft 2)CMBRH in g Li/min-cm 2

Initial combustion rate (lb Li/hr-ft 2)Combustion rate for the nitrogen reaction (lb Li/sec-ft 2)CMBRN in g Li/min-cm 2

Total of CMBRO1 and CMBRO2 (lb Li/sec-ft 2)Combustion rate for the oxygen reaction (lb Li/sec-ft 2)Combustion rate for the Li-CO 2 reaction producing lithium-oxide(lb Li/sec-ft2 )CMBRO in g Li/min-cm 2

Combustion rate for the water vapor reaction producing LiOH(lb Li/sec-ft 2)

Page 36: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

CMBRW2

CMBRWHCMRC2HCMRCOHC02CO2LFSCONDRCONF1CONF2CPxxxCPACPA2CPAB'C'PANLICPAPCPASCPBCPBLICPCARPCPCO2PCPCO2SCPCON'C'PCZCPEHCPCPEHCS

CPFACCPH2CPINSCPLC2PCPLC3PCPLC3SCPLEADCPLICPLIX

CPLIHCPLINCPLINPCPLINSCPLIOCPLIOHCPLIOP

Combustion rate for the water vapor reaction producing Li20(lb Li/sec-ft 2 )CMBRW in g Li/min-cm2

CMBRC2 in g Li/min-cm2

CMBRO2 in g Li/min-cm 2

A subroutine which sets up the pure CO2 atmosphereCarbon dioxide left after spray fire (lb)Condensation mass flow rate (lb/sec)Fraction of Li-CO 2 reaction which produces Li 20Fraction of Li-CO 2 reaction which produces Li 2CO3

Gaseous specific heats are all specific heats at constant volumePrimary non-condensible gas specific heat (BTU/lb deg. F.)Secondary non-condensible gas specific heat (BTU/lb deg. F.)Flooding gas specific heat (BTU/lb deg. F.)Lithium pool to pan in panSpecific heat of primary cell inert gas (BTU/lb deg. F.)Specific heat of secondary cell inert gas (BTU/lb deg. F.)Specific heat of the water pool-gas boundary (BTU/lb deg. F.)Specific heat of the blanket back wall (BTU/lb deg. F.)Specific heat of carbon in the primary gas (BTU/lb deg. F.)Specific heat of carbon dioxide in the primary gas (BTU/lb deg. F.)Specific heat of carbon dioxide in the secondary gas (BTU/lb deg. F.)Heat capacity of floor and wall concrete (BTU/lb deg. F.)Lithium pool to combustion zone in combustion zoneSpecific heat of primary extraneous heat capacity (BTU/lb deg. F.)Specific heat of secondary extraneous heat capacity (breeder withtorus fire option) (BTU/lb deg. F.)Used in calculating CPLI (CPFAC=.004938TL-6.20741)Specific heat of hydrogen gas (2.48 BTU/lb deg. F.)Specific heat of insulation (BTU/lb deg. F.)Specific heat of lithium carbide in the primary gas (BTU/lb deg. F.)Specific heat of Li2 CO3 in the primary gas (BTU/lb deg. F.)Specific heat of Li2 CO3 in the secondary gas (BTU/lb deg. F.)Specific heat of pure lead (BTU/lb deg. F.)Specific heat of lithium (BTU/lb deg. F.)Specific heat of lithium (used during LC-2 lithium transfersimulation (BTU/lb deg. F.))Specific heat of lithium hydroxide (0.67 BTU/lb deg. F.)Specific heat of lithium nitride (BTU/lb deg. F.)Specific heat of lithium nitride in primary (BTU/lb deg. F.)Specific heat of lithium nitride in secondary (BTU/lb deg. F.)Specific heat of lithium oxide (BTU/lb deg. F.)Molar specific heat of lithium hydroxide (BTU/lb-mol deg. F.)Specific heat of lithium oxide in primary (BTU/lb deg. F.)

35

Page 37: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

CPLIOS Specific heat of lithium oxide in secondary (BTU/Lb deg. F.)CPLIPB Specific heat of lithium-lead (BTU/lb deg. F.)CPLV Specific heat of water for secondary floor liner-secondary water pool

heat transfer (at TAVE) (BTU/deg. F.)CPMAG Specific heat of the magnets (secondary extraneous heat capacity)

(BTU/lb deg. F.)CPMAN Specific heat of the manifold (BTU/lb deg. F.)CPMCOP Heat capacity of carbon dioxide in primary (BTU/deg. F.)CPMCOS Heat capacity of carbon dioxide in secondary (BTU/deg. F.)CPMCZ Effective heat capacity of combustion zone (BTU/deg. F.)CPMH2 Heat capacity of hydrogen in containment (BTU/deg. F.)CPMLCP Heat capacity of lithium carbonate in primary (BTU/deg. F.)CPMLCS Heat capacity of lithium carbonate in secondary (BTU/deg. F.)CPMLOP Heat capacity of lithium oxide in primary (BTU/deg. F.)CPMLOS Heat capacity of lithium oxide in secondary (BTU/deg. F.)CPMNIP Heat capacity of nitrogen in primary (BTU/deg. F.)CPMNIS Heat capacity of nitrogen in secondary (BTU/deg. F.)CPMOXP Heat capacity of oxygen in primary (BTU/deg. F.)CPMOXS Heat capacity of oxygen in secondary (BTU/deg. F.)'C'PNIN1 Pan to inner insulation in panCPN2P Specific heat of nitrogen gas in primary (BTU/lb deg. F.)CPN2S Specific heat of nitrogen gas in secondary (BTU/lb deg. F.)CPSFP Specific heat of primary floor liner (BTU/lb deg. F.)CPSFS Specific heat of secondary floor liner (BTU/lb deg. F.)CPSHL Specific heat of the reactor shield (BTU/lb deg. F.)CPSWP Specific heat of primary wall liner (BTU/lb deg. F.)CPSWS Specific heat of secondary wall liner (BTU/lb deg. F.)CPWV Specific heat of water vapor in primary (BTU/lb deg. F.)CRACON Area of concrete exposed to lithium in concrete combustion model (ft2)CRACK Area of the orifice between the two cells (square inches)'C'SBLI Lithium pool to primary floor liner in floor liner'C'SHEHC Blanket back wall to shield inside region in blanket back wall'C'SHISH Shield bulk to shield inside region in shield bulk'C'SHLGS Shield outside region to secondary gas in secondary gas'C'SHOSH Shield bulk to shield outside region in shield bulk'C'SHSHO Shield bulk to shield outside region in shield outside region'C'SHSHI Shield bulk to shield inside region in shield inside regionCSTM Steam catalytic factorCSTMA Steam catalytic factor in airCSTMN Steam catalytic factor in nitrogenDAB Diffusion coefficient for air and water (ft2 /sec)DCOCZ Depth of concrete combustion zone (ft)

used to calculate volume of zone for heat generationDECBL Total decay heat density in the breeder (BTU/ft3 sec)

36

Page 38: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

37

DECBLI Total decay heat density in the blanket back wall (BTU/ft3 sec)DECFW Total decay heat density in the first wall (BTU/ft3 sec)DECMAN Total decay heat density in the manifold (BTU/ft3 sec)DECSH Total decay heat density in the shield bulk (BTU/ft3 sec)DECSHI Total decay heat density in the shield inside region (BTU/ft3 sec)DECSHO Total decay heat density in the shield outside region (BTU/ft3 sec)DELMP Fractional exchange rate of primary gas used in determining the

minimum time step (sec)DELMS Fractional exchange rate of secondary gas used in determining the

minimum time step (sec)DELOUT User defined maximum time step length (sec)DELT Time step length (sec)DFILM Lithium vapor film thickness (ft)DFLIPB Diffusion coefficient for lithium through lead (ft2/sec)DFLVAR Constant used to calculate DFLIPB (6.5E-08) (ft2/sec)DIFF Gas mass diffusion coefficient to the combustion zone (ft2/sec)DIFFLI Lithium diffusion coefficient to the combustion zone (ft2 /sec)DMPBDT Mass rate of change of lead in lead layer (lb/sec)DP1,..DP3 Increase in cell gas pressure due to each injection (psi)DTBDT(i) Concrete floor temperature rate of change, node i (deg. F./sec)DTCDT(i) Concrete wall temperature rate of change, node i (deg. F./sec)DTMIN User defined minimum time step length (sec)DT1..DT5 X/(dx/dt) * RELERR, used in determining the time step length (sec)DT1 X = Lithium pool temperatureDT2 X = Primary gas temperatureDT3 X = Primary wall liner temperatureDT4 X = Combustion rateDT5 X = Combustion zone temperature*.05DYNAMI Subroutine used in controlling integration loopsD1 Kinematic viscosity of the cell gas (squared) at the film temperature

(ft4 /sec 2 ), See related film temperature Ti.EBLI Thermal emissivity of the interior of the blanketEEHCS Thermal emissivity of the exterior of the blanket (facing the shield)EFWI Thermal emissivity of the interior of the first wallEFILM Film depth of depleted zone above combustion zone (in)EMCONC Thermal emissivity of concreteEMCZ Thermal emissivity of combustion zoneEMF Used in fixing minimum emissivity of the lithium pool (.9 in code)EMGP Thermal emissivity of primary gas (minimum of .005 in code)EMGPF Constant used in determining EMGP, usually chosen at .04EMGS Thermal emissivity of secondary gas (minimum of .005 in code)EMINS Thermal emissivity of pan insulation

Page 39: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

(There is no page 38.)

38

Page 40: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

EMLIESCRESCTINESHLESTAIRESTLFPESTLFSESTLWPESTLWSEW1EXHSTREXHSTVEXPBIn

EXPBLn

EXPBLn

EXPSHn

EXX

EXi

FCO2PFCO2SFCT1,FCT2FCT3FF1,FF2FLI20FLIOHFMLEAKFMLEFTFNIPFNISFOUTPFOUTSFOUTTFOXPFOXSFPGFPWFRA

Thermal emissivity of lithium poolHeat removal rate by emergency space cooling (BTU/sec)Time after spill when ESCR begins (sec)Thermal emissivity of the reactor shieldThermal emissivity of the cell steam-air mixture (without aerosols)Thermal emissivity of the primary floor linerThermal emissivity of the secondary floor linerThermal emissivity of the primary wall linerThermal emissivity of the secondary wall linerThermal emissivity of water vapor at one atmosphere and cell temperatureRate of primary gas exhaust (lb/sec)Rate of primary gas exhaust (ft3 /sec)Decay constant of decay heat producing isotope in the blanket back wall

(n=1-3) (sec- 1 )Decay constant of decay heat producing isotope in the breeder node

(n=1-3) (sec-)Decay constant of decay heat producing isotope in the manifold

(n=4-6) (sec 1 )Decay constant of decay heat producing isotope in the reactor shield

(n=1-3) (sec 1 )Temporary variable used in calculating heat and mass diffusioncoefficients (ft- 3 )Used in calculating mass and heat transfer coefficients(ft-') See related film temperature T1.Weight fraction of CO 2 in primary gasWeight fraction of CO 2 in secondary gasFraction of nitrogen in each injection (by number)

Used in heat balance equations for spray fireMass fraction of Li reacting with H2 0 that produces Li 2 0Mass fraction of Li reacting with H2 0 that produces LiOHFraction of mass of gas leaked out of primaryFraction of mass of gas remaining in containmentWeight fraction of nitrogen in primary gasWeight fraction of nitrogen in secondary gasLoss rate of primary gas which is either exhausted or changes cellsLoss rate of secondary gas which is either exhausted or changes cellsTotal loss rate from outermost gas tell (FOUTS+LEAK)Weight fraction of oxygen in primary gasWeight fraction of oxygen in secondary gasRadiative view factor from lithium pool to primary gas (1.0 w/o pan)Radiative view factor from lithium pool to primary wall linerFraction of combustion products evolved into cell gas

39

Page 41: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

FWAP Weight fraction of water vapor in primary gasFWAS Weight fraction of water vapor in secondary gasGAP Air gap between floor liner and concrete (ft)GAMMA Ratio of specific heats c,/c, (set to 1.4 in the code)GIN Acceleration due to gravity (32.2 ft/sec2 )GRPR Product of the Grashof and Prandtl numbers of the water pool-gas boundaryGRPRF Product of the Grashof and Prandtl numbers of the water poolH2LEFT Current water content of concrete (lb/ft3 )HA Heat transfer coefficient between exterior wall and ambient (BTU/ft2 sec deg. F.)HAMF Heat transfer coefficient between exterior floor and ambient

(BTU/ft2 sec deg. F.)HB Heat transfer coefficient between lithium pool and primary gas

(BTU/ft2 sec deg. F.)HBINF Equilibrium value of HBHCOND Total heat transfer coefficient between the water pool and the cell

gas (BTU/ft2 sec deg. F.)HEHCP Heat transfer coefficient between primary extraneous heat capacity

and primary gas (BTU/ft2 sec deg. F.)HEHCS Heat transfer coefficient between secondary extraneous heat capacity

and secondary gas (BTU/ft2 sec deg. F.)HEVAP Heat flux to water pool from gas mixture due to evaporation ( BTU/sec-ft 2 )HF Mass transport coefficient to the lithium pool (ft/sec)HFG Latent heat of vaporization of water vapor in the primary gas (BTU/lb)HFG2 Latent heat of vaporization of water vapor in the secondary gas (BTU/lb)HFINF Equilibrium value of HF (BTU/ft2 sec deg. F.)HFPGP Heat transfer coefficient between primary floor liner and primary gas

(BTU/ft2 sec deg. F.)HFPGAS Heat transfer coefficient between primary floor liner and

secondary gas (BTU/ft 2 sec deg. F.)HFSGAS Heat transfer coefficient between secondary floor liner and

secondary gas (BTU/ft 2 sec deg. F.).HGWP Heat transfer coefficient between primary wall and gas (BTU/ft 2 sec deg. F.)HINxxx Heat transfer coefficients are determined by LITFIRE as indicated in

Section 2.2.4. The coefficients C are indicated in the code asHINxxx and are dimensionless

HINECP Correlation for HEHCPHINECS Correlation for HEHCSHINFAM Correlation for HAMFHINFGS Correlation for HFPGASHINFSG Correlation for HFSGASHINGPF Correlation for HFPGP

40

Page 42: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

HINGSP Correlation for HGWPHINGSS Correlation for HSECHINJ Specific enthalpy of steam injected to primary cell (BTU/lb)HINJ2 Specific enthalpy of steam injected to secondary cell (BTU/lb)HINMAG Correlation for HMAGHINPS Correlation for HWPGASHINSAM Correlation for HAHINSHL Correlation for HSHLHLP Specific enthalpy of the primary liquid water pool (BTU/b)HLP2 Specific enthalpy of the secondary liquid water pool (BTU/lb)HLPFLR Heat transfer coefficient between the liquid water pool and the

secondary floor liner (BTU/ft2 sec deg. F.)HMAG Heat transfer coefficient between magnets and secondary gas

(BTU/ft 2 sec deg. F.)HPAN Heat transfer coefficient between the pan and primary gas

(BTU/ft 2 sec deg. F.)HPRIME Increased value of HSENS due to a large condensation/evaporation

rate (BTU/ft 2 sec deg. F.)HRATIO Molar fraction of hydrogen in the primary gasHRAT2 Molar fraction of hydrogen in the secondary gasHSAT Specific enthalpy of saturated liquid water at cell pressure (BTU/lb)HSEC Heat transfer coefficient between secondary floor liner and

secondary gas (BTU/ft 2 sec deg. F.)HSENS Sensible heat transfer coefficient from the water pool to the vapor

mixture (BTU/ft 2 sec deg. F.)HSHL Heat transfer coefficient between the shield outside region and

secondary gas (BTU/ft 2 sec deg. F.)HTCPGP Heat capacity of the primary gas (BTU/deg. F.)HTCPGS Heat capacity of the secondary gas (BTU/deg. F.)HU(x,y) Chart of Uchida heat transfer coefficients vs. MRHUCH Uchida heat transfer coefficient for condensing steam (BTU/ft 2 sec deg. F.)HUM Initial relative humidity of the primary cell (1.0=100%)HUM2 Initial relative humidity of the secondary cell (1.0=100%)HWPGAS Heat transfer coefficient between primary wall liner and

secondary gas (BTU/ft 2 sec deg. F.)HWV Specific enthalpy of water vapor in the primary gas (BTU/lb)HWV2 Specific enthalpy of water vapor in the secondary gas (BTU/lb)I General purpose DO loop counterIAM DO loop counter for wall and floor concrete node initializationIB DO loop counter for floor concrete iterationsINIT Initializing subroutine for integrationsINJEC1..3 Flags for gas injection. INJECn indicates the injection has occurred.

41

Page 43: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

INTDSxINTGRLIPAGEIPASS

KAIRKAIRB

KAIRGKBKBLIKBNDRYKCONKEHCSKFILMKGAP

KH20KH2OB

KH2OGKHEKIN1KIN2KLEAK

KMANKPANKSHLKSTLFPKSTLFSKSTLWPKSTLWSKWATLLiLEAKLEAKOLIBPLIL

LILC2LILCA

42

Interpolation factor used in reading steam tablesArithmetic statement function for finding integralsNumber of lines of output between headingsUsed during integration routine to tell INTGRL to perform certainspecial functions during the first two executions of the sectionThermal conductivity of non-condensible gas (air) (BTU/sec ft deg. F.)Thermal conductivity of air at the water pool-gas boundary(BTU/sec ft deg. F.)Thermal conductivity of air in a cell gas (BTU/sec ft deg. F.)Water condensation mass transfer coefficient (lb mol/sec-ft 2)Thermal conductivity of the blanket back wall (BTU/hr ft deg. F.)Thermal conductivity of the water pool-gas boundary (BTU/sec ft deg. F.)Thermal conductivity of concrete (input as BTU/hr ft deg. F.)Thermal conductivity of the breeder node (BTU/hr ft deg. F.)Thermal conductivity of pool/combustion zone film (BTU/sec ft deg. F.)Thermal conductivity of the gap between the liner and concrete(BTU/hr ft deg. F.)Thermal conductivity of water vapor (BTU/sec ft deg. F.)Thermal conductivity of water vapor at the water pool-gas boundary(BTU/sec ft deg. F.)Thermal conductivity of water vapor in a cell gas (BTU/sec ft deg. F.)Thermal conductivity of the vacuum (He filled) gap (BTU/hr ft deg. F.)Thermal conductivity of inner insulation layer (BTU/hr ft deg. F.)Thermal conductivity of outer insulation layer (BTU/hr ft deg. F.)Leak rate constant from containment (sec- 1psi-0 5)Reference value: 2.588-10'Thermal conductivity of the manifold (BTU/hr ft deg. F.)Thermal conductivity of the pan (BTU/hr ft deg. F.)Thermal conductivity of the reactor shield (BTU/hr ft deg. F.)Thermal conductivity of the primary floor liner (BTU/hr ft deg. F.)Thermal conductivity of the secondary floor liner (BTU/hr ft deg. F.)Thermal conductivity of the primary wall liner (BTU/hr ft deg. F.)Thermal conductivity of the secondary wall liner (BTU/hr ft deg. F.)Thermal conductivity of liquid water (BTU/sec ft deg. F.)Thickness of a wall concrete node (ft)Thickness of a floor concrete node (ft)Gas leakage rate from outermost cell (sec 1 )Initial gas leakage rate from outermost cell (sec- 1)Lithium consumed in pool fire (lb)Amount of lithium remaining in pool-limited to LIT/10 for numericalstability during calculationsAmount of Li2C 2 in the pool (lb)Amount of Li2CO3 in the pool (lb)

Page 44: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

LILCARLILNILILOXLILPLISLITLOCAMAIPMAISMAIRPMAIRSMAPMASMBOILMCO2IPMCO2ISMCO2PMCO2SMCONDEMCONDFMCONDPMCONDWMCONFP

MCONWP

MFABMFAGMFVBMFVGMGBMH2PMH2SMINJRMINJR2MLC2PMLC2SMLC3IPMLC3ISMLC3PMLC3SMLEADMLIHPMLIHS

Amount of carbon in the pool (lb)Amount of Li3 N in the pool (lb)Amount of Li 20 in the pool (lb)True amount of lithium in the pool (lb)Amount of lithium consumed in the spray fire (lb)Initial mass of lithium in the pool (lb)View factor between the first wall and the breeder node (may be zero)Initial mass of inert gas in the primary gas (lb)Initial mass of inert gas in the secondary gas (lb)Mass of primary non-condensible gas (lb)Mass of secondary non-condensible gas (lb)Mass of inert gas in the primary gas (lb)Mass of inert gas in the secondary gas (lb)Mass of water boiled off from the water pool in one time step (lb)Initial mass of carbon dioxide in the primary gas (lb)Initial mass of carbon dioxide in the secondary gas (lb)Mass of carbon dioxide in the primary gas (lb)Mass of carbon dioxide in the secondary gas (lb)Condensation rate of water on an extraneous heat capacity (lb/sec)Condensation rate of water on the secondary floor liner (lb/sec)Condensation rate of water on the pan insulation (lb/sec)Condensation rate of water on a wall liner (lb/sec)Condensation rate of water on the primary floor linerfrom the secondary gas (lb/sec)Condensation rate of water on the primary wall linerfrom the secondary gas (lb/sec)Molar fraction of air at the water pool-gas boundaryMolar fraction of air in the cell gasMolar fraction of water vapor at the water pool-gas boundaryMolar fraction of water vapor in the cell gasMolecular weight of the mixture at the water pool-gas boundaryMass of hydrogen in the primary gas (lb)Mass of hydrogen in the secondary gas (lb)Mass flow rate of steam injected to primary cell (lb/sec)Mass flow rate of steam injected to secondary cell (lb/sec)Mass of lithium carbide in the primary gas (lb)Mass of lithium carbide in the secondary gas (lb)Initial mass of lithium carbonate in the primary gas (lb)Initial mass of lithium carbonate in the secondary gas (lb)Mass of lithium carbonate in the primary gas (lb)Mass of lithium carbonate in the secondary gas (lb)Mass of lead in the lead layer above the lithium-lead pool (lb)Mass of lithium-hydroxide in the primary gas (lb)Mass of lithium-hydroxide in the secondary gas (lb)

43

Page 45: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

MLINIP Initial mass of lithium-nitride in the primary gas (lb)MLINIS Initial mass of lithium-nitride in the secondary gas (lb)MLINP Mass of lithium-nitride in the primary gas (lb)MLINS Mass of lithium-nitride in the secondary gas (lb)MLIOH Mass of LiOH produced (moles)MLIOIP Initial mass of lithium-oxide in primary gas (lb)MLIOIS Initial mass of lithium-oxide in secondary gas (lb)MLIOP Mass of lithium-oxide in primary gas (lb)MLIOS Mass of lithium-oxide in secondary gas (lb)MNIINJ Rate of nitrogen injection during a one minute interval (lb/sec)MNIIP Initial mass of nitrogen in the primary gas (lb)MNIIS Initial mass of nitrogen in the secondary gas (lb)MNIP Mass of nitrogen in the primary gas (lb)MNIS Mass of nitrogen in the secondary gas (lb)MNINJ1..3 Mass of nitrogen injected in gas injection (lb)MOINJ1..3 Mass of oxygen injected in gas injection (lb)MOXINJ Rate of oxygen injection during a one minute interval (lb/sec)MOXIP Initial mass of oxygen in the primary gas (lb)MOXIS Initial mass of oxygen in the secondary gas (lb)MOXP Mass of oxygen in the primary gas (lb)MOXS Mass of oxygen in the secondary gas (lb)MR Mass ratio of air to water vapor in the cell gasMUAIR Viscosity of air in the cell gas (lb/sec-ft)MUAIRB Viscosity of air at the water pool-gas boundary (lb/sec-ft)MUAIRG Viscosity of air in the cell gas (lb/sec-ft)MUB Viscosity of the mixture at the water pool-gas boundary (lb/sec-ft)MUDIFF Viscosity of the mixture at the lithium pool surface (lb/sec-ft)MUV Viscosity of water vapor in the cell gas (lb/sec-ft)MUVB Viscosity of water vapor at the water pool-gas boundary (lb/sec-ft)MUVCZ Viscosity of water vapor at the lithium pool surface (lb/sec-ft)MWL Mass of liquid water in the primary water pool (lb)MWL2 Mass of liquid water in the secondary water pool (lb)MWLV Mass of liquid water in the primary gas (lb)MWLV2 Mass of liquid water in the secondary gas (lb)MWLZ Time rate of change of the mass of liquid water in the primary water

pool (lb/sec)MWLZ2 Time rate of change of the mass of liquid water in the secondary water

pool (lb/sec)MWV Total mass of water in the primary gas (lb)MWV2 Total mass of water in the secondary gas (lb)MWVV Mass of water vapor in the primary gas (lb)MWVV2 Mass of water vapor in the secondary gas (lb)

44

Page 46: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

MWVZ Time rate of change of the total mass of water in the primary gas (lb/sec)MWVZ2 Time rate of change of the total mass of water in the secondary gas (lb/sec)N Index used to transfer to section of subroutines, and as a DO loop counterNAME(i) Input variable containing program name and output headingsNL Number of concrete wall nodesNL1 Number of concrete floor nodesNLM1 Number of concrete wall nodes minus oneNL1M1 Number of concrete floor nodes minus oneNS Index used to control transfer to sections of the steam-air subroutinesNULV Kinematic viscosity of water at the secondary floor liner (ft2/sec)OFAC Oxygen inhibition factor (lithium-steam reaction)OUTINT Fraction of the outermost cell gas leaked to ambientOVERPP Primary cell overpressure (psig)OVERPS Secondary cell overpressure (psig)OXLB Mass of oxygen consumed in the fire (lb)OXLBI Mass of oxygen consumed in the spray fire (lb)OXLFS Mass of oxygen remaining after the spray fire (lb)PAP Primary gas pressure (psia)PAPZER Initial primary gas pressure (psia)PAS Secondary gas pressure (psia)PASZER Initial secondary gas pressure (psia)PERCEN Molecular percentage of lithium-peroxide (vs. monoxide) formed

during combustionPH20 Partial pressure of water vapor in the primary gas (psia)PH202 Partial pressure of water vapor in the secondary gas (psia)PH20B Partial pressure of water vapor at the primary water pool-gas

boundary (psia)PH20B2 Partial pressure of water vapor at the secondary water pool-gas

boundary (psia)PHASE =1 if primary cell is saturated, =2 if superheatedPHASE2 =1 if secondary cell is saturated, =2 if superheatedPHIA Baroczy two-phase flow correction factor at the lithium pool surfacePHIW Baroczy two-phase flow correction factor at the lithium pool surfacePHIAWB Baroczy two-phase flow correction factor at the water pool surfacePHIWAB Baroczy two-phase flow correction factor at the water pool surfacePLIV Partial pressure of lithium vapor (psia)PRSC Prandtl number divided by the Schmidt numberPSAT Saturation pressure of water at the primary gas temperature (psia)PSAT2 Saturation pressure of water at the secondary gas temperature (psia)PYU Used in setting the time step length calculated from the heat conduction

rate to the pan or primary floor liner from the lithium poolPZEROP Primary gas pressure after the spray fire (psia)QCxxx Heat of combustion (BTU/lb Li)

45

Page 47: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

(There is no page 46.)

46

Page 48: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

QCC Li-CO 2 producing lithium carbonate reactionQCCONC Concrete reactionQCN Nitrogen reactionQCO Oxygen reactionQCO1 Monoxide reactionQCO2 Peroxide reactionQCW Water vapor reaction producing LiOHQCW2 Water vapor reaction producing Li20QDISS Heat of dissociation of LiPb (BTU/lb)QIN Heat addition to primary gas from spray fire (BTU)QL2C2 Heat of combustion for the carbon reaction (BTU/lb Li)QLFLR Heat flux from the secondary water pool to the secondary floor liner

(BTU/ft 2)QLIOH Heat of fusion of LiOH (BTU/lb mol)QOFWn Volumetric decay heat generation rate in the first wall for an isotope

(n=1-3) (BTU/sec ft3 )QOBLn Volumetric decay heat generation rate in the breeder for an isotope

(n=1-3) (BTU/sec ft')QOBLn Volumetric decay heat generation rate in the manifold for an isotope

(n=4-6) (BTU/sec ft')QOBLIn Volumetric decay heat generation rate in the blanket back wall for a

(n=1-3) (BTU/sec ft')QOSHn Volumetric decay heat generation rate in the shield bulk for an isoto

(n=1-3) (BTU/sec ft')QOSHIn Volumetric decay heat generation rate in the inside of the shield for

n isotope

an isotope (n=1-3) (BTU/sec ft')QOSHOn Volumetric decay heat generation rate in the outside of the shield for

an isotope (n=1-3) (BTU/sec ft')QOUT1..5 Used in heat balance equations for the spray fire (BTU)

QQQ Used as a counter in the lithium transfer simulationQRADxx Indicates a radiative heat flow (BTU/sec)QRADB Floor liner (or pan) to ambient or floor concreteQRADC Wall liner to ambient or wall concreteQRADCG Pan to primary gasQRADEB Breeder to blanket back wallQRADEM Breeder to manifoldQRADES Blanket back wall to shield inside regionQRADFB First wall (floor) to breederQRADFG Primary floor liner to secondary gasQRADFS Primary floor liner to secondary floor linerQRADG Combustion zone (or Li pool without combustion) to primary gasQRADP Combustion zone to lithium pool (only during combustion)QRADPG Primary wall liner to secondary gas

47

?e

Page 49: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

QRADPS Primary wall liner to secondary wall linerQRADS Pan to primary floor linerQRADW Combustion zone (or lithium pool) to primary wall linerQRADWB First wall to breederQRSHFS Radiative heat flow from the shield outside region to the secondary

floor (BTU/sec)QRSHGS Radiative heat flow from the shield outside region to the secondary

gas (BTU/sec)QRSHWS Radiative heat flow from the shield outside region to the secondary

wall (BTU/sec)QU Heat flux from the primary gas to primary wall liner

due to condensation (BTU/sec-ft2 )QVAP Heat of vaporization of lithium (BTU/lb)QVEHC Heat flux from the cell gas to the extraneous heat capacity

due to condensation (BTU/sec-ft2 )QVPAN Heat flux from the primary gas to the pan insulation

due to condensation (BTU/sec-ft2 )QVSEC Heat flux from the secondary gas to secondary wall liner

due to condensation (BTU/sec-ft2 )QVFLR Heat flux from the cell gas to cell floor liner

due to condensation (BTU/sec-ft2 )QVFPGS Heat flux from the secondary gas to primary floor liner

due to condensation (BTU/sec-ft2 )QVWPGS Heat flux from the secondary gas to primary wall liner

due to condensation (BTU/sec-ft 2)RA Mean radius of combustion product particles (microns)RADxxx 'RAD' or 'R' indicates a temperature rate of change in one node due

to radiative heat transfer to or from another (deg. F./sec)'RAD'B Floor liner to ambient or floor concrete'RAD'C Wall liner to ambient or wall concrete'RAD'CB Floor concrete from floor liner'RAD'CC Wall concrete from wall linerRAIR Gas constant for primary non-condensible gas (RIN/XMOLP)RAIR2 Gas constant for secondary non-condensible gas (RIN/XMOLS)'R'BFF Breeder node from first wall (floor)'R'BFW Breeder node from first wall'R'BIEHC Blanket back wall from breederRBREAK Temperature rate of change of primary gas due to leakage (R/sec)RC2 Li-CO 2 reaction rate inhibition factor (Li2 CO3 reaction)RC2LB Rate of carbon consumption (lb/sec)RCMBC Stoichiometric combustion ratio for lithium and concrete

(lb Li/lb concrete)RCMBC2 Stoichiometric combustion ratio for lithium and carbon (lb Li/lb C)

48

Page 50: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

RCMBCO Stoichiometric combustion ratio for lithium and carbon dioxidefor lithium carbonate producing reaction (lb Li/lb CO 2)

RCMBCS Stoichiometric ratio of lithium consumed in Li2CO3 producingreaction to Li2 CO3 produced (lb Li/lb Li2CO 3 )

RCMBH2 Stoichiometric combustion ratio for lithium and hydrogen (lb Li/lb H)RCMBN Stoichiometric combustion ratio for lithium and nitrogen (lb Li/lb N)RCMBO Stoichiometric combustion ratio for lithium and oxygen (lb Li/lb 0)RCMB01 Stoichiometric combustion ratio for monoxide reaction (lb Li/lb 0)RCMB02 Stoichiometric combustion ratio for peroxide reaction (lb Li/lb 0)RCMBW Stoichiometric combustion ratio for lithium and water for reaction

producing LiOH (lb Li/lb H20)RCMBW2 Stoichiometric combustion ratio for lithium and water for reaction

producing Li2 0 (lb Li/lb H2 0)RCMCA1 Stoichiometric ratio of lithium consumed in Li-CO 2 reaction

producing Li20 and carbon to carbon produced (lb Li/lb C)RCMCA2 Stoichiometric ratio of lithium consumed in Li-CO 2 reaction

producing Li2 CO3 and carbon to carbon produced (lb Li/lb C)RCMCCO Stoichiometric combustion ratio for lithium and carbon dioxide

for lithium oxide producing reaction (lb Li/lb CO 2)RCOLB Rate of carbon dioxide consumption (lb CO 2/sec)'R'CZG Primary gas from combustion zone'R'CZP Lithium pool from combustion zone'R'CZW Primary wall liner from combustion zone'R'EHCBI Breeder from blanket back wall'R'EHCMN Breeder from manifold'R'EHCSH Blanket back wall from shield inside regionRELERR Fraction of X/(dx/dt) allowed as the maximum time step (sec)'R'FFB First wall (floor) from breeder node'R'FPFS Primary floor liner from secondary floor liner'R'FPGAS Primary floor liner from secondary gas'R'FSFP Secondary floor liner from primary floor liner'R'FSSH Secondary floor liner from shield outside region'R'FWB First wall from breeder node'R'GASFP Secondary gas from primary floor liner'R'GASPA Pan to primary gas'R'GLI Lithium pool to primary gas (without combustion)'R'GSSH Secondary gas from shield ouside regionRHCON Density of concrete (lb/ft3 )RHINS Density of insulation (lb/ft3 )RHLEAD Density of pure lead (lb/ft3 )RHLI Density of pure lithium (lb/ft3 )RHLIX Density of pure lithium (used in LC-2 lithium transfer simulation)

(lb/ft3 )RHOAIP Initial density of primary non-condensible gas (lb/ft3 )

Page 51: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

RHOAISRHOAPRHOASRHOBRHOCARRHOLC2RHOLC3RHOLIHRHOLINRHOLIORHOLIVRHOTOTRHPANRHSFPRHSFSRHSWPRHSWSRIFxxxRIFBBIRIFBMRIFCZGRIFCZPRIFESRIFFFBRIFFPSRIFFWBRIFPAGRIFPASRIFPGRIFPGARIFPSRIFPWRIFSCFRIFSCWRIFSLCRIFSFRIFSWRINRINPRINSRISHGS

'R'LIG'R'LIW

Initial density of secondary non-condensible gas (lb/ft3 )Density of primary non-condensible gas (lb/ft3 )Density of secondary non-condensible gas (lb/ft3 )Density of the water pool-gas boundary layer (lb/ft3 )Density of carbon (lb/ft3 )Density of Li 2 C2 (lb/ft3 )Density of Li 2 CO3 (lb/ft3 )Density of LiOH (lb/ft3 )Density of Li3N (lb/ft3 )Density of Li20 (lb/ft3 )Density of lithium vapor above the pool (lb/ft3 )Total gas density at the lithium pool surface (lb/ft3 )Density of lithium spill pan (lb/ft3 )Density of primary floor liner (lb/ft3 )Density of secondary floor liner (lb/ft3 )Density of primary wall liner (lb/ft3 )Density of secondary wall liner (lb/ft3 )Radiative interchange factor-used in radiative heat transferBreeder node to blanket back wallBreeder node to manifoldCombustion zone and primary gasCombustion zone and primary wall linerBlanket back wall to shield inside regionFirst wall (floor) to breeder nodePrimary floor liner and secondary floor linerFirst wall to breeder nodePan to primary gasPan to floor linerLithium pool to primary gasPrimary wall liner to secondary gasPrimary wall liner to secondary wall linerLithium pool to primary wall linerSecondary floor to concrete floorSecondary wall to concrete wallWall or floor liner to concreteShield outside region to secondary floorShield outside region to secondary wallUniversal gas constant (1545 ft-lbf/lb-mol-deg. F.)Gas constant for the primary gas (RIN/XMOLP)Gas constant for the secondary gas (RIN/XMOLS)Radiative interchange factor between the shield outer region and thesecondary cell gasGas from lithium pool (without combustion)Wall liner from lithium gool (without combustion)

Page 52: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

'R'MNEHCRN2RNxx

RNILBR02ROXLB'R'PAGAS'R'PANSTRRRRTLI'R'SHEHC'R'SHFS'R'SHGS'R'SHWS'R'SPGS'R'STPANRWALB'R'WLI'R'WPGAS'R'WPWS'R'WSSH'R'WSWPSAT(x,y)SFLCRSFLENDSFLTINSH(x,y,z)SIGMASPILLSPRAYSTICK

STMFACSTMINSTMIN2STMOUTSTOUT2TATAUTAUCZ

Manifold from breederLithium-nitrogen reaction rate inhibition factorExpressions used to calculate RN2 as a function of gas composition andlithium temperatureRate of nitrogen combustion (lb/sec)Lithium-oxygen reaction rate inhibition factorRate of oxygen combustion (lb/sec)Primary gas from panPrimary wall liner from panFunction which generates the lithium-nitrogen kinetics limit curveLithium-nitrogen reaction kinetics limit modified by the presence of steamShield inside region from blanket back wallShield outside region from secondary floorShield outside region from secondary gasShield outside region from secondary wallSecondary gas from primary wall linerPan from primary wall linerRate of water vapor consumption (lb/sec)Lithium pool from primary wall liner (without combustion)Primary wall liner from secondary gasPrimary wall liner from secondary wall linerSecondary wall liner from shield outside regionSecondary wall liner from primary wall linerSaturated steam tableHeat removal rate by emergency cooling of floor liner (BTU/sec)Time after spill when SFLCR ends (sec)Time after spill when SFLCR begins (sec)Superheated steam tableStefan-Boltzmann constant (1.713-10-9 BTU/ft2 -hr-deg. R.4)Total mass of lithium spilled (lb)Mass fraction of lithium consumed in the spray fireRate at which aerosols are removed from the primary cell due tosticking to the wall. If STICK > 1.0, execution stops.STICK may be reduced by increasing BETA.Density weighting factor for calculating steam-air mixture propertiesTime to begin steam injection to primary cell (sec)Time to begin steam injection to secondary cell (sec)Time to end steam injection to primary cell (sec)Time to end steam injection to secondary cell (sec)Ambient temperature (deg. R.)Time constant for transient natural convectionRadiative transmissivity used to model pool-combustion zone couplingrather than (1.-EMCZ)

51

Page 53: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

TAVE Average of secondary floor and secondary water pool temperature (deg. R.)TAVHI Variable used to read steam tablesTAVLO Variable used to read steam tablesTB(i) Temperature of ith node of concrete floor (deg. R.)TBIC(i) Initial temperature of ith node of concrete floor (deg. R.)TxxxxF Corresponding temperature to Txxxx in FahrenheitTBLI Temperature of blanket back wall (deg. R.)TBLIO Initial temperature of blanket back wall (deg. R.)TBLOW Inert gas inlet temperature (deg. R.)TC(i) Temperature of ith node of concrete wall (deg. R.)TCIC(i) Initial temperature of ith node of concrete wall (deg. R.)TCIGNI Ignition temperature of lithium-concrete reaction (deg. R.)TCON Concrete combustion zone temperature (deg. R.)TCZ Combustion zone temperature (deg. R.)TCZI Initial combustion zone temperature (deg. R.)TE Equilibrium temperature resulting from spray fire (deg. R.)TEHCP Primary extraneous heat capacity temperature (deg. R.)TEHCS Secondary extraneous heat capacity (breeder with torus fire option)

temperature (deg. R.)TEHCZP Initial primary extraneous heat capacity temperature (deg. R.)TEHCZS Initial secondary extraneous heat capacity (breeder with torus fire

option) temperature (deg. R.)TETI Used in calculating thermal conductivity of inner pan insulation

See KIN1TET2 Used in calculating thermal conductivity of outer pan insulation

See KIN2TEZ Average of combustion zone temperature and lithium pool temperature

Used in test for combustion (deg. R.)TFEFF Normalized temperature of combustion zone-lithium pool temperature

(deg. R.)TFHI Variable used to read steam tablesTFLO Variable used to read steam tablesTFS Secondary floor liner temperature (deg. R.)TGP Primary gas temperature (deg. R.)TGPZER Initial primary gas temperature (deg. R.)TGS Secondary gas temperature (deg. R.)TGSZER Initial secondary gas temperature (deg. R.)THBLI Thickness of blanket back wall (ft)THE Thickness of vacuum gap (ft)THFC Thickness of concrete floor (ft)THFP Thickness of primary floor liner (ft)THFS Thickness of secondary floor liner (ft)THI Temporary variable used to read steam tables

52

Page 54: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

THKIN1 Thickness of inner pan insulation (ft)THKIN2 Thickness of outer pan insulation (ft)THKPAN Thickness of spill pan (ft)THMAN Thickness of blanket manifold (ft)THPB Thickness of lead layer above the lithium-lead pool (ft)THSHI Thickness of inside region of reactor shield (ft)THSHL Thickness of bulk region of reactor shield (ft)THSHO Thickness of outside region of reactor shield (ft)THWC Thickness of concrete wall (ft)THWP Thickness of primary wall liner (ft)THWS Thickness of secondary wall liner (ft)TIME Time elapsed after spill has occurred (sec)TIMEF User defined time to stop execution of the code (sec)TIMEO Time at which code prints output data to a file (sec)TINS1 Inner pan insulation layer temperature (deg. R.)TINS1I Initial inner pan insulation layer temperature (deg. R.)TINS2 Outer pan insulation layer temperature (deg. R.)TINS2I Initial outer pan insulation layer temperature (deg. R.)TLEAD Temperature of the lead layer above the Li-Pb pool (deg. R.)TLEADI Initial temperature of the lead layer above the Li-Pb pool (deg. R.)TLI Lithium pool temperature (deg. R.)TLIBS Lithium pool temperature before spray fire (deg. R.)TLII initial lithium pool temperature (deg. R.)TLO Temporary variable used to read steam tablesTLP Temperature of the primary liquid pool (deg. R.)TMAG Temperature of the magnets (secondary extraneous heat capacity) (deg. R.)TMAGZ Initial temperature of the magnets (secondary extraneous heat capacity) (deg.TMAN Temperature of the blanket manifold (deg. R.)TMANO Initial temperature of the blanket manifold (deg. R.)TMELT Melting temperature of lithium (deg. R.)TO Primary gas temperature before spray fire (deg. R.)

TONE,TTWO,TTHREE Time at which each injection occurs (sec)TPAN Pan temperature (deg. R.)TPANZO Initial pan temperature (deg. R.)TSAT Saturation temperature of water based on its partial pressure (deg. F.)TSFP Primary floor liner temperature (deg. R.)TSFPI Initial primary floor liner temperature (deg. R.)TSFSI Initial secondary floor liner temperature (deg. R.)TSHI Shield inside region temperature (deg. R.)TSHIO Initial shield inside region temperature (deg. R.)TSHL Shield bulk region temperature (deg. R.)

53

Page 55: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

TSHLZ Initial shield bulk region temperature (deg. R.)TSHO Shield outside region temperature (deg. R.)TSHOO Initial shield outside region temperature (deg. R.)TSP Primary wall liner temperature (deg. R.)TSPZER Initial primary wall liner temperature (deg. R.)TSS Secondary wall liner temperature (deg. R.)TSSZER Initial secondary wall liner temperature (deg. R.)TVAP Vaporization temperature of lithium (deg. R.)TI Film temperature between primary gas and lithium pool (deg. R.)T2,T3 Temporary variables used in setting up steam tableUA Internal energy of non-condensible gas in a cell (BTU)UGPB Specific internal energy of saturated water vapor at boiling (BTU/lb)UL Internal energy of the primary water pool (BTU)UL2 Internal energy of the secondary water pool (BTU)ULP Specific internal energy of the primary water pool (BTU/lb)ULP2 Specific internal energy of the secondary water pool (BTU/lb)ULPB Specific internal energy of liquid needed for boiling to occur (BTU/lb)ULZ Time rate of change of UL (BTU/sec)ULZ2 Time rate of change of UL2 (BTU/sec)USUBA Heat transfer coefficient between the outermost containment node and

the ambient (BTU/sec-ft2 -deg. F.)UV Internal energy of the primary gas (BTU)UV2 Internal energy of the secondary gas (BTU)UVZ Time rate of change of the internal energy of the primary gas (BTU/sec)UVZ2 Time rate of change of the internal energy of the secondary gas (BTU/sec)UWV Specific internal energy of water vapor in the primary gas (BTU/lb)UWV2 Specific internal energy of water vapor in the secondary gas (BTU/lb)VA Specific volume of non-condensible primary gas (ft3/lb)VAB Specific volume of non-condensible gas at the water pool-gas boundary (ft3 /lb)VCONC Volume of concrete in the first node of concrete (ft3 )VG Specific volume of water in the primary gas (ft3 /lb)VG2 Specific volume of water in the secondary gas (ft3 /lb)VHI Variable used to read steam tablesVIEWB View factor from the breeder to the blanket back wallVIEWG View factor across the vacuum gapVIEWM View factor from the breeder to the manifoldVL Volume of the primary water pool (ft3 )VL2 Volume of the secondary water pool (ft3 )VLO Variable used to read steam tablesVLP Specific volume of the primary water pool (ft3 /lb)VLP2 Specific volume of the secondary water pool (ft3 /lb)

54

Page 56: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

VLPF

VLPV

VPVSVSBVSTVVB

VVB2

VVGVVG2VVTWABWAPWASWATER

WCBWCPWCO2SWN2BWN2PWN2SWO2BWO2PWO2SWWABWWAPWWASXALLOYXAMXBLOWXESCXINJXINJ2XLIXLIDOT

XMAIRPXMAIRS

as time-+ooMass fractionMass fractionMass fractionMass fractionMass fractionMass fractionMass fractionMass fractionMass fractionMass fraction

(lb/ft3 )of carbon dioxide in the flooding gasof carbon dioxide in the primary gasof carbon dioxide in the secondary gasof nitrogen in the flooding gasof nitrogen in the primary gasof nitrogen in the secondary gasof oxygen in the flooding gasof oxygen in the primary gasof oxygen in the secondary gasof water vapor in the flooding gas

Mass fraction of water vapor in the primary gasMass fraction of water vapor in the secondary gasAtom percent of lithium in lithium-lead poolLogarithmic mean molar fraction of air (see MFAB and MFAG)Used in conjunction with IBLOWUsed in conjunction with IESCIndicates whether steam injection to the primary is in effectIndicates whether steam injection to the secondary is in effectMass fraction of lithium in lithium-lead poolMass flow rate of lithium through the lead layer above the Li-Pbpool (lb/sec)Amount of non-condensible primary gas after spray fire (lb-mol)Amount of non-condensible secondary gas after spray fire (lb-mol)

55

Specific volume of saturated liquid water at the secondary floor linertemperature (ft3 /lb)Specific volume of saturated liquid water for heat transfer between thesecondary floor liner and the secondary water pool (ft3 /lb)Volume of primary cell (ft3 )Volume of secondary cell (ft3 )Specific volume of water vapor at the water pool-gas boundary (ft3 /lb)Specific volume of water vapor at the lithium pool surface (ft3 /lb)Specific volume of saturated water vapor at the primary water pooltemperature (ft3 /lb)Specific volume of saturated water vapor at the secondary water pooltemperature (ft3/lb)Specific volume of saturated water vapor in the primary gas (ft3 /lb)Specific volume of saturated water vapor in the secondary gas (ft3 /lb)Temporary variable used to determine steam properties for condensationMass fraction of inert gas in the flooding gasMass fraction of inert gas in the primary gasMass fraction of inert gas in the secondary gasAmount of water that should be left in the top concrete node

Page 57: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

XMBLI Mass of the blanket back wall (lb)XMCOCZ Mass of concrete combustion zone (lb)XMDOT Mass flow rate of gas between primary and secondary cells (lb/sec)XMEHCP Mass of primary extraneous heat capacity (lb)XMEHCS Mass of secondary extraneous heat capacity (breeder with torus fire

option) (lb)XMH20I Initial water content of concrete (lb/ft3 )XMMAG Mass of the magnets (secondary extraneous heat capacity) (lb)XMMAN Mass of the blanket manifold (lb)XMOLP Molecular weight of non-condensible primary gas (lb/lb-mol)XMOLS Molecular weight of non-condensible secondary gas (lb/lb-mol)XMOLA Molecular weight of containment inert gas (lb/lb-mol)XMOLAB Molecular weight of flooding inert gas (lb/lb-mol)XMSHI Mass of shield inside region (lb)XMSHL Mass of shield bulk region (lb)XMSHO Mass of shield outside region (lb)XSFL Indicates whether emergency floor cooling is currently in effectYALIG Effective thermal admittance between the pool and primary gas

(BTU/sec-deg. F.)YAPCZ Effective thermal admittance between the pool and combustion zone

(BTU/sec-deg. F.)YPAGAS Effective thermal admittance between the pan and primary gas

(BTU/sec-deg. F.)ZLI Thickness of the lithium pool (ft)ZP Used to determine EMLI if EMLI < 0.9ZZxxxx Temperature rate of change of a node (deg. R./sec)ZZ1 Lithium poolZZ2 Lithium spill panZZ3 Secondary cell gasZZ4 Primary cell gasZZ5 Primary wall linerZZ6 Combustion zoneZZ7 Primary floor linerZZ8 Inner insulation layerZZ9 Outer insulation layerZZ99 Change in combustion rate with respect to time (lb Li/sec2 ft2)'ZZ'C Concrete combustion zone'ZZ'BLI Blanket back wallZZD Rate of change of concrete combustion zone thickness (ft/sec)ZZDIN Initial rate of change of concrete combustion zone thickness (ft/sec)'ZZ'EP Primary extraneous heat capacity'ZZ'ES Secondary extraneous heat capacity'ZZ'FS Secondary floor liner'ZZ'MAG Magnets (secondary extraneous heat capacity)

56

Page 58: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

'ZZ'MAN'ZZ'PB'ZZ's'ZZ'SHI'ZZ'SHL'ZZ'SHO

Blanket manifoldLead layer above Li-Pb poolSecondary wall linerShield inside regionShield bulk regionShield outside region

PROGRAM DECISION FLAGS

IAROSL =1 to use aerosol removal from containment by sticking optionIBLOW =1 Containment flooding with inert gas

=0 No containment floodingICMB =0 No oxygen left after spray fire

=1 Still oxygen left after spray fire (initially =1, reset by code)ICNI =0 Nitrogen reactions not possible

=1 Nitrogen reactions possibleIC021 =1 to use pure CO 2 atmosphereICZ =0 Combustion zone model not used

=1 Combustion zone model usedIESC =1 to use emergency space cooling optionIFLAG2 =1 to use two-cell geometry optionIFLAGB =1 to use lithium-lead optionIFLAGC =1 to use concrete combustion optionIFLAGCO =1 to use pure CO 2 atmosphere optionIFLAGD =1 to use layered lithium-lead pool optionIFLAGF =1 to use floor concrete optionIFLAGISI =1 to enter input data in SI unitsIFLAGP =1 to use pan optionIFLAGR =1 to use torus fire optionIFLAGS =1 to use dry gas injection optionIFLAGT =1 to use steam-air mixture optionIFLAGU =1 to get output in SI unitsIFLAGW =1 to use wall concrete optionILIT =0 No lithium left to burn

=1 Lithium left to burnIMETH =1 Runge-Kutta method of integration used

=3 Simpson's Rule method of integration usedISFLC =1 to use emergency floor cooling optionISWICH =0 Crack size remains constant

Crack size reset to zero after primary and secondary cellgas pressure equilibrate (note: this should not be used wheneither cell is small compared to the other or the volume of gasbeing consumed by the fire)

57

Page 59: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

FLAG2 = .TRUE.FLAGAS = .TRUE.FLAGC = .TRUE.FLAGCO = .TRUE.FLAGD = .TRUE.FLAGDF = .TRUE.FLAGF = .TRUE.FLAGISI = .TRUE.FLAGL =.TRUE.FLAGM = .TRUE.FLAGN = .TRUE.FLAGPB = .TRUE.FLAGPN = .TRUE.FLAGSI = .TRUE.FLAGST = .TRUE.FLAGTR = .TRUE.FLAGW = .TRUE.

OPTION AND LOGICAL DECISION FLAGS

Two cell geometryInjection of dry gas during runConcrete combustionPure CO 2 containment atmosphereConcrete combustion has stopped (set by code)Lithium-lead layered pool combustion modelFloor concreteCode accepts input in SI unitsLILP is fixed at a minimum (set by code)Sonic gas flow between cells (set by code)Indicates first run through a subroutine (set by code)Lithium-lead combustionPan optionCode prints output in SI unitsSteam-air mixture in containmentTorus fire optionWall concrete

58

Page 60: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

C Troubleshooting

"There exists no large computer code which runs perfectly 100% of the time."-ANONYMOUS-

The user of this code may encounter problems while trying to execute LITFIRE.The most common error statement is generated by the computer itself: DIVIDE BYZERO and stops the code. This indicates that an attempt was made to divide by zeroor something very close to zero. The first step when encountering an error messageis to check the output file outl.dat and ensure that the input was properly enteredinto the code. If it was, the error may occur if the value of EXHSTV is too high orLILP is too low. This problem may be mitigated to an extent by reducing DTMIN,the minimum time step length, although this will increase computation time.

Another common error message is generated by LITFIRE: EXX IS NEGATIVE- CANNOT TAKE ROOT When this occurs, it indicates that the code is trying totake the square root of a negative number - the code has diverged numerically andthe combustion zone temperature is negative. This may occur when. the combustionrate CMBRH is very small (i.e.,< 1.0 lb Li/hr-ft2 ), the oxygen and nitrogen concen-trations are low, or when the gas pressure is low. This problem occurs when ZZ6and DELT are large enough to produce a negative TCZ. This problern may be solvedby reducing the value of DELOUT to limit the time step size, so extrapolations ofTCZ over a long time step do not cause problems. Unfortunately, this can increasecomputation time considerably. The variation of the combustion zone temperatureover time is a good indicator of whether or not the code is running properly. Duringcombustion, TCZ should be 100' F. or more higher than TLI. Once combustion stops,TCZ should drop rapidly to a value just barely above TLI. (TLI is hypothetical at thispoint if the lithium has been consumed, but it is continuously calculated for numericalreasons.) If TCZ oscillates rapidly or falls below TLI, it is an indication of trouble.As stated earlier, this may be mitigated by decreasing the value of DELOUT.

If the statement: LITHIUM TEMP. ABOVE BOILING POINT occurs, this mayindicate that the rate of change of the lithium pool temperature was very large. Thismay be due to the fact that TCZ has diverged to a very large value. This generallyoccurs as LILP nears zero, as the pool then has a lower heat capacity, and a suddeninflux of energy would cause the pool to heat up rapidly.

Other signs of trouble include a rapid drop in containment gas mass (MNIP,MOXP), or an oscillating combustion zone temperature, TCZ; combustion rate, CM-BRH; or time step length DELT. In general, DELT should increase after the start ofthe run and then level off until combustion stops, when it may change more rapidly.Sudden large changes in DELT indicate that the temperature rates of change are

varying rapidly, which usually should not be the case. If reducing DELT does nothelp solve the problem, print out values of the code quantities like ZZ5 and ZZ6 orUVZ and MWVZ to help find the problem.

Other messages indicate that the user is attempting to use incompatible optionstogether, or that the code has been stopped because there is no point in continu-ing further (i.e. the lithium temperature has dropped below the melting point, or

containment gas temperature and pressure have returned to normal).

59

Page 61: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

D Sample Input Data Files

INPUT DAIA FILE HEAD.DAT

THIS IS THE INPUT DATA FOR THE EXECUTIONOF THE CODF LITFIRE

THESE ARE THE OUTPUT VALUES CORRESPONDINGTO THE PRIMARY CELL ENVIRONMENT

TIME DELT TCZF TLIF TGPF PATHESE ARE THE OUTPUT VALUES CORRESPONDINGTO THE SECONDARY CELL ENVIRONMENT

TIME TGSF TFSF PAS XMDOT MOXSTHESE ARE THE OUTPUT VALUES CORRESPONDINGTO THE PAN OUTPUT OPTION

TIME TLIF TPANF TINS1FTHESE ARE ADDITIONAL OUTPUT VALUES CORRESPOJDINGTO THE PRIMARY CELL ENVIRONMENT

TIME MNIP MOXP MCO2PTHESE ARE THE OUTPUT VALUES CORRESONDINGTO THE LITHIUM/LEAD DIFFUSION OPTION

TIME XLIDOT TLEADF MLEAD

P TSPF TSFPF

MNIS

TINS2F

RN2

MCO2S

PAP

R02

THPB

INPUT DATA FILE UWMAK.W

S0 e 0 0 0 0 0 0 0 0 05 5.20 .20 .20 .20 .20.20 .20 .20 .20 .20497.88 10.14 0.1247 39.90725.0 123.00 51.00 0.1199 0.090.833 2.080 0.002 0.015 0.000.15 0.1189 30.00 497.500 572.3 0.050.15 0.1189 30.00 497.500 38.35 0.050.2 0.9960 33.80 30.000.9 0.2650 0.0227 144.00

124.00 86.9400 160.00 0.04 0.9 0.118510.0 0.0 4080.0 13784.0 10964.1

0.8764 0.0 1.487 0.383 0.766 6.93816.60 2916.0 8431.0 0.0

0.87 0.13 0.01 0.11 0.890.16 0.85 0.112 0.07 0.01 0.010.07 0.072.153 22.05 0.000 0.050 5.0

1752.6 851.4 851.2 815.2 530.99 1751.814.70 0.2320 0.0 0.0000 0.0000

00030000000.02000000900.00000000000.00300000001.00000000100.0000

INPUT DA A FILE UWMAK.X

8855700.00000000140.0eOe0000014.70000000538.10000000538.20000000538.300015.5 00.00 0.232 0.0 522.0000 0.0

1482.0 1696200.0 9709.00 0.6921 0.090.85 0.1199 12.40 497.50 188164.00 0.02080.85 0.1199 12.40 497.50 59038.00 0.0208

350.0

60

LIBP

ZLI

8080

Page 62: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

INPUl DATA FILE UWMAK.Y

0000030.00000000497.50000000000.12000000008.11500000000.20000000000.90001750.00 7.00 5.9055 12.32 0.09

0.0210 0.1667 0.08330.0350 9.3000 708.0000 0.1700 3315.0000 0000.0415

6.45600E-08

INPUT DATA FILE UWMAK.Z

0000100.00000000000.00000000000.00000000004. ecoeCOOOOO.12470000535.000024.0 0.0 310.0 325.0 0.00

INPUT DATA FILE STEAMOP.

0001000.000000030e0. OOOOOOOeo. 00900001190.300

INPUT DATA FILE TORUS.

8855700.00000000150.00000000014.70000000538.10000000538.20000000538.300015.5 00.70 0.232 0.0 522.0000 0.0

1482.0 115468.0 7796.00 0.1189 0.09 1.4980.85 0.1199 12.40 497.50 188164.00 0.02080.85 0.1199 12.40 497.50 59038.00 0.02081.344 0.500 0.1 0.1 .648

672.0 1.903 14.202 3500000.0 0.1653 12110.00.500 0.0001 538.0 14000.0 9000000.0 0.11990.09 0.000 0.0656 0.889 1.0 .27817.90 .1312 .1189 9472.0 149816.0 1300.0

670.0 585.0 .1312 .1312 260000.0 260000.0.656 522842.0 .188 8890.0 1392.0 11.387

8.16e+00 4.41e-06 4.43e-01 9.57e-08 1.75e-01 2.90e-071.03e-01 4.41e-06 6.46e-03 9.57e-08 1.09e+00 3.08e-028.46e-02 2.56e-08 1.91e+00 7.41e-05 3.32e-02 2.92.-62.84e-02 4.41e-06 8.21e+00 3.08e-03 2.88e-03 2.90e-071.85e+00 7.41e-05 2.72e-03 2.56e-08 1.70e-04 3.84e-121.77e+01 2.81e-02 1.69e-04 7.51e-03 7.34e-06 1.69e-04

350.0

61

mmwk.ftww

Page 63: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

E Sample Output Data Files

OUTPUT DATA FILE OUT2.DAT

THESE ARE THE OUTPUT VALUES CORRESPONDINGTO THE PRIMARY CELL ENVIRONMENT

TIME0.0

100.0200.2300.1400.1500.0600.1700.0800.0900.1

DELT0.100.320.470.220.430.820.480.040.170.04

TCZF700.67810.60827.90855.77900.09911.94922.62935.18950.40967.46

TLIF700.22609.64622.37650.31679.50715.02742.62757.36765.30773.17

TGPF200.00198.78197.98197.09196.39195.21194.11193.89193.60193.30

PAP101.70102.11102.89'03.66104.42105.32106.13106.63106.92107.21

progrom execution stopped by programvalues 0.233e+02 0.604e+03 0.181e+03 0.692e+01 0.619e+00

TSPF199.89198.41196.93195.49194.17192.62191.23190.38189.91189.45

OUTPU' DATA FILE OUT3.DAT

THESE ARE THE OUTPUT VALUES CORRESPONDINGTO THE SECONDARY CELL ENVIRONMENT

TIME0.0

100.0200.2300.1400.1500.0600.1700.0800.0900.1

TGSF25.9428.1230.4032.6934.9037.5639.9641.4442.3043.15

TFSF26.0626.0626.0626.0826.1026.1526.2026.2526.2826.31

PAS XMDOT101.38-0.2194e+00102.11102.89103.67104.41105.32106.13106.63106.92107.21

0.0.0.0.0.0.0.3826e-010.0.3610e-01

MOXS0. 1508e+060. 1508e+060. 1508e+060.1508e+060.1508e+060. 1508e+060. 1508e+060.1508e+060.1508e+060. 1508e+06

MNIS0.4994e+060.4994e+060.4994e+060.4994e+060.4994e+060.4994e+060.4994e+060.4994e+060.4994e+060.4994e+06

62

TSFPF179.89489.57573.67613.54643.92680.06709.36725.33733.84741.89

MCO2S0.0.0.0.0.0.0.0.0.0.

Page 64: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

OUTPUT DATA FILE OUT5.DAT

THESE ARE ADDITIONAL OUTPUT VALUES CORRESPONDINGTO THE PRIMARY CFLL ENVIRONMENT

TIME0.0

100.020C 2300. 1400.1500.0600.1700.0800.0900.1

MNIP0. 8074e+010.8153e+010. .272e+010.8395e+010.8510e+010.8662e+010.8806e+010.8892e+010.8937e+010.8988e+01

MOXP0. 2439e+010. 2426e+010.2399e+010.2372e+010.2345e+010. 2305e+010. 2264e+010. 2236e+010.2221e+010. 2208e+01

MCO2P0.0.0.0.0.0.0.0.0.0.

RN20.000000.351100.331250.282690.236680.189930.161820.168190.185530.20478

OUTPUT DATA FILE OUT9.DAT

These outputs ore the weights of react 3n products in LB

Time Lilox

0.0100.0200.2300.1400.1500.0600.1700.0800.0900.1

0.0. 193e+000. 503e+000. 837e+000.1 19e+010. 165e+010.209e+010. 238e+010. 255e+010. 273e+01

Lilni Lilco Lilc2 Lilcar Mliop MIc3p

0. 0.0.205e+00 0.e.474e+00 0.0.802e+00 0.0.124e+01 0.0.173e+01 0.0.213e+01 0.0.238e+01 0.0.255e+01 0.0.275e+01 0.

OuJPUT DATA FILE OUT1O.DAT

These outputs are the reaction rates in gram Li/min-cm2

Time Cmbrhh Cmbrnh Cmbroh Cmbrwh Cmrcoh Cmrc2t

0.0 0.100.0 0.3885e-01200.2 0.4243e-01300.1 0.4672e-01400.1 0.5183e-1Ol500.0 0.4680e-01600.1 0.4365e-01700.0 0.4509e-01800.0 0.4833e-01900.1 0.5207e-el

0.3050e-050.2047e-010.2292e-010.2678.-010.3112e-010.2599e-010. 2289e-010. 2433e-010.2739e-010.3091e-0 1

0.2866e-050.1839e-010.1951e-e10.1993e-010.2071e-010.2081e-010.2076e-e10.2076e-010.2094e-010.2116e-01

0.0.0.0.0.0.0.0.0.0.

0.0.0.0.0.0.0.0.0.0.

0.0.0.0.0.0.0.0.0.0.

63

R020.971200.970980.970590.970200.969820.969290.968750.968410.968230.96805

LIBP0.0. 1015e+000.2476e+000.4156e+000.6179e+000.8597e+000. 1074e+010.1209e+010.1297e+010.1393e+01

0.0.0.0.0.0.0.0.0.0.

0.0.0.0.0.0.0.0.0.0.

0.0.101 e-810. 262e-010. 435e-e10.614e-010.846e-010. 107e+000. 121e+000. 128e+000. 136e+00

0.0.0.0.0.0.0.0.0.0.

Page 65: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

F Listing of the LITFIRE code

64

Page 66: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

0-4

00

As

0.

0.,

S0

1 4 130

444.-I e4

0J V .V 0 V w

w w a 000 -- 0 4 - -.4

00a0i. 14 M.

1 0 m 4 -.4

-A >le 4 Ll V0 o11- a o 4 -H4

w OA14 0 0

11 4A 0 V a 4

0000 e6 -..4A 4 . 1 A . 4 43

. 444314Le0 0

41 0 0 0 04-.4 4.O 6

A 0 4a a a

4 A -4 0 1 0 93oO OUd5-r4 a'-4-. u4 A 0

0 0 -. 4 -a

1Q4140 41.1o4

9 1 014 0 - -4

0 l .- 4-. 410 14 . 0 1 U

04-3 &A44 -I

43 40 44404

*-... *.- .. 0 0.1

0640 .II #-.4 #' a' 04 a' 04-I 43-

A A A -a '-a(JO U .4 4

-a

0

0

-A

0

-A4

-.4.- I

0

-. 4

43

U

A

-.4.-4

0

.-I

0

-14

-.443

.0

0

0

NN0.0

- M.4 00 0\ -.4

0 0

- 0

* 0.

' - a.,I

0 0

- 44 .04

04 V 9-'A 00

a4. 1 0

U0 40

4'-

- -.0 ~--4

43 -.4 d

0*0

a -4

0. 14

- 14444

04 0 .e3

A

-I0'-a

a

A44 -

.- V

.'4 -A P0 -.- 4

4'4 .14004

0 4 a 0 -4.F-4A 014 -4 4.4 . -..- 444.-.44 @ 4s

4'444'4-.e . -Ia'-- A M -.4

- 4 30 - -A -

44 U1 IM 44 'A- 4 a -.4 4 .

*-0O .- 4U ~s

I44 -1-4 -

a444. V A I-'

a4 - 044 --0 0 - -A 0 .4

Of- 0 -A'10 0 m

- a'0 -I 0 40a

0l -4444 4-.-'4-.-4a444--IM - - -

0- -OO

-4 Tm 4 tp 0 -A

.4 44 1 0 4- -C4.%41 '4 ' V .4

a -0 -44 0 U-4 -4 ..4

0 - 0 -4 .

. 4 0 N.-4 -. 0 D.44.1 0 44 0 4 -I- -. 4 0' - 0 - .4 :- .

-I.-4a'a'-.%41 -

W -4 44 -4414-I -.

4.4 -A44-Id

-4440.0 oa 0. -. L'a'.4 a '-4--

-00to44400l - --4. -44-.1.-4.e-I 0 0 !-44441 -44 444o.-o

- - 5-.4--4--4--4 :

S0 am 0

-H4 4 -1 -4 44

44 44 4

-. 4 -I 14d

-. 4 a'---- I 0 -i

No-e a a

-.- Ia -.4 M

%A u. DI 0 44 31

t4o -a't0 0 .0 4.- n N A.- 4 a - q A . 4 H

4440% 43 0.0 1

430r r .0 - 0t 4 to 0041 * 0-4 44.0 j 0 s

a'41.I04.4 1-4 t44M

4 -4 -4a v .0 -

--- 4 -4 t - o0 .4 l-4 A 140 w .Le --I -. r4 to 4-4 31 -44.4 -In

Ir - :1 a4 . em !

f4I toh - 4 Fm go o

44 4 -4 4 e .41 - -A " - 0 r-- 4 -f4 -4 0 .0 1 4 0 - 0 0

m44 -. 4 .- 4.-4 0 toA M 4 . 0 A

-o ; I -44 0OH 0 .44 C.-I0. A4N 43- 04r3t *- 41 43

0- A * WO M -4L 0 % -4 e

CAI 'P - 0 A 0 H 0 %4 4J Ck4 12 :3 N

4 .40 -- 4 -- I 0.44 1 - 0r '3-1 U-4 A - - a.44 -.4 4004 e- 0.0s Ol mA a' 43A 0 --4

a'-.I-.4A .- 4.-4 14 -04-3 - A4 A -A -A t 4 a'0 q I M 9 t) 0

eII' I--4 - - V 0 t A 0 _4 A .13-- - - -UA4 4- 44-. -A 14 '4

DA I- e. d 1 4 s 9'd A w Ve 41 1

do 0N-, N 0 -- '- N 4.4a4-I 0 3 .-.-A O -10 0 p 00-r "44- -AE44 00 -44 V. ona

e-4 0 ---. 414L - -0 0.3 04 A -- I444a'4'4-I--4 -. 0444 - 3 0od ' 43 430

-00.4-30.0.Ostm -4 -- 44 3M - 0MMN0.-.40 - 0 l044.0 0.A -V- -00.a'-.4 -- a--400000 N -p0.444 0 -'d

0 -. - l e-. 4-4. -I e 0 0 *- a 0 -

e44a- .'40-m - -N4-114 - - -00.

- o-4mCA.0 A 0.4440 1 414 a A .- 1- - - 000444.-I 06-.4 0.0- 43-

0 414.-4--4-4 0 1A 0 -A01401400.4 O'44 -- e. 44-4-1'430. e0 -000--4-.4 -r

>m MA0 . 0XO 44 40A 44 I0-4NM'

I0a'4 .4 e-I .N .be' &N N O --4 N .- I 04

0 4-4 .A ao 0 0 a' 0

4'\ .- 4 -I .- 4 0 N -.- 4 -. 4

0 0 0 0 0II MI II MN UN UN M0 00 0 010 U0 00u

C0

0V

00

0u

r0

N00

00

00

0 0 0 u u 00 0 00 0 u u 0 0 0 0 0 0 0u0 0 0 0 0 0 0u0 0 0 0

65

4444

4444

4444444444444444

4444444444444444

44 44

445 44

440 4444.-I 4444.0 444443 4444--I 4444e-I 44

44 44

44 0144444 04444 4444 4444004444 044440044*

44 -I -. 4

44 0044*

44 -. 44- 44 *

S4 44 e

44 .044

44 4" 0 44

44E 44

44 4 -.4* 4

44 E4-..-444

44 * -. 44

44 I- 044444 .1 04444 44 *

44444444

44444444

44444444

44444444

44444444

44444444

44444444

44444444

43

44 1.0 0

10

00

0 10 0-.4 0

0 -.

.1 044-4 0-a

140 o

4410

-da

'00%

4S-

-eq H

u00

34-3

g o

10

04-

SOl

.

a M

SH

-.4

-

E

10

H.1

V

U

044

43

14

44

Page 67: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

14 to~4 A .

.44 A 4

04 oo' -q m -.. ... 4

t'y,4~u 0' 1 0, Q-4 - t4 RPw 0'0A 0. '4 U l -4 W 41 ol ac 0.m Ch De u'4.4 > '

:4 0' ', G a-.s %S-4 0 ' >tI VN N -4 $4 .a0. -4 .19 P4 W m-U 21 -- 4 0 H0S IQ#-a th.01 A0.4 14 r~.4 M "-4 -1 -- o~

ION u A ~A U -K N -- 4 > 9 Xp 0.40 A- it, 0 ' O4Law0 a 4-- >OIO -Ol NA 3tU N- a0K 4 >A toA 4' ~-I 4eA 9 0-A

-0.4o U 0 N %4 C4A-r-.44'N do - .4 0-N 0144-4 maAc 0we -.. .0a X u z U- uU ~- m - 4U--E 44 > *A~ ANCIN 'wAs 0.0 N-a

NA AO -A4a'a-'I,4 4 0 0.4 xo -. a, -0oa 4 D- ri 0 0*.4 04M4. 4NOWU--Na 0-0 0a 0. O 4 lU 4W U 41n4-4-N to 3t0 AOK -- -A

t4N -b' -oa-t aN -..- M U04. -0.4* 0.'004N "m -4.A-aa -U-"0U 4.4 N. "M0-4 K.4 . 40- AN. t- --- 4 44.A OOE

0. *aN o4..4 oU~ 'A A 0 0 ~ l . 4 0; Cal UD, -N -0 A to0. of4'l. -H U4-.H'Id .4OU WA4 9 4 .0" n M4 0 0 -0.0 4 IP 4J > 4N a-,a-M0.*4 -NU -4N *0..A4-Of.4KaN U N4'A v0 %wea~ >M 4o0.. 40 - N 4 x w w

-4A-4 --. 4 UAlm U -'4 0 OM - CAaq.-.4- 0'N-.4 0 00 a 0 0oo... .4AUt 4 w Au w d ;U 0A U.4 Q a.,1.. . 4 3: 0K OUU4'-44 - - -- AAa-

U Ata4 'a _0- U0Aa4' -- 0 W A 0 -U > u W A A--4 M AlaO VO4'-r, 4 - -A- im~ l.OA A'V 09 AI -' 4 4UO UA4'a-.4) Nl0 t 41 >4 1 * 0. 4 N - 4 r0'4O X '--4 AO . 0

~4J0' U W41 1-U 1 U4 - -4U V-Naw 444'0 '.a -4- !'0 A A-Aa AOAO#A---4K-a -- 0 U -- 04A -0N M0 V a UMa >,0,. 2t > ~ - C4a.04w0w0' )d0fn Is

l4'44-A ' 4 0 A0 t -M 0 .- 4 0 -UU 4'.-44 - a. 40 X t0 N N U, A4 -H A OWU -N -, .0XA -4 ;-1 0 ;A j U a . 0a!.. . 1 -A 1. -U .. %,N .! 4 '-4 - ' >N -' O U - N --. 4A0.FA Pt '00 A -'A A 10 0 U -- 4 V!' 00004 -'0~N r 4 - ; m 10 .4.-eZ " -A g N( !4 --- -U 0 ,0 A4.U) tAo 4'a4 "4-4. a.a. x LM.-I 4 4 A 0 As %*.4 0 0 4A a' 4 AWO

V4A -.- ' -- NOu ---- Ma ! - ; >4 a 4 -A 0 N is - 4 0 > -U -Aa0, O' --. 4i -;A atrt t-,141-,13 u -NN.-4 1.0 0- .0 - 'A-N I. -4- t 4a . - A ma0-4 4- 4 -0a aa a00 U "W U 1 A4. -4 0 a U .'..a.4 .N f4. C4 x a~''0UM a r w I -A

.4a.- r.-'- u 4 0 o 0-44 u . b'3 4JMN-4 U ... 4 0 'A 0 .4 > *- -A. A. MA 0000A t0 0 rAtaX 4' 0' -' 4 a 4'. V U aV 'a- "4I I ~ a UU4 04 4' 0 0 >4 Ut m. 0 4 A A A 4'44 0 ' 0' ' 0' 0' w ato 4 U .C U o Na.4

0) 1U)0U0UU0tU Ua.X 0 0 1-44 *.2,v 4 a an 0a~ 0) a3 04">U miI ~ mtp.4CxH 0 Aa .a 4AW0AU 0 A 4- o ( 1 00 N'. Im0 00 r ha 0.. to U4 4'4A A H U

ad A4 U *i44 a A Vuo 4' fjj >' 0 V A0 A *JA 4t y .O r0a.~ ~~ ~~ U. U w . aaN A ' ..N4 N NN N NNN N "I

a. a0 0

0 0

a30

0

a!0

0

a0

0

a0

0u

a0

0u

a 0a a0 00 0

0M0 00 u u

a a a0 0 0

0 0 0u 0 U

0 0 w 04-. 0 V N

-j 0 0 00 -4 , I

" a aj a a 0 r q N ,

' aJ V 4J a 'a NN

044JJ a 06I

-a a 1 a 0 4 a

----. 4--- -- -M

a 4J 4J V, 4J -4 -

-A-, -A . *o *1.1 I

a E3E 0 Cr .. 4a

Iaaa a. *

0 0 0 000 0*N

00 u u0 0 u u

66

a0

0u

Page 68: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

- - -- - - - - - -.. . .. .. .. . . . 4

N, N N 1%, " " 1 , "N, N M I wwa r Go0, 0 4 " -, (

N, I, N N, , 0C4 ( C4(4 4 C4C4 4 C, fnen - w * 4- - - - - -- - - - - N mv mV N 4141 v41 1 v v v0 v v 4 m4. . . .- - q 4 q 4 4 41r. a cl a a 4 r 1 C

- - - - - 312t 1 X t 3 X 202, 21X X , ) V A A 41V V V V 41 1 -r -1 4 14 r4 1 -q -A.14.,1-1 .4 .44a a a 3 aa 9 -. 4W L W L.W W L.L. . WL.4

'X '1 ' le 10 ro.03ao 0Ion90,Cc:ao 03 0 a el e 0 le IV w awm awm o m 0.m o m . 4

0 0 . .w .w W w 1 .413 a a 1 r 3 r 13 11-0 In 1 1 It'U 1 1 n 1 ' 1 1 N , Na. . M i~l04 owA 0

11 I 110 0 . . ..'a A '

11 NN t =10 0 0 ;,V : :3 0 1 00 0 1 -- -- - - - 0, *j ., I 4141 j 4tO O 4 If W A WU) 1 V41 J 4 4JV 4 4J4J 4Jv 4 V 1 V41 1 00 00 00 00 041 o o M o i goed o ais o 9 od41 s 4

0 0 :5:1 3 V to d t fsto fa4 togo d o #a00 o ( 4 4141 v 1 4141 a 0 0 0 0 0 a a4

u u u uu u w 4M 14 4 W 4 14w w4

-w i %o d uu 0 u - ; 4 4; ; - 4; ; 4

V V J 4 V V 4JV VAJ .. .. .. 4 N W N NW NW b W 4 M4J 441 4 v 0v 041 v0 N0 0 04

4fid14 00 4 10 1414 4 1 m bdx m 9 0 1 4 V 4 : : 0 :4

.~~~~~~ ~ ~ ~ ~ . . . . 3 .. . . . . . . .4..0 0 0 0 0 0 0 0 A . - . . . . . .4

a0 0 0 0 0 0 3 44- ~ ! !144333i444 !4 !1..4.4!14g..4.44 t*4 V

:1 o 4 N 1 uN 1*U*****IN**N***11 1 1 1 0 0 00 0 -11I U .434 4 4 11 11 1 1 111"1 1NNn1 11

V V V4J266V42V0V 0 20433444334J 004J444 4 J33 0300O 60V16444 V46 066 4JJ 4-, -,4A- r 1 1 r A-4-4' A-4-1- A-i-I r A- H- 4- A9 3r 39 3V a r

., 33 riA.4"5 .O rr .rar . .4AAm 4AAA.4A.4HA.4AA.4 4.

00 'i ) i , 0 00 00 0 00 00 0 00 00 0 0244X 0XX u444 J4440444 u4 4 u )u0

............ ......... *6 S e00643...............................43 * 4

67

Page 69: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

4#A4

4.

40

4.0

to&

40 F

44

404 4

41 U

4.4a

404

'a4 4

44

40r

4. 4

40 4'

4 4

4 U) 4

S40 0'

4. 0

4V u* a M

'$A

- .4

40 a

0 0

41.4 .

4 4

4 U 4

4444444444

.4

4)-0i0

.,.4.4

U

4

a0

4'

'0

140I

.4140.

S0

0.

u

0 i

.O4

A MN

a 0 4M0 w04

l "1- -4 r %4

0 -0 0 0 0 0 0 0

. w w 44 44 4 -414l W

0. OMWO iet0%r s1 m4 - ll i.0 = - - - -00.- y yy0 4 44

' ''0.MMMMM

-. 44 N 0. a e.4a -eo OOOOa -0.0 MelMM e

0- 4f4 -04-.014

.4 0 0'

.,-4 0

* -.

0 4 4"

w4 --

V44 0

0'4 1143 4 N uF so V .0 .. .. . g ..4 0. e e 4

44 4 4W 4 % .0 4. %-4

4 * 0 eeea N ee

tr.s ON u l m - -- - - -s -- - -

44 4 04 4 . . '. . .00 0-t - 0 0 0 0 * 0 00 0 4044 0 0 w 0 10 0 0444 .M 4 0

"44. 4 "4.4 44U Z Z.4 4 A4 41 .4

r - -W 0-1 4A

@04 ~ 1 .i . .- - - -1-0-

000. MM -I .4- .- -4 . - e .4.4

114 4 1-r . -

44 r400 U 1 u V-H4r4- H H H'A"I" '.. . . .14 H"

Ol 0, tp Ol 'j r ol 0 l V, 01 Im - - - - - - - - .- - - - -

S4 a 0... a - 4 m a 4-0 04 H- ) r H4 4 r 4 0 4 q l 4 " U U 4 U W 4 4 - t W

4 44 4 044%4 444 4444 *44 44 W-- H-H- ,I-0,1 A -.- 1 .. 4- 4)1 -i et e a 1-.01 U) 0 4444444444444444444444444-e

14 44441 444441 444444444 4 4 SeW d . 4-4. -. 4-.-.4-.4.-4. -.. 4-.4

.-

68

e

S0

-0t4

. 0

ov

4

'40

44 4

0 0

40

u A4040

) a@03 0

0

4 M

0-41.004'

4ke

4)-4U).4

44400er

0.O.00

4)0NE

014a.M0 M.0-44'

444

4Nrnw'Orr 400000 4

I-I-rsI.-f 4o4

00U0

I-MN\

-\N

40x wNM

n M

hI k.m

win

34-V M -

fu H

S -

4 4

- NM

0 &-

a 14k.1 0 &

- N 0.4- M-4 4)-

1444- - 4

0 Il-- r - 8

to190

0

FA

.4

4

~0

a0

.444

14

4444444

44

1)00

, 0. u

4.

. 41

a0

4-e a

0

-4

14

a'

04'm

aao4

O140U@0

144.0

u u 0

Page 70: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

to t

0

-4Me,

-414

04 '-40 a'a'-. -

0 4. '14

000

41

4-41

N .4 .

N~ ~'.4A A

14.,4..I

41a

Sa

0 0A

ul a.4

0 -i

4 -1414>4

-i a

-i

,4 5

4.4.

44

0

V0V0. 0

'a 4.1AA

00. Do0

y 414 0

00 -

- - '4.

0.0. 0.

a a mAA 00

- - AA

"i Me r- "

eq C4A 0

0.0.M a-"4

0.0."4 0.A-i0 0 -40 14

-4 *-" 0 -4-

4141.-.' 00

N N N N N00000O O

- I- 1 - I4-

N N N N N

-U-U-U-U-U

0

0

0

A

U 1 0N - *

U N M

0 0 0

4 0.

A NO a

.) o am

ol A .4 ae 044 '.04

U .AV I

-0 V a4 04 4 V4 + 0

SN C4 " N*

-AO 14+N .4 C4 M 4- -01e44 a.

S 0.

a' -N U 0 eS* I 0'.. 0

N. 0-'L 0 1

04O. 0

0 *.1Oeg,-14

44 ' 4 0 a0u@ @a 1 *001000 M &

0 0000

4.a.4.

4.

4.

4.4.

000

0,

.4

S4

-A

.0

C 4

-N f

,4

A

14

-a

A

1414

a'

-a

A 1-'44

a'AS-"4 14A U'

AA

N N

I- i

N N

-a-ag00m00O

1414a

4.

4.4.4.4.4.

4.

IA14

4

14

-4

a

"4

-a

4.

4.

4.

4.

14

to

- 014

'44

cl WN,

4

-A

$414-4-,-

"4 4)

N-4i

-A n

-4a

SN4

-4

00

-A

-A"4-a

-4

-a

"4

a

-441

04 0

to4 1

"4

H .041--0.s

M X

0.1, ri

*q N4a'-

-6

140.e

N N

N N

-U-a

4)

14w

Id0$I

400.

-4

0

14

0

0

a

--q

0

14a'

a

4.

4.4.

4.4.

4.

0.

144

0

-.4

-- U

14

14 p

V

-44

0

C4

0 0"4

-

44

44

DA

41 t'A r

a 0

-- 1

.4.v

0 H

1

4.4.

4.4.4.4.

4.4.4.4.4.4.

I' M 0.

* *'NNOe- M

f"i N N * H I

0 N 4 r - 0 N 4 ' N 0

00 w -IN 0 00 0 0 0 0-4 -40 I1 0 A A A 0 0 0000 O N 111111N M

AAA "0 0 001 14 14 a ' 1 14 14 1 1' 1

000 000 000 0000

4.

4.*4.*

4.*

--

4.

4.4.

4.

4..4

4. 44. 4.4. 4.

4. 44. 4

4. 4.

69

Page 71: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

44

4444

4

0

0

Q

V

401

4444444444

310

.4

400-

A-

044'

00

IAA44*0

4m 4.

V0 000uU

031

4

0

4

44444

444444.44

0 rto

4

t0

u

4J.4'

.a.

4444444444

V44

C4

44 -

4.4

.1. 44

0U

a64

'0

44444444444444444

A

0

0

44-A

a0-.4

0.

0

..4

444

44444

a

T4

c41

.40V

0 N

a'AO

-'I

a-

*.4 al

9d0

40 %

-4 4

0 00 0 0 00 U 0 0 00u

4 4 44 4 44 4 44 4 44 4 44 4 44 4 4

4 44 44 4

3~ 4 414 4 44 4 4.~ 4 4a 4o 4 40 4 4* 4 4* 4 4

4 4.~ 4 4a 44 4 4

4 43. 4 414 4 44 4 4* 444-.4 44414 4440. 4 4 4

444a* 444* 4443 444.4., 4440 444A 4 4

4 4.*4 4 4U 4 44 4 414 4 4U 4 4

4 444 4 4o 4 4

4 4*40 4~414 4 0.4a 4a44 4..44o 4 4.4 4 04U 4A4

44*44 444*44 a44 04

4 4 44 4 4*44 4 a44 44 4 1444 4 0.44 4 44 4 44 4 44 4 4

UO 00 0 U 0 00

.00

0 4 M 0

a, A a 0

* 14 *.1 1

af A ao-. C4444

b4 4

CIO X. %*. ' 0 4 .4 0-l'. - 0 0A 0o0

U-1 4 0. 0 043.4 U.- 4 '.-40 A 04 -4VA 0 w-.4 *.4 " 4-400

-4-A *.i l,2 4a a0' ; *-04 . . A 44.

4-4144 0.> 44 -- A 41 0 o Lq4 0 00 U eq 00-

-O'4I C A A >3.4

0-40440 r- . ty %

go4 -U 0 4 o0 a4 -,; 14 N ;IA -0A4MA13-.4 a*-. Aq0 1 t0mal-0 44 %4 WL -A 0 0 A 44 U.

to 4 A-1 U .4 % 4 - 44 4 t140.44a% 0 -41404 a4 a - 44b'

A44 * N0 F. u ".0 40 -.. 1.--. "44 0 . L >4U 0 -OU .41 0 A A

0.40000

00.4.4

-4 0 -00. -. 4

0 00040000.- w44 .4 .4- - - - - - - - - - - -

0 0 0 0 000 0 00 0 000 04J 4J 41' J 4'44 3 J 4 44J 0 A 4J

14 1 4 14w414114 141w4w414 14

70

Page 72: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

-k

0 4

4N.

0.1 V) .4 -q C4 (4 C4C4VNa41NN 0' V. 44 LA -41 f14 4 NI N "I" N .

21 .0 4. -.- el -0 W . . .N 41 -~ .- 0 " "4 .41-

*- 0 4. inO4-144 f'4 II 4'N -N V - 43 N N r N N N

w'5 w~ 4340 . 1-w 44 4.44. O5 N- %.4 44 44 44 N NN

-1 0 0 4>J 93 i N'5 44 a0 04.- Nq *.I V N m - S.-S w1O.444

o. :9 A - .to0 %. -H V0 0 ('4 .O tN 0 m*.0 ) 4 %

0 0 A t,0 N, *--oq . - II AI M9 A N 41 4 M uN NN 14-0rNU to 0-4' IV V, l -M to- w~~aa w 0 w44 -4I,4 -4-A -A

4. 3 .~4 -f1m 4 a . U4 to *4 N4 44' *- - 0toV -409 04- W. (14 U44 C5.4.t4 .43 1' 0 0 44 4 a 4J 520 C

.00 04 wA .- 42 N. 4 0U 0 O '.- mq .O a : -I -IlAA o .40.4

UN# 1 u Lo5 f4. 00'0.0'5 04 1V4) V G N14 IN *X-If t114w V 1mNV.-4%0%

14 0 1 0> 000 -W4 4. 4 . 140-1 N N N ( %N4 4 . N 0- V4 V.N54 N.

A'-. 0 -4 N ('I go *l-W 4443344 0 4, 'a 0 .A -0 %D %0- fw4 4 w %a0~

0.h0 w4 4a .00 t" 0 -4. VAI V'43NN V444'N- N 0 A-444-N4 0 'd0 -- V -.4 .- 4 %-UA43 NN NN -4 -l *lA -4NO0 N, '0 03 lt. 4) *U

v U 1 5. w' 23t to Va 0 - 41 ?A-44 0. 10 4N40' 0 14 0 '. 0 V VV1 fl'- O- V 0 4

A143 *q '54 -.-. is N4 a'0'f 0, - 0f 44 0 *A 0 411OI U

0.414 -. .N3 0 2c 4. L N5 04O I NN('(' N to 44 N1 A0 Ut . N34 . "3

m3U. 14 # is fA in 11 5W H3 01 -. 4. I--------44444.4.4. 52 a0a 4-5 V 0q 4 4 A - 14 0'''i0 444

0043430 0 52.0- .0 43 ~ 4. .1fl0 .41- - - 0 >.'4 0' 0- fn4 V- OfN'4 4

434.l -10 . 44 - - 1C4 4. m-W o ('4 41 4 - qw II 52 140 U 44J 44' %5 -1 -'4444 44 o

A u4.1 1; On 0 -U 0 e64 c a -0 4. .O N0f31 10. ('2 M-U 0 ' - 0 toi4 -- -- 4

OOU~~ -0 O' 04 -- 4 '4 -D 144. .'.'5 . *.4U 0 -'5 U--43 33 '5- - 4 02

AU4300 I id 04I4 ; It v3 V' 14.454-43 .444 N0044 -4 0 5 '0'

UN A4 ' -0 tog 04 52 '5o V. NV.4 u Ck20 N ' 3U -. O4 0 0 U U * -I 0 0 ,4,,4

1U 0 W tO 142 -4 W 4 U--. 4. >1 r 1.,~14 1 (4 Of>, 14 a O 0.44 11 54 A

.14 ch4 '50 4 .0 a W4 4. 431 -Itl4.---------40 A ' U0 52 4 0 3C .444%4 14..

A-45. A40 043- V4 - 4. U 0 '4444V-----------. ld 2~ 0 N FAL.$ u W44 3t V) 44 FA 00-

U N5to, dN - .. 4 0 N 54 C4 4. m u wU 41 - 1400000o c-4004tainLi aa0 oN i -'o5-)t sx, 44.u 114

0.43 -P 0. 43 t,0A5t 41 Go 01 4. -N44--4 40 IM .4 01 0 0N . 4M 050 U 44 U o- -. 4 .U' (4-N -04 00 - -A4 - ~l4 44 44 ; 1; IN V V V V4JN044 44 -33- N m M2 --- 1

N '4.4L-N( -. 40 '4 . 14W 0 CNOS 4. -02'-.4 A - - - -; N .O- q -414 * -1L 0-.- .

0 Ur * 0 .40 to0x.4 -4 A 4. ' 0-. - - N(44NN V4 N 4 3 -5ww2-0--sUNQ 4 343i 4 &n in 4 N -

UU_0 .4 1404 *4 0 44.4' C4 '5 OIIL 4 44 a v' '5 we 0U N . ->1 A -0.400u

14 t V41 3.14 01 05 43 -43i V 05 M ('4-.4.. 44 44 444 44 44U lii q5044 0 14JCX4A .0v'1w'0'10 -W' 44 44

44 . -. '.14 '0 4. - 04J V. V A U II- - -I- 404 w3.-4N4 r340-. L0'5. 1NNN'5NN %

0' A 044 w>' 0 0 A4 A. .- 4'.0015 . I . . A.. W V 4N .4 401XU.A 404 4 -.O.4.03 I

10 0n 44 > 000 f. -A V-.---.I-FOWXO A RHA 140- A0 A 0%N N- 4 A 4 A A Ar 52

-~~~~.44 .. V-4 .-O 43 434 4. %444 04 4401'5. W. U5 -. 4 ----- -------

CD c 0 01 52 50 4. - - - 1- 0. A -4.4-U 11L NR a -- N AI I 0.r.- . 4 0 04 V. V M-0 4. - -'5- U 40N O0-Af3 0- II --- QN ii- ii- 00 AI

A t t 14 .5 It 4. 1 L 5 0 4 4N A 340 - - - - - - - -- A 0 0

.0 ' L. .- 43 4. -41343 f A N5043 11 4 A4

-- 44- 44L4 4J.43o -M-e -4I 430 3443AA-

A.4 V. 4. 4. (44.44 NIA14LALALALVL A1W'4 N400M14J44 n4 ;4 J04 V -1441-10'14 A 4 A A

4.~~~~~ 4.O- ' ' L 0 1 0 to0 4414. .N000 0. 0 440 13114J t 4 X

'A it 00 0 0 0 0 C 0 0 0D 04 0 0

Go cot4*c.o Go 0 o 4 m d

uUU U U U UU

71

Page 73: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

.44 U 4W4U 44 NN 3.4 0 N * Nn -4

N N 4.4.N n -4 .4 NW 14 -0. 4 *

H ft flfl . M o~' 41 .4 N 4 - 4 .4. "N A-0MN4 t 10 4 %1 04 6. .4 04 X (3 * 4 4 W 4 . 14

OA. . O uu . H a . 10 II * %4N N . 0U '$4N$4 UN 14'4 3.4 1" > N1 r -0 a N H C N 4 4 14 0

1 314 41 N0N A-3'4 .0 0 -0 . .H .N -IN 4 fn41 ~ ~ .433 .4 14- 0f 4 4 000 f 4 3 w a 4, 0 FA. NO 3 4 r 4 4. ar 44

0- - - - -- AJla N V4 40 V 4A 0 N .14 0%0t 4J >o V N ?A.4 0 0 oIS--- 3 ".4 0 m r! !a 0 V 0. L. 0 . a

N3.4.4.4. N,4I .4.4 - 00 4J . "" .3 .. u3 1 3. , , . % 4 41 44 .4 -- N33344 N34 "IO O I0 A N. "I -00 . .' NN w4 0 3~ 441

NNNNNNN-NNq; - M444NN41 0 4.0- fn 04 M- f43N 4 a. 044 'N- !NNNN4.NN in - 0N4. 4'-%o in i u % a N- 31 0 ',,% W N 0 4 31440 :

-N -- -- ---- 3aN N0 (4f * N0 9,3 N004 4a 4U- 0 1"4'. .4 NN uq N4 A . o* r. 1 4 40 A 40

aM -f 1" N4.04 3 444 14 rO4 .41 NN 4 0 44 4 -4 'A ttr ii N C4 II N - 111 0 N aq'4 4. 0 3. 'M 4 0 a. 41~

1- 043 1N .4.HN - 4 -A -4 , - 0 0- N04 106 " 4'34410a.4 A A U M%4 a..4 NO' f'4 W 0- L 0H fm.N4 % 4 N 4.'4N4.493 4NON0 ,NO aN - 04a'aa -4 r 0, ii 0 0 V. -a-41 M 0441- .4 0

*.0 > tN0 u U, 10 0 1 q.4 43 4 .,4 A-Nf U4 0 0N .4 04 44. -. 4 x *14w AA4., 0 1 1 - 11 a x o : P A " -, 3..' 4343 41341 A U 44 434 * 0 4' .. 4

. .-.- ..-.-w o-- .- N 0 0 No -A.40 -14 :1 :3 -- 440 . 4 0043-N-------------.--4 .40 x .40.4- u .4 ao0 a 0 g a--4 t0 0 >0 w 0 i

1; o 1OO W; a 3 0 rinaa, 4 31 AN1431 N ;t to N0 0 43 oL Nini4 44 L. go a.M1w ; o% %0 .4.1%0O'- nM fnO.n 0 . - 4 0w 43 n s > .4 4J -40 134 40 N nf 4 N

a344444N33'444401 - -- - NN- W C N 9 Q % u . * 4 40 ' 0

N0 NN NN N .Nf'4 -43 43N334~N3 E"a4.4 .'4N 44 0' q qN4 4,0... 44....444..444 in "4J -NN V ~ -.4.' 3 *.4 44 4 V I'.4443.

44343.4444 4W '44444 NM.14...44.344344 0 44 -N 4. 1" 4344 4 to 144

----- --- 43 43 NaN N NO N 0- to4N-A 0 0~ x41 I Cil III04 H . 0.N44 44f4 114 1 0 N- - 4 4 4 10 43 4

Nil4. -A -1 ii aM W3.3J03434434 1 114 0 43443.H4 4J 444410 0 ra4 11i 14O.10 l14-A----------------------- . 0 0 - tn 34ht1 In 0 M 0 L).

mt0 0o0oa NN4tdJ 0 0.,1--Nam------------0 a 11 N4 .- 4 0 0043..' A A A Ca, u0 - to .4a 04 N 1 n .4 011 to--'r' 41'34 0 4 * 1$ 43..4 4a- N1 0 " NNN 44 a a 9.4N a.0- 11 - Nil f1.%w.4 A-'03.-II - ca r - 4 * '.4 10444.- t)a u0 "4 t u0 O'4ON 14"w " 11 11 11 w .0 0 H'4 NA. 04 4 34 4A41a1'''41 w ww t 4 4 4 ~a4A w 4 > 21 -A V 0 4a v aA 0344 41 43 V30

-N - - - N -- 4-1 .A X Q. AA00 41 d N- N.14 N.-NA - f (d -x - H-N-------------- -- -N . N. O NN 4 -u- -a -U -N 0 0 0 -*4 .0N4

r;O14iiniL,; inninn14 00 14N 14-4a .aA 4j C; V0 W 0;1L I301 41

0c 4;L 4A

en 4n (n 4nc nm0 4 AW0 t :4 n% 40- o40U iV 41 V V3V3413441433441444 3433. '4 1 .- 4.4n - - - V 434 43.4- 4J 44 433444 4 4 0....................................................... .. .. .. .. .. . .. . 4 * 10 -A

m. win 'n 0 "4 NC -4 4-4 .-4 -f .-4 N4 N N4 C5 4 4

0o o 40 c0 0 0o 0o . 4 4 -KN4 4 49 4

u u0 u0 0 0 0 u

so 0Im 0

043 0

0 00 11 Ch If

a, 000000ON N C4 y0 0 N4

-0 0 N0 400v 0 40 434 V04V0 0434

It"30,0 0 V

00 0 0' '

L. 4 "4 N04a N% N N N N N

a04' 0.4.4.4

14 N 344 W 34434W

72

Page 74: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

C'4 0 u.A-34-4

1403 a4 0 -A "4 w40 i L. -40-4 A

44 - 4 4 -- 4 -4rl 1

tO 44 V 0

%W-I1 a4 w-4~4 1

4.1 -A -rL -1 -. 4 -A'

4 44 44 44 44 44 44 4* 44 44 44 44 44 44 44 4* 44 4444444444444444444444444444444444* 44 44 44 4* 44 44 4* 44 43* 4* 4* 04* 044 -44~ .044 044 .34 44 1.44 044 ~.44 44 *44 044 1.44 b'44 044 1.44 0.44 44 044 4144 .34 44 -444 044 .3.4 44 4344 .3.4 4

4 a~4 .3.4 44 44 44 4

00-40

444

II-4Li'0

-4444

-4--4 U I

..4 .4 -A..4.k

0 0 0 u u 0L

43 0

C4 C

.0w~

04 4 110 430l n010 10 a1 na . r9 a 1

-. 0to- -1001v wFMA.

00l

-4-4

.34

'.40

10

"44

--. 4

00-4.00".41.0

4.1a0Na

.34043a0Li

1.0U".41.a.

041"4

-40"4

4.1-3.4

a".4

44444

0 0 40 Li 44.1 4

44

Li Li LiLiLi LiLi'

0.0.X -4 .

w00

104-- i

1-4*3wa

--- 4 0%(a4

90 00 4-440.0

4; 0 40 w1. C4 4 1"Lto w4O3

- 1. 1 4.4 1.004 A

4 M. 044. 14440

A~1,1 .

WNA Vi H 0

-0441 410

V 0.4

.A .4 A1.V4 41a. w 0

41

41

4

0

1"40

44.

10 o

C4.

4J0,O - 4 04W1 4U04

0 1- qci0 r4A-ANasI

-1r - 4 0 A o44r4r4r : ww 1AJV0

4Li

73

Page 75: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

14A

14 0

0'

0. N

0 -4

>4 >

040

Na .0

0' 0 x 0a

11 -4 04-4-1- 1 3ee .1 dH_40.C 4 0.

10 - 1 .400.1

SN 4 0 3U U 444 w 3ffR" H a4 0 a 6a-

0.,q4Ja.0

V

4

0 4

41 104..

4

000

444

U3 ~ 00C4 0 3: 4 Aj 4 fm 01 -1-4 L .U u > o U,400 113 cc X4 - We

o U 0 qC4 C-1 ~ ~ ~ . 141 4 4 4 f

44 U U - A-3 9)4, 0 001 43 to 40 .'

l 4 to0 C. o o - W- -4 3.4-

. to0 4 W 0 t444 44 4- 4- 4X 4J tW 4 4 0 +4

-1-4- - 1 4 - - 4 0 i , 0,4 6 ,

MC4

U u 0 00 0 u0 0 0 0

74

444

FA

4144

041

a0

0Q4

) 4

4)

a 44

H34 4

"-4 4

44

41

.4

44

0

.o

14 0.

INO.

10404A 0.

.4 M44-.

,4 0 "'

0 *0.m

0.040 o

4 4 4)

04 b1- 4 0NH 040

No NNO0D 0. 0. 0 a

%a3 44 %0 %Q

N41 41 N-U 0 1 0 0.

-4.4 a.34 43 VI 0 td

0X 0.0to.U 1_eI .5 X44 XI4

4

4* . 4

4

4

4

06)0

Page 76: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

0U

>

A4

0- u* 0.-. 4- -I 4-

4 'A14

040A r4U

4 0

q. 44 4. 440

4. 0 4. 4-4 0

44. .-M %C

4 0 4 0 m 0.4 4 44 4J

4 ~ ~ % + * *4

14 41 V V.4 ' 41 40 04 0 4. 4--.

40 0 0 44

* 1.44 41 N4 4 4*4j 44 0 %D 4*

:3 00 0 0 a 00 a 04* 1 1 * A

V * w4ve 4 0- - 0 C*. -. 4 4 fn V 4 * V-1 4* - 0 4 in .

~4 ~ 4 ~ 4 4* 0 0 -A 0 +NA 00 '4 C4 In + . 0A a

4* 140' M0 0 0 U,- u -t -.4 .0 4

0 O4 0 0 -b to 0 l 0. -3 .4 0U

4 V 4 -0 0 4 0- 0. Ch D+

044 00-4 ON U 4 0 4 0 0' -.4 -4 C0 0 * V4 0 V 4 0ifna 0 0 c" 4 0s-

A6 A4* t 4 CI -1 0. - 4~ "o M 0 a-Wa

0 104* 41 4 0 I oI r U 1I4 44 0* 0 N, 01 1 0- 4t 0 - 0 0 r 14 41 0 * --I C-4 0 w

.4 .4 ~ * a . 0 4*00 V 4* 00 0 4-4 V0N.na

Ai 0 L 41 41 -1 -. 1 41 - *.U -4 1 44 0 of' 0 u C *.a- - A 0 0 49 0+ - 0 L.I* 4 - a UM 5. 9

4-4 0 01 r4 :1 4 -'- I 0. 04 4 41 - 04 04 U a +-4 awS 4 4 94 - 41 4 .- 40 0 to 01 134-4 0 0 w *N. a0

+4 I I . 0 44* 0 U0 A M -,q 0 0 44 II4 0. to 4m 4..b-4 -.40 0 149 04 1 4. uO O .0 W ", -00 V 4*- - 0. M O

0 0.4 - 0 0. to04*0. 4- -4. m 0- 4 U .,1 0 mi* 0* 4* + *.'. 0 t% 4 AU4N. +U4 411 4440 0 00 U A0-40.

qL-A - C 44 La N-4*- 4 a, 404 C4014>-6 44 0 14 0.0-A-0 -4- in 4410.0 M40 44 N 44.40. .4 0 r ~0 ) 4* M 0 . 0 ) 0 N W 0141 J

A' -. 4 .14 -AQ9 C 0-H 0 a t 1 11. I1 1 -0 4 N o - -A u -+ - w9 0 Ua u u 11 a. o04n-.4 - 444 44-40-H C4 1M n04 M(- 00 -A-40 4 0 V 44 0- tl-r 114-4 Q. 4 +hW001- 10. 1 1 JV4 4 0 4 0-40. V 04 0 4J1 *-4 0 0. OWV0 00 114W M

11 o 9 U0 C4 r 4 * (-4 *.0. : : : t AU .0I : 4 01 0.a9a i . - of

o4 0 4 440 0 * 4 40 4 44 0 0 0 4 0A 0 0 .4*0 44 4 4 40 0 0 -4P0 0 4-1 0 '40.

.14-4 4 4 00r0 WVU 0.4 M44 -4-.-U U -4fO 0tl00 0 Of 4 -. 0' A-4 .0U0V0 4J9-4 90N.4 9M -A Ck 004400~~~~~~4 0 u0 '0044 4 * 11- 440-.4 .. 04~3 0 0 1 100

-4 U 44, 0 0

U

75

Page 77: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

VA

4

FM ..

S 104

V

e-4 L

La

0'

44

14

Ae-

-4

-

NsM

O La

* ON

4' '

In 0

N a

0 ,t 000 0 0 0004) UUUUUU 4)0

4'

a0I

a.e

14-

.-4

-44

0 --EOOm

0 e4

'a - .4

o 'U O

000000

00

0

0 0

41Lag4'A'

0

aU

0 4

: 41

a, d

4'A

a

d

t 0

*M -

00

*. a

La

Oa.

0 M

*'. 0y4)

4,

E.-

0 000

0

UUUU

a$

0

La

.4u\

N

0

0 -

+

m 0a

N 0' 4

* a. u'

0'+' 4

4 0 0

Na. 0 0 WON ff4

Ln . 0 31 13u - - 1UA 0 0 -A 10.C

+ E C4 4

0'4

Ma+ 4' 0

A+ - x 4 - . 0 I t 2 9 .

Ago - o

NE W .W 4E N -g .aOer-a.

-.4 a. 0 a. La + La -.4 ff es Ua.4EM -. 4>-84u+0 +0E a 14 N u 5 u U a .N a.+ E a. Ig E E No\ N Is Nao *-LaN\-\ a..-4 0 . a

o N W 0l 4 >- O4 0 0 U C U 0

'|||-4 II E E E E II a.| II a0 NaOa II a. O i il IIl N|O a1 a-** Nl NL a '-4 a. a. a aN 0 N a 'a N

-,*4 0.-4 0 14- 0 0 E a E 3 A'aM uAl . O a d a Oa OaOa OaDea.U 14 La La04124.I4. U U U U U U

76

00

000

0

N NN NN0 0 aa00a

00000000 . '00 . . . '00|||

00000000 OO | 110 II il i I N NII II II II II II II II a. II II 14 1 N N 14 1

.- N 'a'41 '0Is 0 02 0 14 14 - > 14 14 .- >

141414141414141414> > $MM> > E

0

-1

V

0

.A44-a4

0La

-.4

44

Laa.0

4.a00'

0

VLa

4

>A

4J 4.Cl

O 0

i 0

La 0

* 0a 0

* 0

-4 MO

*4 12 0-a 0 *

* 'a.

A* U

4' 0

* 22

a D'o-.- 'a 0

0 -a40

0 0

0 0

U U

0 0

we w.4 Od*

A V Cm i O

0 -e0 e

* 4)0*-4 0 d*

U ao

U I 00*.4 I La 0

I 0

4''.4a

-.4

-4'-4'alU

0N 0

I 0

020

0

a-.-4

N

Page 78: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

'0 04 (

0 4Ok.1

0 0 - 4 -0

(1N 00 '.4 fnm0 %0 fn .1 0ou r

0. ('0.f0. 0. k0N 04.4 0'00.44".0'.0 -A0.4'-A 4'0 '-i.40 r- 0 4 9 .4 (".

M. . 0.0.0k .. 0.0. 0.

0 0 .4 -. -.- 4.4 0 16

0o 01-

-A'

C4 .4

+. 4. .4

f404

co 0 a 414 0 4rq 4.-0

.W.- 10 -

.4 r.40-

41 4V*W-nW4 0 -40

4.00. 0

'0 -0 0

*-o~ 4.0 0 4U

od -. 0-

.0..9 0w to.u u

(.0. .4 0.

. 16 -4 Wv 04 E4

0 00.1

e0 41 1.Hto 44I

1 0 -A - UE 0go0 t.440 0d

0- 4 0-

.4 0-4 4 t0

10 41 14404&1 0 410

w-4 .0 144

0 14 040 -

*00

146a 140 1 0 400

0 411601604

6 V1 'A 4L*~ 0 140.0

.,4 0-041w

16 411 >1t

46 -4 4 -010.40 16410160

1441 r. 16

1 a,4'0 0 .-. 4 0

04 0.. 0-.0 0

VA OO 0 4U

40 -.- 41 A-

IA 41 14 0 m

93 .4 -4.4 16 4.A 00r 01L616o02141 41 00 0 01600r -H.4 4A A 41.4 0 0 41 41 U 41 V U

.4 a -. 4 -. 40 -A tr' .- A 0 1444 W 0 16 04 01

00 041000.1 06.11.040 01g0

E40'tv410 a000

- 4~ 0

4 44

do 01 AI to+ ( 4.

A- w. %0 w40 4

C0. 4W 4. 14 4

*.4 (4 0 14 4.

41 0 4 4. .-4 4

01 .n 4 .- 416 4

a* * 4

%0 41 0 6 4

0 4. 14 * 4.*10 -4 n % o. - -.4 to

0.4 0 14 4 % .% 0 4

0. .14 4 4." W4". 16 %C -1 4

0 t . .4 44.4in al r- '0 D 4.

0 V. 00 V0 (4 %C4.- r 4r

0 I 4 t.-4 0 l M 4 %- U -t4.%0p...(4 -c 0 " +. *4C.1%

.4 .0 00 40 1-1V-4 V10 4.

+ '-fn.4 4.40 - - 4 4 0 4

W.- .14 .. 4 bi 111 NNUw04a0 4.w.4 14U 1.41 00 -x 4.H 1 1 -A-4-

11 -H-, ( 4 -A -A -4 -4 0.V .0 V am . 1 H 44 - -4 A u 0 4.

41 -. 4 " '.0AAd m0. cu - MO. .6 4.0 !0. U-4 U0 '0 W '0 0 0 4t

0 0 00uu00u0 000000 u0 0000u0000 00 00 000 0 uuuuuuuuuu 0

77

+

a

0

-. 4.4Ua.

0r12

0.0

10-4

0.14

0-.4 %a0

A u 03

0 014A

00

.4 N.0 -4

.0 14

0. 0

0.4 4 010 4.AW164 4 '.4

414 0

.40- 0

1414 0

-1.0 0

00.0A 01

X0.014 --41 N 41

N.4 0 -.4

.00.

-.4.4

.4

.4160

.00.0'16.4144

14.4-.4

00u 0

Page 79: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

-4

0 +

3\ N

04 - .4 + 14++ a. 0

>'a - asa As 0 -0 0 3 3 00

4'.4 00 4 a. N 00

4 .4 0 a N, N . 004 .-- 4 j2 - 4 0 3

I V.4 A. -1 4" ' Ito - oo0400 4 - 'A0-4' 0- 0 - a.a

Le A q-8 T M a 0-

0 *.4 Na.s + * -' -4.I

0 4O 30 3 0q + c u

4 ~ ~ ~ ~ ~ 0 Im u .lM00A00 0 0 +0 a. N O 1

o .a. 0+u 2 *-boII.01001s a * = -43s0 03N

41 0 _4 .4 3t 4+ 04

0. U U,0 4 4-0.a *0 eo ,0, . um 4J V04 ' 4' 4 00'30 +AOO0 0+ N4 'A +.

a0 0-4 ',4 U U 0 t4.4004-MW 4-.--0MM3

4'44 0 -I -- + e -430

- 0 0 0 u 0 0

-H -e4 MC q : - r - ->4J U 0 4 t\ -0 o-0 -0.0 \ a+ - L

M -A. 'a -A 0 \

' :M- 5 -d + :%e @ 0-440 0 4 *N - .4 -.-

4 4-44 N----H--------0M 0%0. - ) N-NO.

00>. . aa * 0 N0 W -'

41 d - 4N -0- 0 4) . 0000 N-0 00 4 440. -,4 4 *- 0\ 4.144

0 410 .0 .- 4 4 0.4 044 4 4S V0- a - ri - -,------04.4004 + \4 N e -I I 110 -. 4-4 fl.M0.-41 a' :4 4 A.

0.- 4 4' M AM0 0 *-0'0 0

00400 4I 44 44444444444 4 3 -.- .- -.4 -.4 -. 4 -V -- 4

40.0n 0 ee

* 44-1.4'e

00 0 0 0 0 u 0 0 0

tp

0

93 a>1

0

0

4

4

0

.04

a-4'U

u 9

r-04

00

00

44J

A4 0

01.0

-4'14

00D

-444

a0 g

.- 4 0:41M0 &

-0m

S0AO

MA

M

-

a'

0

0

-.4

4

.-4

A

>4..0

e

-.-4

'a

A

14

0.0

'a00

:4

A

3

0

-- 4

A'

X 4

0 0-4

A V

>1

A V

0

SA

-.'. 4

.g 0

:4 4

-.

'

0 0A 4

3 >1

A a

0

0A14N

A

lII

0

U . 1

U)

A-H

0 #

0 4

'a

* 0

0

-.4

0Lo

4 41

4

14a. 0

4J L O

M 1a.

0 03

3 MM+ -

A A-4 -40

4 ol41-.4

N0 >

- 0 -d 4A 1nm41

.-4 o a.3 0+ 0>0 A to

0 401 4,

A 0

\4 >1 e

a. M O

0

- > O .A%

\.N 04'-8a.i 0

AA 1100 M

.4l N fl 0* N '1'0 -

0.- 0 - 0 0

0M 0 a.-40 3 04 4 *

.- 4A 0 0'4 4

0' 0'-4 4

0 0 -144*

* 4444*44*

M L

4,4 N

0 %N

0 \0

.9 fn wa# N "

09+4 0 4M

a'- '00- 4MW

>0 coH.N4144- co N-4 4 1404

04- M -I.

o * -4--4

OM-4 0- \

0 4' +

V N4

0iM-0 4 -M

N+, ONM C

t4 n+ . -

-4'.. 0.ON

0s U U -woeq

0n- \ f 4

N -4 A0 -

000i 0 * \ '00 -'WON

0 1111-444 #

-4 -- 0 'a 0 '

0

a,

u 0 0 0 0 0 0u0 0 0u0 0 0 0 0u0 0 0 0u0 0 00 0

78

:4

-.4444'-.4-4

0-.4

-

0.-43+0..A-.4-4I+A0

0-.-4a-4U+0.14-.403

\NA0a'a.04'A

II0A0I)

0 0

0

00o-4 0

30

0

M O

410 4000

0 .

>

003

0 41

M O A

Aj0

A 04'

04'

0

to m to

00

A41

0 -

040

a.44

Au

* M-.4

0 0 0

04'

4 4

04' 00 0

3 00034'14

0 0d

0 44O

000A O-' 144

U,

u

4'

U,Ir0--4

4

-44

-.4

0 0 u 0

Page 80: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

0*

0

.44

000

to 1

* 4 4

>a + to 0 , 41

A 0 0 4,> s.4 u XIN

e + qcL .4 44 o3

0l 'W.f4 34 V4 ,WI

o0.0 A - w - w'40. 43w IO

;4 .0 .- 4 4 qj 0 24N 4 0. 4

V ; 0 0 L 4a I 6 r 4a1 > 0043a4 3 6o to to 40 )g I 4. 304 .34 -A4C

u'000-

u0 LI

I I

.00

4410

4~0 0000 6

t"4 411 44

---0. 6434A

NI NI 43.4

Ou40. -**@0. 4.1 44 4V44A

%140 4030M44 A AA4

30.A4A.4 A

44

to

to

44uX444

0

04

to44

0.43

4

0.4 V

4

30V

0 0

4344

a0~-10.

V '09: 0 4 0

43 u

V 34 v34 0 Q 00 a 0 oa

4l to 4

4W 14a . 0 X 0.0,

4* 0 0 4oa>1 0 O a to4J V * 4 04 6.4V

0.4 'A 34 0 to0 490 43 0 tfV 443 to. 0

-6 4 0V X 41 A N as -4V31 0 P V -.4 St .4Na

*4 6 4-0 >w 6~04f A

VL4 00 LI- to . 0 41 41461. A 0 40 - 0 A 4.0 97k 4 .4of"

L.o . -1 W 4 04 *.4 *4.0 LI-X 0 4 16 0 4 4*-U 0 V 4 -10 -- 4 A a %4 31 .4

rA -m 4 6 r- -. 00 -04 d A.A 3W0. 0 4 0 o V3. *. F43 41 0

66 04%3 ' 4 3. 03.- V % V 4 U03 4413 o 40 o a 04 ad.400 I,-

0.A A 4 0 *I 3 440 . . 64l 630.01 14 .. 4- 1 A -1-403%4 W 0U0.10. 0 . .4t.0mU

43 3. 4cA4 A 0 6 04A 4 U 344 A-40.fA t-0 AJ 0 M fd3 .3 44.X.V4 4 LI0-4 V-04 00

46 404 06 0u. .0 0.w .4r.w N0

4 0.34 0 V 41 0 . 43. -0 0 0 0A 4 0 . 40 L,

43 : .9 4 W14 0 C4 004jt L06 ... 4.3X

3,4 X-4 440434 41 *o4 *a00 00..AX. 0O 660r. j m 346IL63460W 64 .4 . 041 .0 ILILI 343r-o .~ x -. aof .46434 00 0.4 A..4 0 60-0033

0 0..tj436)44.04444.4064 0 j1,Q Pt 4 4 WA&

0'A0 0 0 4 -6 - .4 LA0L- + 4 +4 tp4 1A-. 6.4 -4- A 3 0.0. 0.0.

a0 00 ,0 0 x36 0 St %343.43J2-.4 w. 064A 0 V4 04V11 tP..~ tP - 0 34 -J44443r4.I4 A go 1 fil V 0 4J 0 44 46s11 11.-4.4 4is0 41410 4)41

_1'40- _ 4 34 %4 0. l 1100 ww* A 6.44 0-4 0. Mm4-4LI I 0

$4 t7% LI0U 4.4 $1 m 41 0 034 34 44 434 % 30 44 1 46 40 t 44 .00 4 4

0. 0. 4 4 0. 4304. 4t

4 *00 000) 0 0 0 00 0 LI u0

79

mmbwmwmm

Page 81: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

444

4 4

4 4

4 4

S4 4

40

4 4

4 4

44'

444

4 4

4a 4

40 4e *4 4 *

44 e 4C *

4a 4

40 4

4 #0 4*

4 04' 4 *4U 4 *

4 0 4

S40 4e*

4 a 10

4s-r -. 4 44

4'

U

0

U'

-4

-4

4

0

U'a-40

0U

0.4,

U-

4.

4

44

C

A

V

-) O 4-4 44 V

4

4A A 4 41

- -- -UU- 44 a#

aU

4'O4 0 0-eI

U-4.-.4 -.4

-- -b -b -. 4

0444444

4

4

-

-14

4'

--I

-

4

-4

I4'

10

4'U'

4

a

0 '-

-4

14

0

041

4 44 4

0 u41

0 0-A 4

o04 4

04 4

0 4

0 0 r4

0

4

4'-4-- 44.-4U 10

UO .0-U I A

tU U

4'

4

'6 4'"4-.-. 10 ' 4-U e4 1

'"4 10

MOO

"4 '6-44

A U4

4' U'4

S41 -44

.4* 4

4 *

-4 44 4

4 4

0 U U U U U UUU UU U U

0 --

-1#-0,

,4 - .- Ma a 0 14

-. -4U'64

o u 0. -e 4 M 0 N

o * 04. r.04 .-1

U . 1 91M0s u m 9 a =

- -- 0! . A -AU'04 41 41

044 to

U A 0 U 10 -

0- - 0

-. 4 (-4 -M -

a * 0'0040 0 U-.4 . '64

- 'M-.4 * 4 0

N O 4.0 -H t

41 -A 1 O -4 go

* -0 e--lO. 0

rq U I -A V 0- M

O N 4 4 14' -

- --- 10 - +*U.04'-U *-.44'@

0 4 - -. 4 . + 4

4 4 4-.-4N-r -e'U .4 10.4 -0

a 4 0 -.-40 -> -N 0- 0 .. x N

\ 0 * C a -U.6

- - -A 0 -4 --0'-- - 0 - 4- 04J

N *0.4->44'-~ 0., eI

0|--- - e * - 4 U -

4'|-4--- -- - U'--M

4 U 44 W 0 1 40 0H V -- 1 - -A - 44 -H 0

*4I- s e 64-

N

4 4

4 4

4 4

* 4

* 44 4 4

0 4 4

44N 4444 4

444 4

444

4 4 ,

A 4

* 4 0

4 to 414 1

S0 0

0 V

404 I

4 04 -. 4

4 14 A

44'4 '644 104 0

4 4

4 U'4 U'4a4 a #4..44 -. 4

4 10 4'A

4 *.. 44 4'4M4 04 .l

4 4'44 M 4 M

4 0. 4 O

4 14 44 04 4 O

4 04* 4%

4 4e 4

4 - 4 4

4 4 4 y

4 4 4 5

4 4 4e

UUUUUUU

* V4

m4w 4

4 41 a~

* m0*

* m.1

M u .

40 0

O U

0 A 41U41

u -A *A4

04 I-. 144

4400V

E Nd

C4 V -A-41

>1 0 -

0 0 A .4

414414

'64 to 0A

0. 4',

4J 0

41

Q-A 0

'4 - 0 4a

44 0

' -4 r 44

040> 0% t4

0 aN -.-. 4a- g

.0 a 4' *-. -- 0

U 11 11 W -. 4A U -

C 4 N 0 4.-4 4U 0 ,4 4 4 U

1H 4 AO

0 *4 owa.OU'0. U U"4 1.

4 ..4 4U'0.44 1.10M

-* -'-4 O4 0

'44 A A

N'6a a gO A 5 >.5 >e

* Oil 0.-40.-4O el a" d U 0. U 0.II II II U" 0-4 U "

44 44-4" .04 # 4 &

.4 *O4 4 4

o% 4 4 4 4

-4 a\S I

41

co mI I U0

0 0-4 -

0 M ' X aa * 41Ns -l4 '

0.44Z -4'MW4 4 -0

o 41 u10 OO\4'-A * -010

110 O-N .- 4 --- '64

0.0 * 00O + -

0 04.- No 04 I .

0 - .- 4'O-4101* II 0.4' II II U 4'

.- l 0.0 ii| a 0| II1

I 0 '4 -. 4 4' 4' - -.-

4' '6 -- 410 0 10 -'4 U10 I -44 4'U UU .

U UU U U

80

Page 82: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

-4e441414II014.0

f-

c-i ++ c-i

a 0

-4 444)i a eN

a in

c-i cit#

0 C"

n m r, c4

N 1 11

.*-4 . M .4

-4 ...- 44-O4 m 4e ai

a

Naa *a*a*

agea*a *a *

a *a*a *a *

e-a9c- a

o a

Ma

Ma

i- a

o a

o a

.- a

*I a

41 aa

a -1*

41 f4

ci 02

a . -a

.4 a4- 4

44 C4i

a %

04 0

-4ye40 +

a- a-a c-

ci.i y N*- ei ff44

.- 4 N040 . e . 00O

NMm o0O

C-4 n 0II Hl H

M 1 4

a 00in ai tn

fn

. . -,

0 40 U

-4i -4i-4

N -4

H II

0 014 14

0 r

in 0I- -i

* 4

U U*fi ..4

-4 -444 4-H- -H444i 444-4 -ri

0 co 4Ni

a

-C

4 -

11 .i mmc-

V 4. Nc N- .cO

* - N +

a a 00 w x 0

e N 14A 0 0

-.0 4. 1 I 044 .f4 *n 0 MIc-- 1

4.4 0 -ci- *

1-4 .4 + '444- N a'0 7m m 1 00 1i

m -i aa 4 0 44-+ .4 . L. . .

m n NN N\f4 0 0-. 4 a a ---- 1 +

ca n 0.in *00ciM Min CM

a c*.g * 000ti~ 0oa* .iu g44441 * O 4

40 4j IOO 0 '

)4 Oc -. 4 .V \

.A -4 0- 0 0 0 - a 6- DC

141i et . *M -l+ - ----- 0 4 0

.iai 4 * 4 I 4 44i -4m * 4 . - -A -4 - 4 -

.0 M ci 141414-4 *f

c-i c-i 000011- . 1

14 14 --- 0g .

O 0 . . .0e latOO ti 0000 * e Nc- 4-. . . . . O e

0' 0' .... 4 0-'.e

U U M MMM- 04O'-.4 -4i 00000OC M

4.4 4-----4.--44444

- 44144144 44414 444 -. 4 4- . 1-. 4 -4 0414444

0 ..4 .40

-1 0

0 1 0

14 0

0 'A00 -4

1 0 a0

a 14a 40

. 0 0 .4J

-A t

- Uw 04I AN

1.4 0

414.00 a.1444 13A r

L. d' 04

40 13 44 .4 44 ..

.3.

0 0.4

0 0'UA

U..4 444

-4 0 0A440 0 rr0.L,0.

0a 00

00

-4 4 1

44 - 4 ..i 0 0M0-i 4.4

a 040. a

a- 0. U

S . U0- u 0 14

H - 14 A

-c-i.,a 4 .4 a-U * ag 'iee +

.14 44y. .

A0 A 0

i *+O + U 01

0 1 4 e ., 4 , 4 . 4

co - . . 0 0 0 co o 1

U4 41' Uo U4 U U t

14 . a + .

M M eo m |U* 4 Ip ,-+ .0 -

OmN 0gA >\ V 4J +

ty. 0 . o 4 U- .

o ~ 4 44c )t44 a,4 0 4.0 V 'N~ 000 C L. a0

id 4 0 U w, 0 .- ,,N ,

, L A 4. . q * I % M -

.4.4e& OA A *.4ci a U1444 .4. U + 04 -0' * 000U 44.4c-i.0a0' 0 ' a .-i *M

.. .. .I , a a U .Of A N ,0

14 . m en q ui~ u a - 4 a . u . 0 , &I w

0 nr Oa . $ 0 . U w + 41 A00

4 f 14. * -M m i > A+ A014-ei N l l 1 4 e ' > 0 C - 4 - -iU 0 ; , .

-i .- 4mM.-IUU1 14a 00 an U|og O.'141

U U to a N N u 1 + p 0.01414am a 0' .+.0 0 L. -0 V

A .0 U .0 --. A ,o000 S. 1 . H c-i 21 a-I-4-.. -i-4 U44a0 . .0 . 3 X 4a .U .4 .,4 M -A.

4 *4 U 0 r4 41 A * 0 0 4-o U .-i4 44 44 0 Ua a c %a .a *1 -0 C4 .- o a 4c-44 0 0 0 0 w11.

to .140 .. 4 v441i v044Uc-N-.U -A U.4 -A 0.

- q 14H.la IH 110u tr 0'if 11 0 a03m0 0.0 UU-- - q ow 4(41 1-1-i II gaoc0-4U U U 0UU r 0 11 11V 4. : 000 3.- jI .. 4 w4444411 .14 0 4

w4.4 L000. . . -0 .0.0 w44.4~e.4a~4.444. N4Ua444N 4 44 W4.An44.i44.I

cm4

u U U 0 0 U

81

NN e-

0 44 -4-4g0 c-ic-i-A rq "

, 4 - 0 0 U

a c- 20-40 1 u

0 -in.i iniv. *v4NU 4 44w44 4 N V 4 - -i0'

14-A --- 4-A UUH 140 II I c- .-- 4... -. -i .i.

a

U

Page 83: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

4444

44444

+141

A

+0 f+ N1

A At

1 4 0 I 2

uVVVA -8 0

+10 0 N LV 4' W ,

14 0 A

4 , * * A 0 K

AAAO . . - 0O141W1W+ N0 0 O0

(4N1 0 AAIKI044'' 11000 QANO WOC 4 - rqK .014414

A A44 A .0 a xId o

0011 4A0.UAA

10 A04 14 1

v!

0

44

'44

04 0

04 *4 0 .

K 1 -4 0.

-1 u A41

84 +*fn-.4N20 40( N40 > 4, .0

N 4 4' N N -,0 .4 4'0 4I

*0 44 44 -' 'A0 4 >-- 44*-r4 r0 - 0tw-1 -1

04 4 4 A -1 4 8440J M0. -A $ 1%'0

44 %

.0 0

* 4

*1 C

o 0

N 3 04 ..I

or- od

4'-I 0r

4.0 144 1

0*

.0 '. )14

'84484 KAc . .

4 44 +

04 0

" "N 44: 0 0.40 + 44 U 414.

39 aA : . + 4OA0 A .41',41 0. 0 -I to

01 4 0 0. 0) itJL.1% 4+ . KON a 0 4.

'848'l~ l.0 0 .-u0 A*14 0 4

to A A KA4a.K a 14 0 14u 00 4 + K + Q4+0

+4441 + A 08V4+4 -1 m~K'8

0 . 0 A . 4 0.- 4 H w4 34m i% u X N 0.-I 4 u 0

rq84.0 0 "I H 0 -4 14 414 W m 14 14 0 , 4 K - * 0 N I

"I .4 N A 4- 1 4 VA~. -. ,4- .4 .+ 0 + -I a 31 "1 Mo-1 A H4 a H w 02$ WL

'.r4 O w u 4 + 80 0 0 4 .- 92I, 44 '.

r44A4U ANN+ 4 -A 0 .-I 0.4 44.xIMA KAA M 42. 0' 1a --- a N---

r 8 00 0 % t)M tK A :.. 0 4 1 0 4 Ot 4 4 . to4 . 'A4 W

* 40 N0 54 4.K 0 a4 0 *A 4440. 44.U

r4@K A14 *140. . 0- 0 *. NN 44.8 41 0. 41 41 .V44AA aIA 1-A rNS"--!I + .4 0.. c II 1 II 13

a- NO 1 0 O00A10 r. V 44 44 -W444to V44t

L.4-1 + -N C4 0 *U r'-4 . .8' V 4414 44140 C4 X " N -N~ 4 go H0 -41 l1 420-4 2 toV HHH k -4 - A,n q A- .0 AAA0 Q.3 a4 . .0 0 .14 Ad 000.4k 74-'40

r- t 4 .4) - A 0AK a 2 'A t . -A w IdK .. 4 )41 3t 4 41 41 8

824 4 u - 0 u 0"-A t t)O' -4 A 41.4 -4 'd04 -.*.. . 1A + + u w u 0 -. 40 * a N 1 -, *444 0.44

0.. -A0 + m A..41 v4 02- a Ku H -.4 0 "U-4 N XX -A84~ 0.4 -A .IIa-IK *0N14NN400 0.4'O+N 0K4-I4-a..

.* 0.4. u *-84 01 UM - *- Is K ."A . *N4-4441, 2 t A u 04 U)+' A K -4. ON0N.- 0 NN a. 0 0'- t . *-I K K 8.4 KK

024~~ 0-400AA~00 4I ,1 ' 0..4 4 4 0a*K0 4O A A. -I *K.- INN* .4 * to jC KNNNKIda u u.4.A 10 A44 .4 N424H -KKIKK0.0KK,

-4 *4j K-M +. 4, 01 0'. a -. H4 Kl KA 001 N 0444 0 0 ~0 0 0 >1'-4NC4 W 04 to g3 14o + 14A 04 044* a,.A A N 14 OW a-A -HI-4 K K .44

Il-Il ' II 4- * *N 00U 04 A.0 >1ut)t 0 1411 11 .0 1 11I if o. w tr 1 110

0.N-0 N . - . - Al OHOH *4A KKKHnoKK.

0440. .4800a0 '84" ," " " .4 1114 000 114 d-44 >. 90 ,,44 4 t"u r00 *.I 00 0 '1. 1 1. w .

U 4 4 - j .4 uuwwwwr

4 4

0 0 0

U44

82

Page 84: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

4'

4'4'4.

'A

04, 1

p -0

4' 44 04 0

4' .- ' 0

4' 04 04

4' 44' -.4 4'

4'0' 14V, 0'4'

4' 04' 0.

4' 4' a

4'04

u 1 A

4' 4' U4'04 0 M4' 144'4' ge4'4'4 0 ,4' 0' 4'4' 144 04' 04 -44' 0.4 e4' 04 04' 04 -44'4'4' 04' 4' 04' 0'44' ao4' -. 4',4' +44'4' 04'4' -44 4'

4' y4 4'4' 04' 4'4'-44 4'y

4'04 4.'0 ' 4

4' 4' 4'.. ' 4

4' 4' 4

4''' 4

000000

N

u

0

Of I

S4

+ uof

-0t,Ck

0

0.0

'-+0.

0 0\4'

-4'

0'140

4..4

S0'

+0

3-0.

LeID14

+ 4

Mu

4'

41

.0 u

Su41

4

V4'

4'4

4 MN

0

0 .-

SN

50*0

O

WI

A-

* .-+4-404'

14-

4'

.0y

* -.4804.0

*. 0

A 1M+M-.4

0.4 .

* 4.1.

-4 14 1

WoI

4'.

0

.+

+0x 04

NIN14 w40

+ .

+0N+0

u u 0

000

41u M ++4+004 N.-'

40 '+

u sW V .0-004

r4+

x u

SN.0 0'

040

4'* 0.- 0

-A'

0 04'

01 OADe14-40

04'5 0-0 NOA

00' e00 AD

-4y.- 44a

4'

4' -

-

'

M+0 x

V WV0'

'4+

4'4

14-0.

* 00.4'SII

S4'-4-

S+In

-414

3In14

0 ---40o

0-00

0-4

e'-

4' 44

4' -.

4. . 4' - 4'*4' 4' 4

4' 4' 44' 4' 4

4' 4' 4

0 0 0 0 0 0 0

'A

V'a

0-A

41

Ia

40

u U

A4'

a0-.44'04'

0.K0s0

4'

4'

4'

4'

4'

4'

4'4'4'

4'

000

+

+ 0

V M0

01 H

14 4'N

0 A

lVe

14144'

44 VCA0 *

S4 0 m

0 +9 ua, N 0 . A

14 14 o0

- p 0 U

04'.4 44

.a 04 1

0 0 M 0

04 00A . -4

0 + 4

4'4'4'

4' 4

4'4'

4'4'

4 4

0a u

+ 04'1 N V4

4 N 4 .4 :

a 04' 04'

4' 40 ' 4

4'1a

.4 4' 04.H4 4' 04

4' 0

4'41

u4 U ' 04'uu

* 4'* 4'e

U * a

* 01y 4' +44

.4' 0.4''M44 4' 14'

-'- 0' *044 4' 04'

-4 4' * 40 4'u 4' yu

44N

A-

-4J 4'

m 4

- M.-"I a,

V .1

04

\ -- O4' -. 4

+44

44 444

.. A 91 A

*~ ~ CeauA M

4.44 1

-4+4t

V V04'

+ i12 3 m

-rl to4 44

.9 * : A 4"' Vd r4 -4 a 'A-- "A

4-44'

1f44'

0. . --.m 4 aM 4

to " -A N, >, Ad Ju -|R-.4 ~ ~ ~ 1- 4 -A -Al3 D l l li ,

91 w..4..4 -. 40* J'dI 14 4 CA .V -40

0 4'' 0 4 ' 0 A

N ---- 0d. 00.,I, -.4 IP a 4aX 'm4rI o a

X 4 4'-4'0 t g t -40 4.;1 0 4 10 *'A 0. * 1 . .a .'I > .. -414 . .>

-A 0 0 1 4 ' t1 P 0 1 J-

.4 - 1 o d- r-4'4'14 440 0 re .4w 4 x I 00Iqt

0 r0 w'-4. . 4' M.U u0 0.-.-4 -. 4-. 0..4 OW

4' 0 A-.4 -4'4 .

A '004 .. 4 4-4-4-

83

-4 -4

N 0'

-

0..4

S4'

4'04.0

4.0*'4'0

4' 0

S4'4' 1-

S4'

4'0

.144'.

.

Page 85: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

0

S40 '.

0 0

14 -.4

a ,0

A14

0 '

0 0

'01 -4 4

0.

to 41

-a -4

4 0 s

04-40

00 -.

u 0-0

4 U) -Im 4JN041N

43440--04314430s

114 M' -40

04-4 04

0 -.4 0 M

-4 -. 4 0 '-4-40O

-4 044 -00'\ 14|U4 0- Uro

-043 N4 -. N

4 \04-0

X A0 0

0 + 4 141U ++ 4

\ ON-De

M . -.-434

N 0 0- 4 +4

44- A -A s

0'4 U* U

04 +

0 4

. + a,

44 04. 0

0 010

4344 0

14430

-4

'4.y I

0 0

W -. U

0'm

-44S-0

S-4

0 U U U U 0 0 0 u

3t0

-

0

0+. +U 04

4 0'14 04

1 Uo N

+ w

4 -

N a.

-4 *

.0 U

+ +0

~0 rd

9 4 .

14 -4

' U

+ +

- t4

I 14

43 -04OUA

.4 .4MAs

>: U .0'+ 0 > 4

#4 0 04

II 0 '.0e

# 140430,0-

# .

43 4304

-4 -40

U

0

-0

N

%w0

-1

+4

V

kD

4314

-k

041 4

N044 4

43+

0 - -

A s 4

040 -

In I

~In IIn14,14

U0 0 0 -

-4 040'U '0e

4 -. 4.0 -.4 U

4 4

4 4

4 4

4 4

4 4

4 4

4 4

4 144

4 4

4 -.4 4

4 4

4 -44*

4 4 *

4 04*

4 04

4 -. 4 4

4 4344 044 434

4 U 4

0

.1Id

A %

44

40

'0

Im w

01 0u u

to404

0f 44

.4 U)

.0 44.r N s

0'043 04.0jfl140404M0'4 04e43 44

-- 404M 04U004*

U ON\II 0 +04-44-4

S0 44

S0 -4

-4 44

-* 4II

-4 r-444 14N

'0

4 0 u41 to %4 w1 4

0 "4* 4104.34 4 to4

0 - U 44 4 A G

4 OU V t .141 4 $44410 4. 4 -4

01 - o o a .M

4 to - .4*1 -

13 31 4' 14 3A to ..W)I . - - "o 4e

H: -k V 4 t 00 W -U. q 4 4 43

is 3" 4 a 00.4 W .14 X144 A o'Ar

'M U 4d W m .6 i

Vn 8 v 0 -1 r- U) Ms- 0 443 -01 gog t -4A- Nu HL 0owU

14 3t N I 04-43N+ H 3-4-

ol - 0 4 44-( 14 040 04

H-1 %314- 4 1 r- H 44 4 o n F a a 04 4 i a.i

044 0404 44 440SI n 0 - 30'-4 I

4 434 U4 w-oA--

0q 0U44 044l 01 N mImI

t g 0 4 I 0 4 0 U ' 0 430 0

o .04 U a -44 + r H

0 0 0 In 43 0A 0.0 4..4

14 4 4 44 - 4 - 4 4 4 4 4 1"44U0 W W W W0 4 W1.0 %0t 44. w-4 -M-H H -. 4.0 .4 H 4

430'01\n00\0 r 040--

* -a--4-.0a- - -4 -A4S-4 ' - 5 114'04 IIe -4-4-4-4-4-4

'0144301401443014 OUOOUUae e

041 - N44 . 4 . N44 --r --Si o- U~- -~ -. - -- 14---.04

-e4 0s ~-4- 0' - -40-e -4 0 -0 -s 0 -4 -4-4 -4 -4i '-4

-4

0 U U U U U 0 0

V

4

1440

-

>-gw 0

0 ue

0

0 440

4 0

44

4 .0

4 U

4 0

4

:0 u

0 to.4 .

0 4r4 0

* 0

o u* 0

-04 0 U

'0#0 43

O .0O

0 0, M

0 .- .-4 0a.o 0 0

+ '--

o -4 0 -4

S 0 0 0 -

84

* * *

Page 86: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

N

0.

N

Im

0.rN1U 04O

.i4 om . .

A' 44 W'

4' 4'N .

4144 ~~

4 t

44

4' 4'

4' 4

4' 4

4' 4'4' .4'0

In

044'

'S

4'..4

0.N0.

N 4

0 04041 Ac 4

0*. 0

NO 0 A 4

.40id14 4'

0 U'41 .

0 0 14 .

r -A 1 -A .14 4

'440

to0.40

0

41

041

0

0-3-.4

'.1

0 04

-.4

0 a a U

0 44 .44 .

441O

4'14

4' V 4'

4

'444

go4 0.0ul:-A 4 - I w *.4 44

Nd w . 0N 0go4t 4.4 4 4 V~ A

....- 4 4 N . 'Aw totoI Is 1N

6114 4 U0w 0

40in'A- N 0 -A

14 *4- + 0 r-NA.-.* 4t 4 0 IA N4 +

1404 N14 4 N 4) s

*..44 U4'VA .14 00~lNN 04 a A4

$"N 04 I 4d4

a to.q0 -1 o. 0- 4 0 *.W 4 0

" -IAOU+ 0 .4

+ a + 0 11 N A +-4 ONN. H4 V

to .0.01 . N 14 .41 U-od.0I . oA -I..4 0 A f

0 0 C O 4 04 - N4- 0,4- O

0 1 4 0.4 1 4 1 U-I 0M W

0, Im 4 p 41 0 u . ' 14 ...4 v 419: -. 14 t -1w w44) 4V 0 1 a

-:.40 .4.-1N *. 0 C 0 v - 0. . C

11-0 ..4 id C4 gow.40 w * .4 .1 of" 11 -Q 40IIAA. Z) .0 4 A - 1 4 0 -0 0m

. 4 I,4I 0. 1 1 U 64a a00 *N4. N )N A .0- b

N1.4 4 4 - A , U U X-MU4 4 O Ifn t N)4 0 -

04 r-.4 14 - 1.-41 0 -4 v -4) 4JAi "I 4

a.4140U+0-4140.4

85

of0V 4);$ 0

0. 044 (4

0 4

'44 N

'A 01 0.01 0 4

0 * '4

NA 0 04) 0

0 +4

0 0' 0

0 0*'4 +

w 0 0

04 .4 A.4 .o +..0 N q

N 4'4' . .

.4 f- 0

-4 0 N

-.4r,0 4

01V w

9- .1~44 N

0 0. h0

Page 87: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

0

U '

A . 41 04.

+ a loU 0 4 .4 .4 41

+ 1.0. a L a 4.4 4

m "6 A 644 A. . 4. 4

+10 W . U W. N. 4 1

.1 0. 0 A a. 4. 4. V.61 A r'JfA A 0 4. 4. >.4

f + ' VO r4 4 4. . 4. 4. . 0X+ , IL a 0 06 u 14 u 4. .. 4. *. V411'M

A 1 0 11 1 + M 4 +4 Ar "4 *4. ' 4- +..4 54 0 4..- + + V + . 4. -4 VA4.( 4.

1 0 0.004 - - NO? IL 0. 0 ' C 4 '4 4. 0. a m0 1-444 1 V 4. 000 v -k 04 %. 0. V 4 '4 4 V. 4.

4 A .9F 0 - A Al -- 1 m . 4. *0 U0r 44t 0 1. 4. NI 4 14 *q -4O U .J N. 4 0 00 4. .

N,0t 41 M 4 114- - 4 4. 4. 4''.U 0#46.46 4 4. 4. 4Io- 4' a) i+14 V-4I u-a 4 4 1 '0 4444 41 4. f4-4+ L

A 1 10M * 0 .1 -4 00. 20.M 4. IA 00N-0af 04' 4. t 41 r4.0' N 9 -W to W 0 *4 - 44 4. 0. W ' 4. 4. m66 04'-d4.0 04' 0 4. A4"to. w

4. 0 . 0, 1 n Z 0 0 1 a- ", 4. 4. 4.4 0'-.4-1 u0 4. 31>1 )I.>--b' ." *..+4 +3we v t 14 A0 0 4. 0011, 0..0 M4. 44 +.

+ p - 9: 0, 0 -4 4 0 -4 A*-e6. 4. 4L 0 0 HI01 u 1A6.4 4. %4. N>00 914.w0u4. a 0o' 4 + *A 3A44 4) -1 !. 44 %4 40.0.0N.V4.W 4

1 4t0 Im 0 a4- 6 6 46 6 0 O 4. 0. . O O O I O 4. N Nen466 -. 4 4 '4 I4-. 4 U 4 U) f o 14 46.U M tO.?A t6 4. N H 14. Nm N

0 4..0 *.H U. a 4 '4 rOO-4 A 0 - 0 06 -0.00. - .4 4. W46H60$4 - > 31 *.4 0n 44 93 I64'-J4 FA N *.4 a IM.446toN( H0 .9 r 04 . 4 0J 4.- - - -64 C4

31-b' 4 u Al6-04.4 0 r-O r J440---4440 a 4. a-4'--4 a 0.-0C,+ q a-404 4. 4. 1146.lOU)0 4 NON O 0 .0-r4f -. r44 0 UN 4. - 00,4O A *04'4

13 2 > >-4 0A a4 4. I+ . '04 0AA4.4- 0. m000V 144 .414., 0 a .no 4J U U44 41 IA a W 0 t *-40 c 3 >N 0 0 w0 4 4 . V4 4. Id-o - - -*-.401 d 4. 000 0 V K 4 r4

V04 H - A -e4, 01--4 '~ 0 A 41 . a *.-40- . Ul4 4 lV mI q- - ' 01 .0 W w w 4 . 0 4454 VN 04 V4 4 14 4J 01 4. a- 0%- m ON v1- v a 0-4M 4 J W V 4- V4 J 01 - 0 0W0 .. 0 , 0 A A tr0 to

01 N jO d nH 0 1 jt H4.0o d093AV -1-66- e.--6 4-- -4 V1N-0-----.--0 0464-a)a4' a4a4'C'a .- N(a- K ~ .- > ii 4. aj -446-4-,4-4 - H 4404C -4 - *1.0 K 44--'44.4 mHA0a9 1 o - 14.1 .---.- o

r-I 2-4 A r--- Q- %4 a 4 -H 0'.0'abk% 14A H'4 4 (4 w I *4 0.4 u) o u)t0.1 94 4b A *-4"1to 41, 4a-14 .044 R 11 14. -.44 j_, . m 9 4'' .0 Nbl0. ., 0.a4to >.0 VAU) '1140'V'M'A' U)4 11 114V4' : 4., 93 .1401 . '0 _4 ' -0. C

- -0 > 14 14- N 0 V. VoaM - J-.404a a u M .4'4'0 H_1UaMa4 t00 a4'4W 4'4M 44'4'Is 0N >044' :10 x.e .0 -. 4 q 4K-.0 : to 4-4-.4 a 4944a09 U4-6 4-4 .44'4 ta 44 Q *-040.a aa A o0.'oa QZ;4a~ 0 :1 4 . .0 aI I oI A. 4'-- VVIII t -H--.-.I 0lIIII." V 4 I 0 - 4 4 4.44 V l j_

4.

V U. 0 0

86

Page 88: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

-A 41 :

-4 ,

a 'N Ao

+ -1.4a

.r+ V .1 4J4

*.4NO + N 0 U*

4. x-4. wA ;C

C4 A. 4.1 .

0 0.0 0 4.oUb3 >u b 0 4. A

0 X0 . 0 4j - 4 0 V

It.4 t 4. w -

f-44. w W4.-A 2 -4 04 -AA %v9 0V aO a. 4, Q . 0 01 0 TpV A ta0 1+0f -. r 4. 040 0r0 ( r' 01 01

'a400 15 C4.' 0 V 0 -4-.- 14.44 4. U 0 a- 01001.

3t > q0 r . 0 93 0u u r 44'

a40 - 0 .0 0 v4. V00 V 0 . 0 41 TO . 00.

4.

4.

4.

4.

0

00

00

0I

-. 441

-. 4

I00

-U

-4-400

4. 4.

04 L 4.

4. -44.

. 04.K

4. 04

4. 04.d

4. 41 4.

v u0u0 u00u

-4

4j 1

40 t0

- Fm 4 %0 0

0 M Ck 4.1: 0 64-

rp .4 4 - z 00 Vw

0 A: 0-

4 4 -0 m4oA'-A0.N 1. a I.-

.4' 04* r4r -- A-1 0 9 00

N 0 -. 44 4 -1 14 do a 319 w 0 N, 4

en*~ 0*.4 J4 0* - 44.-"4 4 -4.- -.

-. r4.4 r4 0

.- 4 A1 -Am a

V% - ' A 4 M4 A 4A1 ~4 . - 4 A4 4I"'.

-4 04' 4 . 0 -41 04o A 1 t) '4 . -4 .4 00 V A

0 1 -4 U e-A .4 0 1 0 " 1 A .C:A 1 -. C 044 *0 4 ,111 4 4 10

.A0V 00 4 o- 41 0 0 -4 4 4 - 4V 0- -. -. - - A - -4

9: 4 4' 4 0 0 V KU0 4 4 4 4-1 4 4 W A . 1140- $. M0 -A-A-

M 0 r.440 0.4

in 4- ~ -- ~ 'm~04*-4aa-

87

Page 89: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

N Nu

o .

00 N

RH tI

4Jl. a a :4l

00 N

04

f4 0 0 .. %D u4 4 4 4 t,4

04 0 0.0 f.0 4ir4 4. -

L'~ W ' 4*.l 4) 21 . 4. 4 . 1

.440-4 044jw 4 1.61 , 14 . +4 W 4 l4wWW4 4 W

-1 4 -4(4 4> 1

Is 0 4' a~ ff0 40 04q

.3. 41 u +1 4. > 44o444' 0. 4 o@4uo . uL.I.t WU )u

0 4 404 V0 0.* tii~ * 44 4 1

88

Page 90: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

%0

41 -

0r

%0 %0 0 93 4

to 5 m. .0 lI V. 0 1 400V 14V 0,1, V' 0 00 0 , C40: t00 0 0 A 1V% 40 1 4 44 4 0 4 01 .1 V IS-'01 41 .4 14I 4o 1"I.. .4oooN 0 ' . 0 A It -- N

N 0 C 4AM 4 44444 144-- U 01"01-1 4 Or44 0'-4 V 44 W-4

04W0 -. D.A 4 540 1 Ul 4.A to A31 ..-4 -- 4 " W a0. .4- . -%4

IN 04 'I0. O IM44t sa1 04 .'1 r4 V- 0,4 10 -0.405 l 044

IMU) 0 45V 0 4 v4V3V14 0114 VV 4 0-4 Ur4 00- V 4500U '41 V 4.4 II(' -4 IIN I 1 .- A 4 -0... .0.4. 14

4.

04141

41 4

41

41

4141

in

10

0U'

43 INV 14N

V > V 0 .41

N0~ - 13 0

-.4 4J -U A L.*

41 54 4 411 . 41,

44-.N -4 4 4) 4.4 .

in-.4

r-4 -4

A A

UO-N

%0%0 4%A 440

U~~~ ~ 1A Sl 00 VV-40I

14 .4 - - 9 . 4 . -4

11 oS 10 0 . 44 .4 4

0%* 1 4 N 114 0 - 1-

44 0 W- .. U - 4'A-41j40 to A%.4.A

* ~ ~ & %C 4 45-5--

0 uu00

89

Page 91: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

0.0

0 m

>49

0

0 0 1

.49

41

.4 0 - ' ,

.0 0 1

u .0

00

0uo0 .

0

1" -40

0 0

0.r.0

4 ad9

041 1%

41

0

4, -41 0

44

0 0 Vu

0%in

0.0

N0 0 0 -W

0 * 0 .4 410. N, 0-4~

W- 4j0 q . 00

.4of -4994 A 4 40

0+ do+U 0N0 -4'A ,

A 1U 0 -.440 %a e 4I.-u40.~*4 04 O

* , -'- - A -1 1 0 41

0Nh44 -04a 00

a,,0.0 -. 4 41.

a + 96.m 041 L. 0 0 *0 .4 a

ie .0J4 . '00

0 0 -X- Ur' >1 --1* 0-e0004J9Hill.X4 A t * 40. 4V6.. 14 *fLn n4 w

.0 ts 6640 41 o 0 49 f'r60.

4W90.x4 t .01-4 0 0'49-

rAl 0. 4 0 0049 0a4

1+0 4+0 10A0 * v 00.

r964 * 4 0 w x 0- x x 14 r

to H 00>. 0 to- - 0 0A. p. 0.049' V "oIoo W'D

134' w c-4 010.0 .0

* . 0 * 00 4 a %0

04 40 A 004 4J0.1414'

a'- 0'4 99'4 09>9901 :049

'0-0--mx3--0 4r 4 "

91H -64 H 400.49I040046-

0v9

0

0

0MInCh

Q 0

V0>0

u o > wa.* : 0 A

0 00 0 17%

A . 0 0 V0N I

C0 0 44 . 1 4 1 v00 >q V 4.-4q 1 14 a"4 C14693

41W N 0 >-0 0 4 N4 0 14- 0 o 4t490 > V4 C4 143 -3 V.

AIn ri 00 N, a4 00 00 00 00 go

00 a .0: '- 4> 4 o .6 .4- V4 -4 >". 4i - 4 ("4.-4r

..q* V140 31 0 e14 - X0 >0 160 .-

049 0 >-' 0' A M WI -4 IM ' ar A 0*>m .Aa

4_9 . .0n .N 9- > ~ -Q94- -> 4644~

'. - 0" -0 TO 0 'NO V'> -0 W > TO V0 44 9zw'0 *3'0, CW-('0 *3'0- e3'0r d" I- 4 Tr 030000w* 0 ' . 0- - - -0 r40A 4 *01 0'14'4 04 09 04is 49 9'0 0.0U3' 00' 0.0 .0 .0

E0 0

90

Page 92: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

4 0a4 4

N 0 4 4 44 .

4 4

-1- 0434

44 U) 4

N, .4 4 1 .M 4 4j . 4..I .

"4 -D * 11 4.

4.4 4j

S0

N *3fl0VV 00V-4 4 4 r'414

o*4- 43e

.- 4433 V

10 44 0.00 4 4

011 4334 -1 - .

1443 . 011

444444

0404...4 4434040404

443404044

4340404

44

44

0u0000u

0 0

0 *.4 4

*.4 4 0-4.9 V .4A 0 uA

0 S44

4 00 4 V0. a...4.-4 f

A4 a'-4 -

014 V .4 w 4

A4 -0 0f

01 0 m COr4

04 0 M- 40

0.4 04 .4 -WIn 4J-. 030 0r 11 VA W . 0.- ('4

-A 41 M - 4 00 0 - g g'4

o 43 O m00 -. 4 -. 40 o1 0 43"- o inO- V ;0 - 0 IN4 0 - 0 m 4 0 ('

- 14 01 ('4.40-. C4 '4 M

0 4 0 Ar 0 m " o-q .. .- o

0 01 6,4 0~ A 4 *4 m 0 , ,

3 -.". 43 i A 0 n *--4, -- 00

0 14 43 40 -- 4.-N. 0 0 (

0 V ~- N0.0 4 wM *.4 wm m N v4 W VI *+D

43 0 I 0 43 0.03 4 X4-4.-3% r" 0 *E N4 r+ 414 ~ 4 ' In 01 % "I4+'4 a NN.

U'~~~y L0 W . - -4 - A La--4('4 N

-~~4 a-4 A mU0044 0A 4.00

040 4 'I 4-AG i 0-4.-W-.4 * .4 0 0 000

4- -f .43.4-1 M44 .4 14M+0 4,

43 0 -4. to 0 r I 44 414O 'A0N M *. 0 44 a A0 C4-.*+ 4- W - 14 m Z- -- 1- 0+t), > 0 > .4 0L4WW4 0

A 0.40.- 4 a .,4 5- rj 00 54 W U0' V-0 4 A. U1 4A W 444-44 W WN 0 0 ) NM 0 444 3 4 0 0 O 4 *U. 43 0A0 0 0 '4-400- 39X WU 3 O A -4 -12t-1 4 00A .4- 00u000U0Mb'-

-4 -4) co CA

0

44

-4

0 -

4

A40

W4

14

3 44

0

0 0

0V

14.0l

to3

-4 g

N -00 w03 0 0co00 40 W-V

.0%C000 -

A . '4 as II Q. 0'

A A -4 i4 00V4 0.00 X0

91

444444

0000

mmwi

Page 93: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

V 0 -

In 4 0 0. 4 0.

V 0 0-

a 40 0 0

0 4 0 V 0

.4445

r4 0.4 00o

C4 G! r. 06 4a u

40. 4 0 04

4 40 -gov04 0 r4.10 0

If .4 %a V44 0.45

en .4 4 9 M en41 4 14- 04V1; r . . VV 0 r.04.0 045.0r,~~~~0 w .%0M00If %-M45Mf

-w -w r I44J 45I 04to ul 4 0 *0.4 -

-0 'I r 01.~~~~~~~. 2.4 4 !N .4.4 !0.!4 !

0 Z 4W VN f C4C450 .

L.~~44 0w .,N, N4t 09:-.4 .4 AN,0 0A 1

0Il' L4 *0 -45045040NrJ 4r44 1 4 4u -11 Ia a V Q 0

m'40 w. m a .14 > % , 4 cM O P 1 0 % t O 4 - VV >2tq 1 In o* 0,4 FM0 * 11 I y 0 0a 40. o A

004 4 JN4J - I ) 4 44 'l4 4 4 4 H Zq Z4 I 4' 0 454 &n : 'M 000 * N " . 00 l 0

4 1 4 5 'A 00 " W to 00 .. g o -4A_0'.4 o ,4-- -

11 , 44 U' If4 45 - I 0 : 4 - M4 H4 -J 41 o

A N %. om 45- 14 Ul *0 V .0a fIn *1 VII'14x'4445 0 ' 1 0 0 0 cNV0IaV :- . * 0 4 01000t 4?4t 4 . v v , .' *1 050M M 41 V V , . 1114 0 JMN 514-4 4 " 4 0 40 x r.4 04 04 VV0 r 4.. 04ww 45A140

I14 VI'1 V 1 V 4 N -1 0.14 4 04444 0 -.4 01.4 0 -14H H. 000 04 0t 0.- 14 f0

Of'S-4N 40r. 4a0''.I I I .0..............00 N01 I ..... 400NN 45 N" ~ ONN --~CD0*V0 I .1 * -4 .1104040". 454~44.-,-g4 40 .0 .404 4454045. . 0 . -- A --. 'o.4mL @0

mo0.40.404 1400 **45 \.N. N.NN N*4N *N' 45 0M0 45.~'. 45-4*- Nm 0. 045

01~~~~ ~~~~~~~~~~~~~~ *0 u *N *.04-v4 Q-*0.--4 Q''..I N . 0 0. 1 I. 4f 05.

92

Page 94: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

4

N4.

to 144 %

ul~ ~ ~ ~ 4 lt ,r41

. 4

.04.4 . 44 .O4 0 n004J4 4 J4J 4J f-A4 0 4

44 .,4.0.140A0 4 V-A4 *

4141 440. 44 -00-)-4-0- -4-4J )

0.0.0.441r--I r .434043 444 .4 .- 4 CD44

140'A)1 04 ........ 114D3m1I 4 4

--- 43-434 40000000 mov-0 N

00 00 - - -4 - -4 -1-H t 01 4 H 4 1

00000000000000 01 3t0 0 0

- 14NNNNt x tic 2- 44 W4

-4N~0'0)43- - - - 00'00' D )44NNNN0'0)~~r in0---0 --

- 0000000 00 0

0wr4 U . , - -4

0 0 14 t4A

N . 0 .~

4in 0 -4 .4 4 4

410 14 4j A40

44 44 0 A u .f

tO 0 .0 41 V0~ x -A .. ,44 U0 0 A 4 in-4- N-0

0 -. 4 -A L. eq4. .4

-0 go 14 -. 44 -A 4 41-44Nr44 " u 0.0 -- -V 0 0 - r- r4434 )4

0 A C;..0 -4 W 0%D

J0 A *. -- %

- .44 H -4 4N N-4

-14 -4 4 -A0 014 01

U)434 N 4 3. X. 1440'0. 0 -00 0 1 -4 43- .

43110 Go41 - 0 - L.

-. C -0.- .4 -*4.. -

0 , @01 9: 0. 0 0-- AUt4 V

-1 N rU.4 .4 -- . -- q V3-0. rq 430.0u -H4 4 - -4W0.0 00U

0 1- -4 00-I 0off3 634 i

0. ~ ~ ~ Z -0. * .444 0* y4.. 0 a, J x h rq 0 4 . M q~- 0- a C

44 43 (h W1 0 at r! r-4 44 as X14-4 .,4 00A-- m)4 -0 %C W 440 101%a 0~4 14 M- m -4IA U0V -, -4 N *0 - - 41

43 (n -0 V-r~ -44 4 CN4 V

-r~ Ml ;4 '&f-14 *0 -- 'e40 0is- w - - - 00 RN 04 - -N 14- U 0

0 m 1 -1 1 -41 UN1*14a N0 - -0N'0 - --

ed V343 4 V4 44 U 0 n - 0

~~r -. 4 44 r44.4 - -.-W 44 4 140)'*''-4 men 44 -- 4en4-9 -- 4

0' --4 4 -0 a *044 0A *j4 m V 410~ ~~~ 14 .- .-4 00)4 '0440 .44

- 0 Go0- -4q --- 44 '-0 1~ 0-

+ N0 0)-N -- 4.- M M4W %0 %D(n44 - %01%D440Ia0 to- - 0 - -- - - -

0 : -4 -4 4) 430 :0 V4J4)4V 43434V 434443044 44 0 0Id00444343 0 0 00 000 0-..4 - - V V a4 0 -- 4 -A-01 aU 0 U-:

14l -. 4 -A-6L -4 " 114W"11411 w4141 1 4:144 44 W 0 10 44 t10 0 00 0 00 040-M-M p2 *. 4 3 4 -. 4 44 44 4444 4444 44 44-A4

NC 4 0 )oChGo00 go GoGo d

0 0

'444V

0 w0 14

00U

10

-4 0

V -1

44 0 e

>3 -4

0

00 -4

0Q w

,.4 01..A0 A.41 V

00 00 r

a0%10 1000

A144 C44 N

a A 4 -A4 14 0U0 -4 0.09 0 X 0

L.40.1 00.N.. 0 .. 4 a4 o0 #a4 0 0 x 00311001

-4 -4 00u

93

Page 95: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

in v

04

'A10 0 >a N Mo 4 0

414 O

10 I 0 en 04

0 r

V V -.0 11 WI

444 11440V w w 444O W" v to A a "W 4w 0 0

044 4't44' .440M W , c14 W 400 - - * 4 4

-4MNN'U'U' 4144 .- 4 cmC *0

44~ ~~3 00000b.4~00 a

D, M4 11 44 44 114 144 11 C4 r4 N 44 -H4 44 0 0

-4. - - 40 >- J44W414'4141-4444 U l X tva o1410

I 4 4. l

040,

to 4,

4 14

404

44

4. 0

t4 144U

A

4

0

a . 44

A4 0

0

* 44 0

DA 0 0

. n 0. .0

-4 0 H4

o4 ko 4 o0-

fn 0 m n.* 0 4 o .. 0 00

4 No 14

4 o0 a )I 1 0 toto4.H . (4J 4J 144 J 04J4 14

w 0

%D Un a % G . O Goo

ai Wo 0 co h 0 00 c* WI * Go

044

a00 -'14 4

0.0

r.0

*00a

m0

a t44

0

0 t

41

0 0-. 1 .4

13 .0

01 0 00-'

*. W a. 44* .I 4140 a

4W

A a-

114-4

'U~ *AW 44a :3.. *4j 4W

41 414 to 0

m4- 01v411-

Ch. 010 ..4 o

04 4 V4

40 4 0. -toJ J 4 0 4 4J 04J 0 0 4 J 4

00 w 00 010w0 0 0w 0 0

0 u x -w O U3 4 21t 4 0 1 40t,

O 04 4W m tn in4 %0 %0 r, 10o n co -W w "W 4' 00 vW 004 0o a. go0 0 0 Go Ch 0o 0

N

94

Page 96: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

41

v00N

0 a 0

'V,1 0

004

0 -.4 a .-4 0a3 41 0 -4 V3

a41 0 0

u 0 14 I u0 0 a3

a a 00 0 a 4

IA 43A10. In3 4

0

A -A

* I 0U 00 0

4 aAt Aa0 .u- . .40

'V 00 Im

-1 04 In a Va

'V 4 . 0 9-a Nn ma0

0J .4- 0 -.. 4

0w 0N 43aU

a.O 'V. 00 40 .40In oV V El 43 4

IN Ca I 40

43. 14 0 3 -.DIV> u me 4 4 u V In 4D0 1 n43e q--r l%: -- 0 14 - ; 1, -E

V oa 4 000 00 r 0 9300o 1 A0 4 00 -. 0 1$4 - 041

(4. 44 i 1 0 1 14 41V V4 4-A 1 w .- 1wx C - 4 r H a-w 0 14 0 0 w0 40 w 0 01 0 w 30 0 0w

430C a 43I a 3 a a 4

0 0 0 0 0 0 0 0 C54

C4 V'4 (4 C'4 (4 C'4 (4 ('4 C4

0

.I

N 44* 144

0 *-4

41

0 N-H4

a 4

43 1

-.4 41 Ol0

-4 4

go 'V In A.44 00 4

0 .4U 0I 'Va3 In- 4343 43

.,I Xn 4 'V 40 - -V 0f

-. I-.4 43 . 1~

o A > 0 N 140

41 L 04 043 . 14 0 t A

IA. 10 0 0 v t

0 0v 0 - p4 %V:

-0 E4 30 I010%0

I1 'A~ ' '10f0 4 0, 0140

o% .4340 I . . 4.

Ch 0 - -0 4m ;I - - -- - -

a 3 V a4V0a r43 4400 -.4 0 'V 0 -. 44 'd~ -. 4 0 'V 0 0 'V V

433414143 .-4314-43 .0 0140 0 00 01w40w w40 0 4a1u x4b'Uv44 0 U 44 >V44U0

.4 Nq 1 G 0 r. 0m10

.- 4 co Vq gm w0 %00D 0 m1 w 1 m 00coGf4 Nq

041 >

Of * 1 V 41 4

0A -. *0 0 aa.0 4 3 go ~ > n -

OA 1 1.4 -10

.m . 4. .-.4 0-- 0A 0 Vn -4a a. 440 3x O~0 VV *Oa4 000

od A 14 A. .14 A 0 a rq

VA14 *.4A0 r - C4J9d o 1p g!> A w043 a c .'*

we * Aloo 0 -. 4 "'eOvb' A 4J V0 0'4 t44VV Vu 00 A 3-.4 4 'A0 w A toVa C .a

-a.V. V0to Va 0. UV VA Id 94-' .,1 0 14w.1

'-A 0at A V1493 .1 .- 41Cd4 *.4>*V1E-0 'V' 4V 4

4.6414 M VO 1.0 U4 '4

-0 V I 4 go 0 01 .4 .34 93 a

-. 410 4.1 0 4A 0 . 0 V V 4 0 A

is 4In.V 41 I.40 4 .343rIIn0 t.1 -1 t l- 0 -. 4 4

a* A toU>. a'V.14a

41W i410 a ID ' a0 a ' 4u

0 -M 014 .. sa. 0.. V V10' 4 0 V .-413 V) -A - t

3t w4 u4Ao 0 V w0004'XI

003 0044-4 So atL oU44IVn 0 > -A3m 4 .3 14-

to .4 C 40 0I r. V A'V -

a 0 C: 0.--4 0 00a 0 0 0 V Av m 0go V 0 .4-a 0 a 0

-.4 0 4V 43 0 V V -4u UIn ' 413 . 14IVA U-4o434J >

00A-40 0 14 m4 IA isS. om q 0 C.In3 In-404-.4 4 *V00 0 Imr A 4

.. 0 1 f V 0 I V4A : 14 -. 4u

mu a 9 A 1oV A 0 U a0 . 1 In 43 0 14 A, 'V 0 1 0 0

-4V 4OA I 0 a V V43

0 to 14 044 1; 43a A 3. a*0 . u 4 u1

>o 44 4 a->1 -40 -.4 4 0 AVA L9000 'a01 - 0 0

014a o VO' 43 4 -AU4 WV44 oaao 001

0 .-I.4 4J '0 0 43.0In 0 Im v31> 3 In 0 A 43

0 41 o Na4 0a r A 433 to >1-.41484 14 0 4 Um In

>1 0 440 0 m4.. go.0 : L

95

Page 97: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

41 4 0 W00 0 0 0 44 w ,

w- 0 0 41 00- 0, 0 4

9 1 A 0 e 0 0 -4L 14-..41H 0 14040 41 0 1 0 . 000 W t

041 0V - A 000VI -40 .-- 4 *40-0

-4 0100 041.0 - w 0.-. 0'01o- 004)0Wto 0410A L - *4.0.0 0 00-10 0 0 W .-0 r0It"41A0 0 4i 0 .- 4>1A-0 4J0-

-* 04 V ooo AV H. k o -. 414 0

00 14 t .14 0 f"410 93Q 0 0 w1c

410A V : -1 0 41 a 0 0 2 W .- 040 0 41w 10 41 >.a0 *0 -4 -4 1" 0 .. ,10 4J.4

14> 0 410-d4 '" Vv A > 0 V A 9:9: :-40 .. 4 0 00I l041 l00 0 so *-..4 a

V10 a1CA>1 0 -6V 041 0 -6411 41 4J.,40341 -140.0.0 14 A 44 ul-14 :3- 01-.00 VFA0 U300 t 4J4V .4041 V U -4 -14 0 V 0 9 A

V414 (A41 V a41 a001a41 0 A 4100 41 vU)V 1-4 0 >04 a4 i wof0 -4 :00:0 41 0900 0 L 1 -0-14 w ul0 :.414$a.00 .4 0 00

00 W 10 44 0 '-.40 t 4 4.4 001 4J0 .4100 0.04 "V 044 4 0 V00*-.4 0 .04J Id 0

-- 4 > 14 0 411 0 L :-4 * A 5 340 041 41 440: 0 t*blC-H 00.0-4 -4V V40 4 0 a o C L

00 m 0. w *as 4 A0 S3-q > 0,40. 0 000 0 415 .4r-4 4 w 410 c 0 - t 40 *10

0 00 a 4 0 2u 00 v -1x0 -1 A 0V.14 *-.4 0 -4 4 54 S-1 -4 L.C:41 A4 41000' a. 44 0 V 00 0 0 0 44 4 :4) 0 V 0A

0 00 Le -A 0 141.a40 14 0 0!-4I10u 0 A 0 30 010. *k.4 14 . tP.4 0 0 :%

3 -4 0V M >1 -4 00 .4 Xt0'-1 0 V V 0 000 0 v A 0 0 044 0,41 41 A041 a

-. 4.4 wOOV 0 0V 4 0 -4 V44 00 0V 00 WA0 .004 -4 .'.Q41 W114-.40- 4.-4 'A 40 t014w 00O.0 0 v0--t 10 1.4-4 g r4 01W0 'V AFA0 4 1 04r.0-4 C 4 0

140 r-4 V A.V .4 0 0 41 > o u044 0 -400. : -. 0 001 4 V W 10 U O 4 4.4 t* V0 0

:>0 L. 0 140 :3-4 C 00a10'041 a00 A to0 40.4 0 0 400. 0 0 09 4 4

4 0 -. *. 4 .00 C61444141400 0'14 A9 Q.01. 90 00to 41o . 0 0041IM 0 41040 0010 -- 041 -4-4V41 . 41 030 0 U U 934 0 -A-4 -1 C0V4 g 04 -40 41 L. -L.. -0izNAlA *00, 401V10 t44 > 0 -1 0to0

0.041 to"V 0 -A.to .4 0 .- 400. A00: .4 410) *41 .4141V 0 0 00 -410

0 V 0 00 0 0-0.-.0 0 W 4 -0AAV VV -10 r

00-4 -H 3t0a 1 -H 0'to -H. c 0 0 >1U)041410.0.U0.4 0 4 0 W0 1 .04 4 0 0 0 44J 40 0 0 l0 00-4 0410U4V 0 14 0 4d-H-UA 30

0 04114 41 410 .0 0 0 0 0410f0 A U)V0 V-,4 4 Ul ) 04 E) MV0 4 A f0>64J0 a0to4104 V 410 'A0 41V 0 -41W43004 4J -.4 4 C:W L)-H 0.-4)0 A to0 93 90 0 41 -A-. 400a0a0 004 V .4 )00u0 U 000 44 -H *0 X03o 0-H-H 34 :1 O4 0 -H-0 VV 0 -H V04J 040000 41 44 0 r0 M41 0 l 0 A1V0.0004w

.- 40> 0 Idt 4 -H m 0 w1400 0 -H 13.0o-H VA 14 0-4 .A 1 -414 w1444 03 .14 014 41 -H4 3 to 41 0 0.041 4 P0 W014Z010 0 W 44 A 0 0 0 :3AO

U r-4 0 0 O--Id A0 07 004V 1 M00-44 q4144 :0 V V 4J0 410 9 -6-H40.- 4 : o 3C 0 d OV > : a0A C: m0 cdA x V0440 -. u4 L A> 0 0 C -f0 W 0 40 U> V 9-,1

41to

-to

0.,00

A5 0 go

V >. 0 0

4' 41 0' 0

:0 00 0 A

14 a 0 L

- 4 0 A

0 0 .1 1

0 -,4 :5 0

0 41 0 0 001 00.-1 4 0

0 V .r0 41

0s 1.4.

0 00 t~ d0V4101 9 -410

L0 L -14 0

01400 00 1 41.0

41 L. -I.4 v 0

0 04004 to1s 4 4L, 0 g3-4X0 41 1 4 1 14

0J r I 00 0 .441 00t 410 to0 -..- 0 d .

*.41 .1H V . 4 -H

.014 00-4

40 0 0 0 0. 0 00

000r.410 000q 4

41 -. 4 W r0-.

0r ..40 93

0q V'0 0 0) 0A-0 *-10u

0

0 .0

44 41 )

41 m041 a 41.r

0 -.4 0.

-.4 04 04

44 44 114 V0

*0 qavO

A 11 .

41 04 0.-

0' 0 0440 0 -. 14

.4 41 0

14 0 000 1 041

0 10 04

040 41 V4

0 0 0

31410 0..4 0 w0A:

04114 V '&4

0.10 4V

00 V V0

414 00rI 10410 UA- 0i

014q V0 A 0

00 9:9 -4 U00

41 0 4 -40

-.4t 014-.0 144 -4

0A.q0 00>

Ll41t 00 ---

ill1 0 0-4 41 0

lowI 14

U)410d0.

-. 4

0

41 0r)d -.

41to

.0

0 0

-000

.. 4 j4

90

1

41

41 (a 0

-00

S0 44 0

U)0 -.4 . .

r4

4J

41

4

-4

00q

to

0 041 41

0 0

. N -4j

0000 +

41 41 +0 V0

1 0 a .4 f00 .4 00 0-. rI 04 11 3" 40 0 41 41 0 0: 0 41 11

-.-- I 14 -4 L. C0 to-- 00 41 0 0w

0410410 044 44 --4 0 0 000O 0..j-.,4 41j -. I4 w 0 -H4 .4 -4

000 000 000 00 000 000 00 000 00 000000uuuuuuu0u uuuuuuu uuu0u0

96

000

Page 98: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

000

1

0A0

-.4 41.

1

-1 0

A 04 0

-40 A.

W0 41

0.44

-.4

41 5-W rq N 9OO

to -

0 0 0 0 -0-.4

z - - 4

1 0 0 0 -AA4A

0 --- I AL.

0~~~~~~~~~~ 444 Ar 00U00t 000 444 (nL) - -A 14 4 -4 4 U-rf 4 0 A L.U -H 1 4 0 -H

0-'A4A0ri

C4 0 0.

44

-4

0

0-00

0-.

-. 4

0

I

01

0 1044 lI- rw ) -

A- -44J00 0 . a a

93u . .4., j

041V A

04 0

VA 0

0 0 4

VU 0 1>1

4 4 ).

0 "1

00. ~044 0 1

V014 >-4 tA b0 -4a 0..4 to) -V

' 1 , r 41 4o

0 t -4 0 -

" 4j0 0 - 0 0

04u 04 -4A1

404 V f ty 0 00OUOAr4 01a- No

S. A0 t -446 4) A- - D+

L.40 Amwwl-A 4 U V0 -. 400

to V A u .14 too

UA -IA 0 1V e

0 V.4 0 gg a 4

*4 0 .0 0 44 W 44L44 --4 0. w H..0 ,

A 0 Ol 0 44

0

41

0*t- -.4

44444 a-

000 0 I-He

01ll .

0000004.)u

IIA440K-.4

$4i- $40 41

0 44 r. 044J

-140 -A4 14

u00U 00000u

97

000

Page 99: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

N

'0

0 V m 41

-4T

410 +0V40 004.

4-4 0-4

-04 0 0

C:a 0 0 4m. - 1-14 a

440 14041I -V0-0 C- 14J -

044 41 0 ; .44

0-41

r.,

w0:

*0V(441

0 9

Q0

-1 4 la i4

:1 141-

0 *-4 -H0 0 93444w a4. u HxwuA -4

r4

-4II

-a41

0

U-.4

0.S

410

'0

14-. 411.4

'00

410U

04141

004a

4.4

+

-41to0

01V 0+

0 V . a

o V -. 44.v.nt o 0 - 1

04. 0 14 .4+ 1

0 0~ 0 0 aS. 9:; 0

V 1V V .14 IM 0 IM -mIMI

4J 00 11, +0 -A0 V0

0a 00 N aC en 0L Qv-4.-4.4- -4 X V1 --I -II -4fb .f

0 -.- a-0 0.- x0+.04 L 0414.-w141 4 .4 00* 4 -.40 - . 0 -.-

41 4 4 V41 4J I 441H 4. 41000 0 - 414 A1N V0

0 0 TO TO l.o '44 .00 40

L) V.4Q4100 440 441 -4-1 1-. a4 41

- ~" . a aO0 - 0 . 4 ' - 4 ' - - 4 I - -

0 93 oa 0 -4J 4J a am 0 - aV 0 - 41 a a1 -40 41 a a - 4 a a v a

0 4-.4.4-4 U44 0 0 I--;-i 4.4 0 ; 0-.44 40 0-';4r. 44 0 I'da.4 -H . 0-.0 . 4.4 0 0 9 4.40

0-4 -4

Nl n--4 -4 -q

Qn

00U0L

98

u000

Page 100: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

In (.4 In

N- n ~(4 *I4

0. 14 0

01234M' C4 %0I bi 0 N4 1.4 40

-A A :41 N3 r4 ..4 O4 .3 044343(.

4 'M 44 0 Go kn + 'm.3!qw * 3 0 a 4In('4m

- 0I.43 4 ('4 Go34

04 0 *+ w1 wV4344 w4 54 wI+( w 4 w w w

0 1-4(04 0ema

04 0*0 W Lon- CD I* 4 3. . *I 14 14qIm 4 Mii II in 0 n3 4 Ln o4 in4111. o . 11r4

00 4

0 A034 -. A (-

L4 01 00V 0 0f 01 0l .1OC4 .1 .4 - A- -4 .4-A0U' -0 VO P n 04 In 0 In 04 r4 I -4r 4J -4

0'- 40 o'. to 4 4 n V n 410 41 v' 0 0 v0 v (4)40 4 4 1(3

04432 43 w43.a 30a 3- -c144 W 034 43 043&o 4 43 43 433344 .- -0001 0 -1 4-.4 !.w .4 .4 -. CD .- 4.-4 . .. r

'-A M a .I .- 4 l .' % .34 .to 0 0V - 10 1 o*. **. o -3 *3 3*4*4.43 - c4 .4-

*r iV4H :1 t1 M 0 0 40..4 V0 .4 4 -10- .- 4 in in 3 4.r4 4

.4M: L9 0 N4 N. C4 V n 0n H D 0 #r lr 0 M0 qM qU'0 MA 1 C4 41 41 h .0 wI m

14 ,1 W . 03 00 0 fl 0 . -o -o -o -4 -. o4. ...r4-433 04 0 .1 0 .14 *0 .0 *0.............4 .I-1 f4 -4A" -

-4( - 0 -. 0 : OIO t r tn wn t In t43.43.nV '4 4 0.............4o .In t4 0.40. . . .10103

u c20 0430 .00-c040o0 0 0 0 *OO .In -ON V.

aU3a(314 04 (3 44 4344 4 4 3 -4 4 44 4 4 4 0 4 0 W L. -0 00 . 40 VI............................................................14(V *441V ~-4 1 4

00-(30V00-44

A-41 u 4 14bu'0 U' 'b b4 'I bU U'

~.0344 (3 .-............... .' 0..........4 .I 9'0

.4 Nw(3

w a0

V 0 (3 a(3 40L -.

14 (33 w +

4 .0 -A

n n 0 v-'U-104

- w- nv14 w x

.0 0 4x

A-- -0.0.xw00 06

0 P4 A' +n00 4W0

0 00

.4

0

0

1Aj

.34

4(

.00

14 0 -

-400

0-4n4 -

V3 1 1u 4343 4

00 0 -

0 00 0

V 0400

01.

a 0

04(40 r

Is 10

>31

0-

14 0

0

.00V 30

140 0w

000

0000u

www6mmommom-

Page 101: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

44 14 .9 X- 14

0 >4 .34 34.& -

440 toN N w' N - L N 0 . U) CC4r

044 -I 4 0 4 0.". a 4 a 44 -4 NN.4V3- oA N ) 0 4 4- '-1 'A U ~ IAM t .4 4 VV'44 44 N14 N 0' 4 0 .4N0 N ~ N N

.4N-.4 -4 0. N - V >.NO N-~~ - 0.04440- t-3 N f.- 0 - 1 -A 0N N-

Go 1 404- 4 0 r 0 q 00a0 N 0~ N N--

' r4 r4 -4A W4 IA 0 0 444 a 0- -*.40.N 0 N - ZN- V -01 44-4 * .4 444 0 - j44 U Z 'A -, . 0N *4- .I -,I' > -. , C NN (4 4C

0'V -V .- i ot -0 44NN u c4'alm *A 3 -I 4 40 w4 in C0 0. .- 4*r41 -l ON UV UN 0.4 ;A.N0 A .- l 0N tr 'M0

too % .- 4-. .4 U.N -140 N -'. -0 - A .1- 4 0 NC.4 IM >. - 44444o4"1." -AV 4 44.0 C60. -'NN 4 a 0 w 404.4 >->0- 4 0

N4V) -CO - -1 0 2! -00 04 AOA.4M04 ; 4 Uv40 >~ 0J.4

'A.I.4.4 0 4 -A XV4 0 -ANN40.-,.IA U) 4 w 4 r 3* A4) 401u.I- *l 0 N'A .04 NO 'A4. -0. An 0 'A14 M0'A~ > 0a - to

.- 4 A~ *4 044W1 V 0.N -0--r,-0 NO4A-w-. > N(4

4-144 4 0 -4t 0 3t u'A49d 4'- .0 N - 0 waO0 4 0,-C4 N -

V ' 44 go 4 A-I -n.VI0'w u C40" VO0 NJ N14 N- - *1 14

0 -'404 x4 0U0 00 C-4 V 00 O14Oa. to N> 01-N-M-L. 44-.-44 -. I'.4 - -N -4 0 - NNu" -A -N 44 A

44 44 0N 0 -N.4 0 -- 01- N -44A--4A4INto-N! 'A ., 4 toN -N~ '0 -. .- N O 4 N - N 4 J . 4 i . 1 0 N 1 t.- ' N N -. .A N 0O 00 ...- 13 a, 0 to 0 -44 404 0 -0 iO-NU .N4) -N a'0

0A FM 1 4 0 4 - - o A : t044 A---4 - 4 N :3W N40-.9 4 X-N0 0 04 A 4. >ig-- 0.- 0 - 4 MAC -4 014 r 4eA -r40 -0N 4014 W 0 -A0 - -N > -NC 0

00'-- -O -1 ri -IN 004 -1- V N 0 W4 -I AN -N0"-t, 0, - 0

1N-.40 - 444 r0 o-.4 0.0 0 000 -0CD 44.3V 0r' ento N No N N-Io N Nl > eNSci

t -W a - 0 ?A . . 3, a aN>. 4ON-4. 4M M.4A0 440 400-IN4-'aV040,-4 H 1 V44A0.0.3c 0 N.

0- S0%'1 \, N N 4" N

U u r0.40 ' AI 0 U 0 0 00 440 0 00 00a44 0. 0 40 0 in 0 f0 44 0 0MN0 w -I 0 0 .4 04 A 0 00 V. V4

Z 44N 1-4 A - N) j .0 -- I tN NW0 -H-. v NNNN NN N, NA v4 -1-4V ~0 00 d a 03 03 a0a 0 Q

0 .4 10 0 0 0 C 0 0 0 0 0 0 0

a 0 0 0 0 0 0 0 0 0 0 0 0 0W M I .- lU 00 U 0) 0 U 00 0 U 0..................... .......... ......... .................. +........

0 000

100

0000

000

'V00

N14S

4.)0N014ON0.0

0-I --I

-44.)* -. 4

0

1400

000 -.40440 -- INO

-. 4

0-- I

'00014

0 N44N IAA

-O:A x 44103 00 o-

N.1 NA 344

4. 'A.0.AA ;

14----4.

Nl 0 0 044

44 N 0 4Nr

N -A 0 04

0 ZE 0 0.0r

-004 44N14 -H

0

0o.

to0

0-.9 t

0 14

'AN

N 14

AN1

000U

fn

0-

q'-0 0

-,4 0 0

-4

Page 102: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

NN v 4 1 4- 41--'HN ON "I NN "I.N,

1o' -N N1 NN N

N-4- NW -W IV . NW wN

Nq i~ -.- . t .4.44 Z4I 14N

N, 1 I'a. - 1. q .61 -qq 0-. 4

-4 0 ~ 'AIl 411 to, --Q N mU -4t 4 9 Nq U-

-00 M 4-1 -4 1.lWV

MN0 -. 49 4494 0J

A 40 NV C4 A A 41 aU0N4 13 V V-wN-W - M 4 w-

90 -A C4 i -NM Z 1 - 4 "1 41-A ce 0O'I V 4 4 r rOO 0 1 4 a

* 4 4 44N 49 -4 44 0044 44 q44 40

INN ofN- l -4N 0NN4J

0 - ' 11 93 4I 0.-4 a 1..

a -- 4 -o - w - go -@A4

.,4 N ' .9 1 Na 3 1 44 "ao 0 )10 1 .4 0 l U

* V1 13 V 1 0V U1

u O, -- 4 .. .- 4 . ,I'

0 0 0p 0- - 0 . 4 0 --

-W 0 c0 4In40 N 0 N N0 m w

0-- *-9a %)- 4)- U

0 -N-0-'

41 0 41 0' l 0 ''. 0 0 V' X' U' V0 4 U' a4A

U -4 44 14 .- H -4 '- I4 U : - 4 0 '

0914 --- 0 U------------------------

14 14 0 A u 1410 V 14 0 V 04 0 A w 4 0 A 14 0 .04 0W 44 4 40 49 . 14 0. 0 40 4

*4.'4'.- Go.- 9.4- 4I co Go o Go c

to0

4K 0*

4 U-4

to 0

40V

0 0 N

0 IN

do4 - is 314 0 -4

0 w >

-.4 N

W 4)4-

0--j

00A (

.4 4 1

40

U

0 H0 4r0 V N 0wt

-4 U1 1 V440' .0'A00.00 4

,14 U 11 4.411 11

Aii V144 U3 Ul

0 ) .0 44 IM

44- 0' U 49 V4 V9 V 49

4 4c

4 4t4 4.

41

* 4c

41

14

0 4c'0 41

0 r4U 4

r4

-A 44 H4

41

0

N w'

0 4

0t 00U 3 A

N+ 14to N401

0 W06'A 3

I 0' 0

to-, 4N -4 a 4

0 4 A .u0 .. a4N

r000

.w0.0u 3-

N L4a NL.2 r3

C0 a0 -0 - .

N3a rqA*.4 r 90t 3 140- L 0 a

u U 0uU

101

44

p4 U

?A 0 -

4-4-

V* V

0 U

9 .. 4

..- 4

0

0N

00N .4

4 'A

'a 0 0I

W

0

-0-4

0 Oa0

Page 103: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

+ 0

0 .1A

4t 5 4 --N0 -4.04 U

go 'A w 4 +

4 0 0 0-.

4~f 00 ~4

40 ad + ) .

to 00 - ' 4 4 0+u Im4U)4 41 r4 +'

4 4 r.4 4 U) A -4 *.I 0 U) til + U)0

U4 00 F44 ) m Ato N No 0r i'

*' 'a A 0 U +U) ida -- 4 V 01 0 N4 'A U.4 rq 0U 1 4)1 ~ 00 i AU-4 0A 0 041 4'4 * n-4

0 r 0 - . .4 to 140+ 0m0 01 m -I + W) 0 ul a410 I

'14 0-,4 ++ I in IM -40U+ -.4 iN0 $a 41Ui in to 'I 41' MU)4 _ 4 _

0...4U4 '0' 41 %0 - o Xa 00ain o 0 0 - 41 44 -W 0 0-4 0A1W

* -0U 4 00 +MO + u-4 > I.V' U)0U) 14 0l U+ 0-.4 ""ul--

U) -NN w +. 01 0 >) in 4t),U)4U n-A 14 .4 C ) I N m * t1- 0 0 M a)0N,

00 u a mU) 0 t)o 0 m 0 1i) t 0 .# W-.4 .4 W a%a %0 0 4, ++.-L 4Aty 1414t "0 04-'111-.4 -0- 4

Sn 1. A14 m to0 nw .4 -A 0 V u a, do 4 aU) 00N, 0-H - - i1~1oa > w +~ + ua w-

N1.- U 0 +N NU INU, DC4rN 0. N %i0 m0H N 0'0ru V 41 4 41 0 k in I C4 -N 0-4 0 %0 '1r.0 (n 4 ON in Ul r x -

U4'4 0 C4'U *in to NN-0weo>4aMA UA'-.x

01111 ~ ~~ 40 *Oa.40 aI---II 1111111. II4J- .to~i M 9:93 V0 Q*0011 Ill a 11001 0 11 t" .U .. . . .I w iAA~4

.x 29 44 L. -A 1 1 " . 11011 . N .- 4iU)un AIIIU U0XNVM-.40 00'.II Iuu q 4 :3 ~41 CU to II U) W ..- 04 C44 0) UCNN O 00L0-i4 0 4-4-4 01 UN.4-4 U)U'a4 V Va w 0 "U) 0.0-" 0 M4U-.4 0 0 93 u . 0.4. U1 0 . .

44) 44 X4. 44 444U0UUUUUC)UUU.

49 44

u 00U

41 4

4 4

4

44

U) 4

U) 4

4c

0 4

41

14 4d

0 4

+ in)- 44

to N

4 0

03 44 a1 ~- 4 -00 .

'-4 m4 Z . ONItIto ) 4qt44 )

i 40 4 --I4-4*0 'N 4.41

U)+44 + +Z to U)U)

3 t 0'4 - ' 0' V 40

04 I 4 M0

41 0.'. 0.0

-4 -'44 a+aw -. +4 - U) U)0

00.- U)-NN4

to N0 +N 0

w *U)' of4U)00a

4'1 U)1 ifMN3C

4J *4 4 4W U) 0. W44 0.U U)

- d W- 'A4- 3r44- 4 a, m N. Um U uA- N 44- - 44' 4'M

w) W' L. 4 W 00

U 0 0 0 0

102

4

4

4

a0

-.40'014

1400.U)

14U)'0a000U)

0A4'

44-40

0'140a0N

-4040

4'0..4 4'aU)

-.4-4

0-4AU)4'0

04'aU).4 0'MU)14 -40 44-44'-044.4'0-..4

444

,4

U

0

4J

1

0

U.4

44t

4'

4'

L00 000 L 00 u 0

Page 104: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

4t 4'

41 41

* 0

V' Vv.00 V

0n 14Id1

V In

In 0

to Vn I 4I

Is 41 w' 0 4' 1

o ! 0 1. r-In 0 0 w -' 0.. 4 In 04 -.40 4'

% 4 4' 0 0U I-. I 0 u' 0 0' Io 0 0 0 U 44 -.

-.4 #a 00 A U ; 4 a 4 wn' 41410.0 uI %. - 4 0 V a go 0 44- V 0 W 0 w. 14mg a aw 4O *1. 1

*A. nb N A0 o w0 0Fm -. 0 -44 0-04 0 0 --In n0 In 4 n MAO q

. . 'o , nI0 1 0 a 1. 4 w001 414 ow0w0a4144 -A 114 VPIn 0 Ul OO 0U - fn4 .0 4 4 0V -

0 W 00I N0 WU4 -. In4M m $.0.000 In0In0 m 4'I0 4'' 3 qO. m140 0

14~.In'4 0 44In In 00q 4U) X-104 4 V a1Id '1 4 96 % .I"I"

16 V 10 U1 I0 4' 0 * 44A*-4 0 Im .4 t 4'4' 0, 1 ~4 4 b '-1 ' 4' 10 10 -1In . X0 4 -. 44 tP. . 'In 4 *In

-W a0.4L-..-in4.-41414 1 4.00. 0 0 w

0O41 .0 "41 141 @00 O.a 0 4' 0t

tn wn0 0 4nn'-I U' 4 - -A 0-4U '4 IV ,44 0 n4 U '- n110 - to -40- 0 I

0 44 00 r.'A'0-6 to44'-. 4 4 *I t* .40n'. A .44f 'I a II.00. 0 -f0 .OO u U

04U U 1a1aUn 4 0 0w

* .01 0 In 104

U U U U U U

4 4 IN a. .4' 4 4 '4

4' 44-(4 .4-.4 .4-W

N' x4 4' 4'

0 N *I .0 w4 *4'a.

1N~ 0n49 In In In +xn

0 to4 to V; 0." +4

3t '.44.4 :4(~ " 4O .0 "A NAO * 4IX V' + IInA.. Inl w.I +I4 +InW 4~4 4 Im31 In* InA a0.A In ol1

A0q ..4 i In'A4 0

-4 m''4 - w Uw% #0.In 4' In 04' 4 4 A w

4'44 --44 0A In 4. '

-'4 *' I 44 A 4' 4' A ' 0 3 In In

Id ~II n 9 W. - 1 N.0 x -.0 4In0 W1 44 InL. 4~4'n~~nnU'n90 n a.0

N1 In IN 4U a. , w U Xn a.n N

4J '14 A104 N 4 A U .A-4 4 In In N In -. 0nI . 0

if In 44. N 44 N 44 ' 2 In In*

4' tONtO n n In td~4' ..'-'14 W 44 44 W X U'X X

0 In In '1 4 1 4 14 1 I qn4' 4

U'4 4' 4' 4' 4' 4 4' 4' V 4' 4

54 Ac '1 C '1 '1 .114 x X X 0p

0- (4 0' 0 0 u 0 u' u A In

UU U U 0 U

4' I

4 0

4' 4'

4' 04' 41

041 .

0

-4 0

0 4'

-4 -

4~

'U .

'A'4'4

to'1

0' I n In t

-K 4 44 44

0 4,' 4

04-. ol.0 4 41 44 -0

L. L1444'4

to -A4-A4'.4 U'

A4 a. w ' 2t (a

'1U t 4 in '14 * L)0 t 4 oU14I '1 4 3Wu * a1. 4 tU)x4 t

ga.~' t- a. 'I4 VI n14 44 1 2, 1 4- 14a. 0'n4 '1 4Into 4 4.-.4 40 In' k4'0l 3t 3tn t4n4 0 InI41 w '4I 41 In -n'a 14 0 ~ 4' V 4'AlL

1-0-W w 4. a. v 1a. - 4 4 O 0I4 U IS~4-14 C M 4 - 'A 4' 44 #AI~4 I

4 x X 3'1 4.4 4 ' 4,A 4 'a 04-1 a.4* 4'

A4'Indo .4d " ,A do1 N0Uw ll$ 40% 0

.,4'4'' l ll 0,I a..44 a. 44 4 U4A 4 t44 M M 44I4 *1 '14I OWVU C W 14~

.44 4 NO 4 ,4' 4' aIn-.14 -. LA-~ V 140

LO 4 1A4a4 t* U 4' LO U --.

10 Q A M 4 )CA96U 9 4 d 434Ua.E UUU 044 N 44V X 3t V "wvIM tP'InO -.U) 0 4 -U

U0 Q U) toII U)UI to CA I lM i f-40Indo WI

14 3t3 4 144444 14 2t In 14 44 U'l 11 0 0 U 44 44 In 44 44IU w L. tlw w ol W wu w W g: wU .".j &a.4.4H

4'

U U uU

4'

4'

4'

U

103

Page 105: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

0

0'0

aa

0 w402

UW 0 FA+a4 040 4)

0 1 0 42 1 -

42 W 44 944)-M 0

0 41 42 (4)

0 4 4 0 go

14 042 04 0 -0

) 940 go 11 4244 4 m 99- 4 '"4 424 4)42.'A 44 Du U f A IaV '

0. I 0 . 42441 l 424 0 N2+

0 4D 991a 4)94 m 4) + t

) t'4) t0

042) 0 CD U + 0 4 V U)41

-02)9.1-a -42 00.e2-48 Q2.2 .4 +4'aU.U

-f2 r ~41 U3 V > AS 424)IMa44. 4)9 044 to

r, C4N 42 43.40w

" a 1144 l--0 144 42

A n 42 44 -. 0 040 0.

.4 4) W 442 4 V N 42A 420N4 ',1 0.24 244 A 01 42 M 84 -1 -

04 2''-4 - - .A >4).4ON420-4)24

u.4.04 000050 '

-44)

(aa.

M4),

A.4

C4

0'4)

to

4),

.4

482

'm N

01+

a,

0

C4)

A

I 42

to ta l.

w0.IS'a 442

4 I + 0 4

4' C 4.A 1 +

14 .4 *9 4 I n

48 4-- 41 W 4 4

A. 0 4 fa -l toa. 0- 0 42 9c44144 41 4194 42 v9

Wa' 44.V10M4i2IU 0-44a.0 142 4r2-14244

+ 1.43 0444.0 V4

In 41W41 L 1 a'. 'u

02a 0a'a4J ' 4 4

a4J 44 44)2 9 H . H 349.

+4 449- 4 9- 0 4 --

I + Nl9-11 42+4a+ to V

0j0 -a +2 to 42 N 44 4-'- : " 04 V M NN tn4.4 t .- 4'4 t0a 3 %9-

42 a. , -09 )N 0 tP 44 0 04 .08 q~ 42.- N o.- to- N .- 4 4

0144 to ' 04 N H 40W 1" 0 .44 44 49N >

04 4 VtPNOJ-)0'-r.4 0.+ + 4 o42> 40 to>~

:440C '1 0 a*41- 9i.

.0 0 0 114 )-H

4J 4) 44 844 VI- 44 443- 3844 49 0 0'

-. 1 A4.

42 42 .

0t0o

.4.4

.4.4.4.4.4

0.444.4~.442.442.40.444.4

0.444.40.4>.40.4

.408.4a.4

'.4.4

43.442.4-4.4~.40.4

-4.442.40.4

.4

.4

.4.4.4.400

C4.

0

0

(AIA

C4 -4 11 4tN 1 to ts _4

9 . .4 04

.H428 4 .4 -

144+ >421.4 4240 .

+4404-4.

'404u .4u

0-14

4J

co 42

".9 9-4 w

-412

U) 0 0

.-4 4 044

00CD 0 L

-A 0 0 C

0 .9 ?A 4 0a4J - 4 .41

AX 10 TO0 .r L, L '0 4

.4 V . to I' '0 mW r, 0 oA - 0 r

.14 -494 0 a9

V)~ ~ ~ 8-. 4 094-P 0 4) 42 V

00 %D -

a 0'S 0 -.4 4

,IU) to 4 0U isoftoa 0 4Uo4j -

M 0.4 00 d 9411110mMr-4Sjd-- ' I >40-l' 0 0q4 . 1ttto 0. 4 4 11 4) 4) 44- de

*00-.-444) 0 44 044 4 04 4 W14

-1.4 .42q .44 - H- *-4 4 0'q -4 1Ht

*.ag q.0 ~ 00 9

42842~~ u4a 2 4.

104

Page 106: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

0.4 toU

0'l 0' 6:0' 0> > > > 4 04

+ + + + Mm a) to of 0 -A 0 14

00 0 0 A - 0 V

0 -0 0 .44 04'

4. 4 0 4 14 4 -4 v 14t

M - 40 + 4* *44 *fl14 *44 4 m

0. + 40 434, 0 a. +4 U) a~ V

ma 44 *l 00 -4 0. 4 01 u m

A4 4. Aa. N r4 A4 0a . 0144 W4 .0 410 4 4. 0 10

m> U -0 +0 . 0a -a mu m00 *. 14,. 0. 14 .4 V 4 A*4 0

to- a mo' to. 0 a. a o - 4

V 44 0 to4 0-41 444 .2!e 1010 N-4 a 0.04 U) 0 tr >04 a4 a 401r4 a tr > 1 . a 04

04 - 0 o- 4 Im- 0 .40' 3 m- 041 -A a .C 0

0 *-4 N 43 0 C, .. -4-ma 014 .4>-04 -4 14. 4r GN 4 W4'00 00N4

V- u m am -. in'a 0 44 0 4 0) V. ' .0 OWN

.- j a 4 0'J rt aV 0' 44 - 4 0 13 00 14+.40 +.41

to4 0 40 u 0m . 4 to 43 0 u 4 a%- a. -4.14 Va V0 aU'0 0 44 140 oa 401 4 a V 0

C4 4' AC4 4343 >. 'A M M 1 -4 4' Ir u 0a.0 somU 0 -0 4* "4 5, 1 0 u 0 0 *- Ob 00 .014 t444 04' -A4 u . U, * 0 444 440 4' 4jf4 0 0 04 :*9 F 00 1 1 O-. 44 * 0p -4 1* 0 4 1 0-404v 43 am 14 L

NO 4 Id 010mM 44 4 * .4 0 -4 NO 44 . 4 0'U - 04 0 -40oef 44- ml0l~ 44 14 N440 04f 44- m1-44 0.0' 4+ 1101 0 +10M 4

. a44$ VaG 0 1 0'.0 WO4' 44 0'4 m-4 0A .1 0l~' 0 0100 44 1. 0 04 4 4! .44OxV s A0 : u - 0 3 I.4 0 q ?A M 4 .4 0

00 I .- 0 - 4 0 0 0 a 0 44 V C O b'44 -0 .4 0.(4 +Id C 0 M; 0-40 A>, A144'0 414gogo;14U 44 0 m1 ) 4 4 404 " .. 0 I 0 000141ta 4 0 44000m4 Mto .to 4 mAox 0 r

4Uj&- 4 Z 4 *qbCh 44 -0 0 4' 0 --. ' ' 0 "4- ' 4 - m m 4 ' m4u 4 00 4- l d H 443 0 4404 0 0 '1N0 0l., 0 VN014-A 4'4 a V- H 00444gm.0 001

U)o m (m Xi nmim ) ACi U114 Ia 4m to 1 10 A m . t i 110Id1Xm)11 V 41 0 l-'4I 1 V431V43-40. W -10 0 V4'A -4 0 AC00 ,)1 .40 0m4U) O :ma0 t 4) 004J.40 1- L40 0 4J -V.0.14' 4 -.4 40 14 4 0

- U) 44 -. 4 ed f -0-11 0 0 L4 44 0 44-.4 Id to 44 - 0 0-1go1 1 1040V t~43U -..040 to44 W A14 W 044410 00010 0 44 44 W 0. -0N44 0 44 W A14.a4Z40.0 1400 0 0 0 01 fl0 0

- 44 44- W- l u% dWA U 44 -A 4 44 44 X.A0.H344w x- 4 A W4 1 UA A

N4 m n14 44o 4I 44 c4 0 (h04 0 '04' Ncr 44

o 404 * 0 0 40 *4 442, 0 404 -4 14 .-4 -4 44It4 "I4 : . r44 If: 4 444 14 44 4 .4 0o 0 14 44

U 0 0 U U U U 0 0 00

105

Page 107: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

~-0 A A144 155 (1 . >4) 14 a.. 0. - 4 -

40 H 4 - 14 4 . 1f

Im 44 to15 W4 0. w40. is 4)52 15 4) to N -A

4) A.Q4 U) U5 0 C4 000.4 a052 -. 1522 b3 052 4 -"1 ..4. "15 4O '4i.0 W-4) j440

'A15 -U U- z2- O435-10-1.0-H0to4x. 4 toa 0 fm15A2 >- al052> UU ;230.4 -0 00.5.-.1I 01

--. 44 5 . i 4 0.44 052 5'- -2 -1-0 4)5 o . N

-4 -'0 - L S.o t o-1 0-2 -.-- 1..00.0..epto 4 441 0.-U ->

15.-452.1 U050-5 ) -N --- d ). .4 1 4

22552 Imr.o.-4' 0 - A A- 1 ' 41 - . 2.-0 - 5 I0 0 0 .3'~5 ~ ~

0-l 'A 5.U-)52.0A. U a 0 A121.. -, . -A2L. t -H i- v)45 .,j 41 -4j -H520052052-A14 N H5A 5 . _

15-4.015'- ~ ~ ~ ~ ~ ~ ~ ~ -5 05 N .14 .0--4)...I .54) 3.o .>

, 4 4 4 5 u * - - . 4 0 5 2 0 5 2 0 I - - 0 1 4 1 C , 0> . 4 2 ) 1 : a 0 .'UN 5 .4 -4 1 0 b 4 ) r . ' 4 -1 5 05 . U4 0) -to0. .

0 -15 .0a.)527-I 1. 41 4$4) 21 to041 15-a4N4Pon 2 - 0 ll.-0

Uol U)-0 U--4j t x j 4J.'-. 0 0 W 0 4 a -. 5-440012 -M

.34 b '4 4 15 u-- 4 5 4 01 5 2 .- 'N-~ 4 4 1 5 4 0 5 0 > 1 0 1-4 1 5 a . 15>o

05'2I0U 0 15 0 00 0 ' 40 51550M44 fn 15 52 r0 . 0 _ C )1 m 0 41x4- 00 3, MV -. 00 415j 0 15 r4)rA

05 00 0 0 0 0 0 0 0to40 00 0- 0 0 00a 1 F 0 0 0 0- j V3t4 4 1 1I -1 1 I4 U Id 44J4 N I N- VN we M

;. ' ! .t I. IL N Id N I

10tP0 00 0 0 01 00 0A 4j 4 4 ( . 3e O )9 04t Id9 1 4 0 01

* . . 00 0 0 0 00 0 440 0 '0............................ ..................................

N t .4 >

~* -C4 to4

f4 > 31 ---. 4 0

I - 14. '1A A F

520 -0, -of -.Ch.o

U' C N.4 N Nq (41 N 0.52o

41 > -N f 0..A. A

-0 49 1155-1-e0> N 0 - - --

-~4j 0..0- -

U C-N5-4 15551.4..

- 5N -52 I .0 0 0to -40 -; x14..A52o'o

91 - A U'4'A'W

15 .. 0 - - ;.4-

0 m 2NN3 C-4 r-4 A

.4 .NN45 > - -4 A -- 4o-40 N> 4 -00-0520-4.4Of

.4N> 521 N t 15 > 4 A00154155 U'0' I 44.0 A5A.?0A52I'0. x .0 -4 > .4 0 0 0 0 0 034000.0 >. A v U'U'U'wUO

NNNnN

a0

00

00

0U

030

00

0 000

106

0

015

1

to

f4-0

115A

to 0

10 u

.)0 .0

> 41

coo~.U' r-15

4)515

440

-. 4 15*0

Page 108: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

.4 0.0 A0M A D . 0

'44 0 M000 000- 11

0 01 0 0 a0 0 M H0N

-44 .. 5 O00000-4 00AAW0 *4U A ". 0U

q FM -1 0 - H 40 -0

14 01.4 -. 00000 -0-00 c A 144 wv- 00 C4 '0' v

-- 0001 . . w0 v0 0_., -'4 Do0104 0N.ia NAA0 o

39 44~0~ to 1 .4H0Ar4

00rl --- 4 0 -. 4 a 4 -1.0 .00vwv 0 'iv-fm .i -. 04..0.000

-Ai0 A vA a 0 0 0NO0M4

.0 A O04 0 . -- 4 .

2-4- U r4-4 . 0 1-4 ,-lv-4AA0-4411A l- W 14vI .0 4 .0 00 oa

W0.0.00 -14 0,ow0. x00. 4

W* 0 .00 .'''~

04 0 A q A A 04 .4 04 144. . 4 .0 0~0.V 0 .0 4A-4.0 00.0 .0.A0w00to0040 w . 0.0044044 00

- -- 41V 0 .0CV414w4v0U.-0-'4a

000-.00141-----

-4f4 -- 4 4 04 -v- I'4 M N M44- A AN

---- 4-4----4------

0 -n04 0

u0 0

4 q0

0 4 4

41 .0 0*- C44

0 9: 0 0X0

- W 16 0 A 4 0 H XG

- 0 . ; 0 0 0 -

.0 0in 4 .40 0 NI4.

000 .0A . 19 v

; - - 04j0M.-4 NM

1 g 0 .0 g02. u %W m 4 -. 0

0.000 14. %..114-.:30 U NC 0 0M 0,

O 0.~ 0 A 4 A0' 1% U14£U- 0; L.i40 m 0 -

0.0 ta 0X I" 0 0. w0 r4

0 'a. 0 . a1. to A 0 0 -xAO 0 .0 a

NO -I4414-4 ; ,, 0,

M -I 4 0 to A 40 -4J 44 .. "vi-40 -. 0 0.

-0 .40 0V 0 0 -A 44 -

0000w.00 .0 1 .0 04u V V0 0 -0X. X00W

a .4a a00

a a-4 -4

N (1 v. in

0 000

a4 a4 a a

0 0 0 *00

4141 41414141J-A -,-I -A-4 ..- 4wi~ Lii w

%0 01co '-

0000

0000

-.4 .. q -4 H.

0

r4 14 0 0 0

4141 *'*- 41- 41 V-"-N NJ "I' .1 44

1"N 0 N NNN N, "IN4400 q. C.4 N NW N WN w414.N 1q q0. oo .I -q

C4 C41N *4 r4 fN 14I4

40 Ni-a- v-4l 4N 044 ,'4'H v4 -4 U v

I 0.0 w 7 Z'1. 41 -- -' 401... 040 A '- -,N 0w 0 W 1-1 a .4 0- Nl -4f 11 -W11 .0 --

1. -- -4 11 0 u11 -. .1 N -I

0 0N Nwl 41 *0 14 N INOI

'--.0cm -1" 0o- N40 V-0v441

w 4040 v-00 4 C. -4 4044 m AOA-4 Av4 ,,

A 0 C0 4~ A 41 vI> (4 V .4At V-.9 1 41.0.

co~0 a in o v o o4 NC2,0 0v7I 4.0 %D0 . %IDD- ' C *o% .D-N% Nw -%o %0 %40%0 I'. .N,

g0.40.V *v 4J1N, -. 41 .410- 43 M 4V - 4 4-0 4.1 --

a, X Q W,-0.4 4-- 4 2v4N .0v4,~~-4

14 0.--, 0.'.4-4 '1- 0 . . . . Ol . NIMM44 eN N. -N4 4 M C CN 4 .0 4 -4 -4 -4

1 04. .. 4 .4 -414.4 If -4 *.41. Ov4 A '* - -4 4144414 0 4,1. 'v.14. ~ 41 44M0 M

l'O.0 0 0 '14 I u to

.0 w0w Oleo1 . 4 0 -0 0f A ~ . -il Ol 0 0

..- 4 .,1 -4 0 I 0 0 0 0 0 meflv44 H0414 xIt4n 4A' >.f to.0 -". 0 ~ 44 '0

4v- 0A0142 0 'A 0 - ai 0 .i0 -40.-Ch 0x0.0M "

0 0 0 w 4 0 > 3 x M %o-in4 .0 0 u0 0 u a-I ND.1-J o4In m.0 0 41-04- O -4.4

v-4v-4LiV A0 wM1. g 0 -. 44 4.4 -

4 >1 fn4 in m r n i . - . - i.n-menmm f 11110 -

4-.0. .0 41C4( wA. 4 VvwM V C

~00 0 0 04 0- - -i*-O- -0- 1 v-io.0 1. N - a. .r . . r . . 0m-44-

. * UN *04141440U4 U H 4 * 4444 44U 404I .4M1 It

_C4 - 0 "-I"0I" 0a1" 0 qv-i " 4 4.

A ~.0 -- -u u .0 .0 l', e %0% .. 0 - X- II - ff -n tH w

*.4 N~ -- 1 00 -40 - - H-m a- M:9 -0 116,4 4 U4. 0 0 4141*H

W0 0 444J X V1N -4b0040 0 104 X W4 %M -.4 00 0 C 000 - to U 0 t4N goH4 go14.41" .0a

LiLiL Li w 14 i 04 . .n a a to 00 NO 00 1.0 to a L

'vI 1444.4 4.4 44 %W -. 0 .0 .0 W1144 -44- I"4 - I"1" 44 I. 4 J

ea CDa a a a aD au-.r.- a* 0o a* Goc

0

107

Page 109: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

NN 4 - 4 qi N - 0

N~lf r4 N NN NN N 0NNq IN 14 N

0' N 4 04 04 040044 N0.-. 0 mNONONA. O MOOO .'.a N .

Nc 14 x 'ON x- N 0 1.04j ON .44 04A.0'A4. r0 t. V .0 14. 1%

4J4 r- % r . * 0

NfD 44 '. 0 ?.0 !0D-3,C300 0 "4 04.oo % -4M %0 4.040% 0 tz% 1 D %0 C40 0 o

.1 440 0*4J N 0 .N 0 V 4 V f4C4-C4 M(4 Wil. 00 00_4 -0-0- - f .0U t

V4 NI C4'-'b'b m 40m-4 mVO.a74 0 0.0.0.0 t0 0 0 0 - 4 0 t4 t . ,q

0 ~ ~ ~ o 44* 0440444444 444NC- q; 4 fL

'C .0 00 is .C'4 44.4N.

N 044 ' to'''w

NN U 'N440 nr44 i i .0 4- . t4.4-4c.4r44v.0%14 N0 l0 0.4 14 A.4- 1 r 0 V

V44,4A44.44 o 4 A4- '0l A1 0I -1 111 1" 0 -H .,40 0 40. A q1W. . a . 1toF . 0 0II *q 44

.0 A .0-44.II4 m A4 " .0 '-"'0 0 0 0 0 4

to.0 00al0' 0 04 0' 0'...............4 04 4

4444 000..........................V -. . *.44

% 44n.N 0 Vm m m m m m. 4J4.41, 0414 41 41 V N 4r444M M44444'"a 4j V' 44.44.44440M."I4 . 0 4 C (444.4 ............... W40 4 4 V74-447 N04 4n 4 .N 0 N C N Ch NNNNN 0 00 ' N 4 - -4 0

'0C-1 44.4 '0 0 '04 '004400 qIN - r'

NNN0NJ44O~~~ 0 0-....... 44444 44-4'41.-44 -0...................444- X 44 -.

- U- N .-4 - 0' go-.44 101 1 0-I rq lio 4-. 4-40- 4 4. "-H- -40 . "'

4."4 M'. '4 400.0 04900.000 12 )w 0 -4-r4 0

.. 0 0 ll- 0 b 0 w0 m 0 X 0 $4 0 00-404 0-

--- -0 4 4 4 -l 4 -1 -i4 -4 - r-4.-H-4-4 1414 0 0 4 0 0. V 44 41 41 44 4 4 4 44 44 44 V 4 44 L. V 4 44 44) w4 4m 4-4.4 0 -4 U0 N N1 N1 N1 N1 N1 N"N N N N"N 0 NI'lN 0 NN0*

.0 Go c0 c 0

to0

4.

40

.4

.0.4 M

4

4 0 uN

0- 03 N C4..- N "

A0 -

O 4 0

W44 -

0 :3

U 0 w

.0 U-

-r4 0 41

U4J r- N0

-I .04 ON0Is 0 N 10444 N1U 4t 4 J4

f444

4'

.44 4

-41 4

0 4

V 4'0

W 44

41'I

0, 4- 4

0 t0' 0

0 4

N N

0 0+ 04

+4 4

'A-4

0 0'Wtj t+ >'

N4 4 4H :

Nq N 4 40 to-0t i 41 1N

0 r0 - .N A 44A

U+ N0S4 $4

uU 0 uu

108

Page 110: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

+. 0

4. r4

40 0 00

o~t 0.I'4 V

41VI1 tnI

4. ?A N -A -. 441 4i1 A I F lr

to InV 14 a4

4. 00 0 +.

-10. 0 U+a 14 g -4

4. ch. 4. 0m V o - 44.Am. 41V 1 (n4 .4

4. 041 4. 0 4 uain

44 0 CD u .4 I '.444 .0 + -A VI 0 ;

. 60 4. U' 41 .' +.0 aU. +I W1 4 0. 40 u

44 0 I + InVI.4 - 90. w0 10 0 VA t" V I r-4 - 4 -

4. 00 %D 41 4. VI 0to Lit. 0 V eq Iu121 0A 4

* VI 0 " + 0 -K c"0 VI4>V' to aFA w 0% 0 . ? +VI 1NV0o *.4Ois , 0 1 o FN-e o-oF +. 4I 4 >0iwI 41V0('4 0 1 0 N ("- *0 oaow ,

A 0 4 + s4t n U -14 r 04. a~ -A + 0 '.414

0 @00 .4 -4 VI -46 04>W1 " 0 1 * ,

4 ~ ~ ~ ~ ~ . La 0 O 0 4 4C44> 1X- + VI 'A 4 C440O H L0IW W O 0 a "I I NI U 41 a 0NI wN Mto0 o w(n 0%0

.X 1 q0 m 0 4J0 + 9 t P 4 f r - 0 4 N1 %04 en .0 oVIr.VI VVIIO 41 t ns 4 4o. o- ae 4 Mg4. ow..,, bc r

40tr 9 H n -f O a CD41o V 0V4. Go- At14 0 0 ,-e ,mo 40 A VI l4j C4

0011 U 20 -- c 14 ~ .0 A a 0 N4 a 0 00- 1 OOtOtVIItVIO C 1 n000t n1 4 . :C 4 D0 1 11 VU 01 1 1 10 H1 (0 V VIt" 0 M U)W U 'AW t W 0 A :1.

*W4- 0 - 1 - 1410U O1 .0 . m +- w 14'4qf w0 wwNN0C0 0-.4 a - -4 0.l4 -4 LMO A *4 A 4 M1VII V W0440WVI0- 0'q Me - 0 a *ua- a l0 4 r-4 a VIVII V

W FA U)000 A A. UllI4~4 I 11 0 0 1 4 00A 10 2 kA0 . +40 M1.0 A 0 8 440 A A XX V Xa 0N0 m0 41 VI0 4'4 4 + VI UI.,II- 0 I U00 flU0A

U

.4

4

L00

0

0

0.

I

14

0

0 49A

4M

0 4

4j0 4

4

109

4.4.4.0

VAN

0

u0V

'.411

to04Cj4

to0go +040 00

'.40

0

VI

.4

0

x A0 f4a. 4.

0-4-4

> 1-AVI

03

0

1

14

41

VIu

00 000u

Page 111: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

+ +

W t

10-10 0044 a au

N - 00

44m fmu 0W I1N0 I 3t 4

W 0 3 4 '1 0 0

4W11444

4440W 0104 W164 toO

4-41 - 1 1

044 04440

44144 1 00

4 to 4 fa V V

A 'I' + +- 0 '0.6'4.4.4 -- 1101

+0+ + no000to.4-m-H M e 44 - O 4 U0~~~ Xa X -4D i s

1 .. 0 4 o N 4

- - - 0 - 00 ---

.01446.0 101440 10 04

D, - %1141 too

w N- ' 64.1W4. ify

a----.. -+-+--4 .

W.P.4.0 N- 1 -'64 10- 0 0*- - .-W Q -6I U W a W 0

..-6-.4.4. N -+-------

1-. -4 I4W 4 44 44 0 16-I

- -H -4 -. 4 -. 1 4 -. 4 .,1 ., H

1111414 4 141414gow ww

44

44

4444

44

44

14

0

164

10010

1441

0.0

-

-4100

0

0

0Na 00e

00sa

.00-4

-4 -

-. -4

010

'A

I0

0

*

00 $)o - o

. v0 o0A ., 10- ;

41 A 1

10 0.

to

In0 A -- to o V 4

N0 41 0 0

-1 -0 1 -1* 0 0 w e

. A. 0 id . NV0 0 0 -

06 0 -6 $ ' w - a0

* 1 r. w0 0 w 4 N0 t), , " 4r

toe u l U Va w0w I

0,C a 0 '0 04

Im > 41 * V $4 VX4 4 - . - 4 a * -

*n 000to09V )0'o 0.441-4 o0 eIM6o00 0 V ;64 o.

S00. t 6 14, 0410A 1.1

400 w10 x x0 0H 10 - 64

04 10w a 0 m 41H1 0

40 010 1 10 14 .0 to0 f 4

*0o X>.x0 .59 - 143 0 14100 0 0a.0 o v 1

4W 01.4) .W11 4 1 4 0N - V414U.01 M a 0 ; 64

c.0 14- 0 140 0 4 0 0 u 0,

10-01.0010A .00 41 .0C314 00 10 1

$ 4 $4 if 110 4 W 1 - - A0. 41

0 m 4 Id o ' Im to1 V- -v u 0

-a~~~ -a vo ma e

.4 r. * - 4-04 U r - V14 01 ,w 01

-A 1 0 .0 -U-14 1400.-A 0 00-r

u 10.4 061 -. 0u'46 u

041 M.. .140.1 -to til 0'.4

010 0'010n'-406 0 414 40

. 4101410'-1041-. 4140 * . . 4

41N >-6 -.- 60. II 0 0 ,O a U0

44014111 1 1114101141M0.1- ... 4--4 s

44-04WDa 00.0u 010 '0- 6 0'-- 0

44.-'0.00.00.00.- 000- -. 40 . --

44 - 0 . 'II U 0 o - 0 - 44 s44 0 0 '. 0 0 10 0444 10 10 .0 10 10 0

00 U00 0 0 V 0 00 0 0 0 0

+ - -'A -4 -

4 0 goA of '

%4 +

-N- -

1\ t40 W0'*1N-6M .14

v 4. 03 x +

' +11N4+- \

+4 100+ - .0*W A W \ A04 \44.4 +>41+1010+ '441+10'614 - .0

V u uC \o- 4. U3 41 N>04b144.410 -.

0.1 X410 _ A N0

0.J~1 104.0 10

-144061104 . .0a

--44 4t 41A t x -444 N to u 0. 0 -

-1 39 al mu A \Ny 110101010- -.4'6444M640.0 N *

4u wm to a U) --a . 44 00.' X.

a U3 .440

oW4 160 10 '1- 4o

.0.0-11.-1W0 -.

41 1NW 4W4 NN.4 4'00 -41

ua U, W tom w U,

-, -4 4 00- -

.34 .5, w x U.U x .00

-4 ta V~ L e W -W

4 4 44444 CN 4441 t0 41U4 414 -40

4W .1 .14 .1 .1 1 1 . 000 e

0 II I II I II I .0 10 .

0 0 0 0 0 044 aA A .i

44 xxxxeee

44 i | l l i 1 - A

--

SNN0 0

N N X0 10 NO 101A 0004N U

.4-0 a0x 0 UW1.Q++00lI

++ 0+-.0

00. A twa 04v1 w 4 1W . + +

14 -44 o a 4 0-14 .4

.1.1 N N x.4141NN 00.0 NN N00 4 0 - -4

A 0441413o .+ ti-a--.0.

*-NN4 414

101 0..ONNN,

Ce.MUUUAIQ

0A W X %64.U 0 0 -.4

H0. W0 10 W X0-o

00444 N 001-NN 0..0 NNN -

30 14 o V6 0 a A A4

0010.01 10

00 , 14111.

54 r44 A1go41414411H14 0 u gNaNaI

N N A A 6 A 0 q -.4 0

0u u 0++ u..

a'64441 -.0.04W4Wn44W4W4

44 4 N 44\4 . 4 0.0\0xx

\\6'lf66NNN4\\\-I

II II > II It I -II I - 0 .0 0 ..- 60..010

'6..0 . '4.0 101. 0.1-4 0 00011 -. 0

-000\\\0W.-.4W

00 0 0 0 0 0 0 .4

110

0 U

Page 112: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

--4+

,0 -.94 0 A --

4N 0'+- 0"4V"VNV

A. I - 00000.

4j 4149499.V.V

-4 4 + +4 . -4

.0 to l U lt40

04 u .00000 go

.9) 00 q0.400,lo

4 49944994

4j 010004

N1 0000 0 I t.-4 OOOOONO-I 4 40

.0 A A AA40 to0.

0. * go0.00 go

to 0 .1 o 4 OB

.0 44 O NN. A tO It 0 4 o-H to to4U) -10 ir40- .0.AA.009).014. 0

10 93U)U)L9U)t) t 0

.0 u0000U0 04.4.

4.0

4. 49

4. 0

4. 0

0 WI

0

0 "4j

0 4

-4 V0

0 0d0D V

00

0 03V0,140n 0

00U u 00

-g

41 4.*4. 4.0

4. 4. 4

44 4. .. .. 4

0. 0. 4.0

r. 4. 004. .41 ...9 44 4 + +3 11 w

4 0i a a *. >4 4 0 w 404 4 0 0 4

'0AC A 0 .0 4. " "4 9

04 0 U. 44 4 4 . 0 4. :94 I9 -

.0 0 01 I04 4 -. o - *. x t. 44 4 .44. 'jZ Mn

>9 4 40 44 t4 4. M 44 4 to 0. 1N N .I 0.

4 A- -. 0 "4 -1 4" 4.4 4 to w - W w 0 14-Ao 01 V . r1 14 0 d 4. 4- 4 0 9 41 o . j

000J 4 4. "4 - 4. 3" w4.L I 4 40 * . in I

to 0 04. 0 . .0 0 * *. . 4t N1 C4 0- A

4 90-W V9. -A .0 004 *w 3.. Wed "* 4. 14-W -440 .0 I1 0.r00. 044 0 914 0 4 4.0 4. . 40 "4M +.0 w 94 94 4 A" 4. . 444 4.U3 0U 944' W

V 494 04'1 , 14 14 U r- -A91 -4'04.00 0 4A ul U) .0" 0 to 0. 4. 4.4 .41 4 0 141 _ 0t _* m4 14 49 .-I go4.14 t 0"43 - " 00 0 4.o"

0 A0' 4 49 U 4 IV 4 0w 441 1 to 4140' 914 4 0944 .0 0 1 0'10.0 144.0 0 to 0 0o -1. 04. 3 04. 4 04 "0 0 a ' + I4

4.4 0044 9 .0 09)14- 0 LqA93 4 '04 A.04 * .4 A4*0v 0' + v

49 00. -90. 0 I 0VAIu00100 .4.094u 4.00' 4 j3----000>00 is A0U .- 9 A' 0,Q A0 A JA*4 0 4 049 m4 004 004 aoooOO

39 4 0 2 0. W 4.4 U 4. U .00' t ' A 0 0'a W00 A 0*%a 2t 44X 49A

-1 M -4'44 ,00 0." 0 4.0 N . "4 4. A . o 0 4. .0 44 v9419494.4 %4A A A

id 40 to %u-4t 0.u X -9 i -0- M1 U00 04. 4J ',04. 4J 44 '-440A -4 494U.44.4. j2,CAbe .

III H0*V.0-A10V0.0. A 040 .-4 0 '.. -H ALqN4 H .9 ).- 4 A0FA.40 f0.0.0.1 14.00W 44 04 A 44 N00CA 4 N" 0 A 4.0 a0 0-""4 0W0N4 9 U-AN40 0 94111 'AAO )I----I

'014-0 44 . 000.0- 000. 0 4.I."4 04.A 4 04 ."4 to00d r ag A6V'0 000. OA 9

r 0 0 9140. t x0 -01*14 41a1 01414 00N 0 00, 0 e 9'00 0 0.141

-1 oNN,1 toNN14w0 0 00 14 0 000 1400 01W4 0014004000M44.4.*4. *'W"044 91..094-90 4.0 44 0 '0 '0 944 *00' a W0' 04 93 404 4 4 0 M- 4MH( 4r4

-A4 -00 *- 10 v 4. im 1 .I 114 IM -,*4 1414 4 "4114. "4H 4 ")t 4004. 4? WI 4400094 A9.9 00 004. w000 . 0 Is1~0 4. go'0 911 -0 4 014144.01144 0. 1*41WO4 1 ) 44 t -4 0 00 0 t0' t

0. 11 4 U. 11414-4 es011111 If .0d11 1111 * 11 11 114.11 t9094.*11090 Y41 ff901 r0 t09091 A IT v A v .00 014. 0 .0-4 0 4. 0 40*.04.U01it114*.0111 14 0o11 110ff 11 0 ",4

04. 3111 44 11140 .0 A 44 04)00A.044 00.4 t 0.AX 9440.04.U)A 9%0U)A-4> 31 0 -4

U V0 a .0- 0U0- - 0UV 1*' O*. 4 3 A0U f44.0>944.t W; 09494- .Cd 0 - O.A0 '0 * O 0 ... 004.0.00 t A 4.0.A0000 0 0 0

4. 4 W 4 4.4 W . %4W0 . W 4.) W l2 a t 4 4. W 4.tP 0 0

044 w. S.*4 mL. 6.0 4 4. w. w. 4. 4.wW w w w yw

4. . . 4. 4. .4.4

0 u 0 0 0 0 0 0

Ill

Page 113: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

. 61+, N N

4 4 A A

64 U)N 0. 0.

U) 6 60.

V6q 4 V -H

., .. 4 4 4

64 ClUP t

64.0 . 0 Q'x ti U) U)w

.0 0 0

0 +e +

-0en0+ 00-

M 6 ) -66 -66

04 6 'o 0 .n .0 w.

.0.00. U)0. CIO

1If 0.0-

066 . 0 0

64 U) to

64 q 6.44

64w 44

.4 ~4

U)4)4t ~14J U X4 146 04

:U). U)o14U)'

a-1 U 14

0 U)U U) . ,'

464 I )U 6..

146 64 -4 A 64

6 Vimla *~4U

064 46 0.6t4 46 0.U)0r9 i U)0t

* *44*6 If

9d 31 V 39 44 6044

R 4 .0 II4 .0

46 4.. 4 4 .

tr 116 116V t0Ud i.0 U) "

U) 4j 0 4 - .06614 V 9 Ugo .0 ')a

It410 U) 446 U) 1444 6

0 U 4 -10 -. I0

0' 0, +%0 66 0 1 I 0 LU) U) -O .04 0 o 0

VA j to w. 0. I66+ 0. 0IN I6 U

U) 460 .0 FM N A

W 4.064 0 6 U) 46 -1 -4 414466. 0 *U 1 60 A 6.0

66.4 66646 IP.0 -4 06W to U t64u

0 + 06040 u)1 wU w)6 60 0,46.- a I+ - .44 1, 0646 .04 0 -- -0 -6gUX o oW U)tA0-1 U -U r- 14- 01 aU) Im r .0

A4W .u )4.bA .- A 4. A 6V 4 .0 U 6b"6A U)A U60 A 4440 IA 66 't6.0 M 6U 0 646.0.to 6I0'A .0 U

V 4W .01'.4 +U.4i 0U 0V0 Q U) 46U Q+ 404 6401 146. 0 -4 64 L U.04 + oI r

6.1 I 10 0 0146. t6.4 .r00 U64 Ua ~. I) % 6U 0 4 66w+W 4. 4) 0 6 to 0 0I0W V IdtoI L0 . V 41 . 4 U1 U)U 4~l4.0 41 4 6 1

14 U 4, 4, to w 0 u "10- 4+ :3 4U 14 . - l - 6 A044 1 )0 a '-U 4.04-1 4 ; .0 ?AA 1 44 6 U)

ON- 10 .4 N60U. .0 Ail a,4io.0 016 4.

A6 -N0.16 .1i 4 14146401 0 V)4 46666*0 6 U)4U U 0. 0- INU) 0 I -064 001 N 4 0 *.46V.0 4. 46l0 6. We A64II

.. U 0.0.N46w-a0Ua6I414 6.0 U).0iO0 4 w1

0.0. 466).U 1 -f .00N- 4) 140 14 06U .-6U

U)+ U)U14NiM... 64 u 0 N 41 +N6w) ;4 U t

--4Ug L 4 4j'6 . 6 6 4 I LU4 U )I 0. 0 . 4 6 4 6 0 - 4 6 N 0 V to+

.'- 0-- JW .+ )0 NO-.4 4 0-46.a- V)11 A(66.0 g 4

V V -4 m 1 0 4 .NUo)1 . A.-*6#A 4.U) 'A 0 N.0 W 4 N 4 Ut14J) 1 .U)V U)U4)6 4.3i 104 $4 U-i U 00 4 il4

f6 to466U)0 . 0 -60606 U)06 0. il-U 06 'A V

2t -A A 0.0 U) N66 .4 -A U) U) c3 + .6 00 + .' 60 ...4 W)U0

U)-66. *46 00 .'-6 64U .0 0+ l0 4+0 0 0+U)e

'b'10444 OU+I 1 1 -61 . 01 >UI>0. 'L)41I1V1 U A - U) AA f" .0 w0 L) 1 w7 1 U)A t" 0 , U) II.1 + 0 0 r.60 6.90 Oil 6c . 6U) u 4 wL 4 . g3 il..

.1,1 U)14 g U V U)IrA14 U)1H4C U)V V)1 t..4)4.U . t~~~~~~~~1 .... .,4 .t .. .4 .. 4 * .4

N 4 00 0 q 0 H w 0 0.-I .- 6 to 4 -6 . A- to -

64 Unr ) ) U) 0 .0 4 U) U) 4 U) 4 U) a

0 UV 0 01 U U

U0'

0.U1

.0614

0U)

46 4

.0U)

-U) 0.t

460.

i+ U

- V,'4

+4 -,#

'> 0 A-

13 0 4)

+ 4U)

U>N0

U)0 >4 ++

14004, to1

10 W4I) 1 .0

*0 *iUl0U) t

6+66 044.

++ *%

Im41 --- o

.0640 041 L

I~4 +641

V66U) 4-J4J-

4) 06 u) U) IUU)4641 U)

0411 to-b

4U) 'A to6.3.4

I IM t)'6. 64J 4.36 U).- )

U).If I -64 . 0 oW4 N U) ('4 6 + 46 I

.I to u o : 4 6 44

M + "t M46t4NoN U) 144. i

0) U) 0 0144

II 0, 14 t )

16 U) 1 0 10

V6~ 44 66466. W 4Wf -H A 1 - - -

14 .~.4

* )0N64 '-

112

Page 114: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

N.414

4 0 I3

00

*~~ 04031N4

V A 0 u N N

3-l- "IA X- 144 '

44 M 0 + IL. 3*144 4.. koI(44 >

0 .4 9 . C 14 v1 x4

0 * . 0 '1 A 0 43

0 -A -1 44-

Id e0.40 v4- 0. 4343 t*4 433. 0. U 0 4 14 .434 w

A 0 0 -. 4 m 43 U43 'A I. >-4V4 3 04 A 4 3 t L 43 .440 to 4 00 44044 N A, It4 431, 43 144 - 43

a4 3.4 0 04 4 3 0* 43 0.. + 14W. PA %0 -11 39 D. V4 43 Cr4 %a 043w

* 0 .9 to t 4 0 41~ V4 ChV WA

00 rU 04 04 .4 40 4 0 V

+, U'- 0j 3.3 144 X.~ a . 414 Fto 1. 4 4 000 3 14 to- 0 10 441

alQ t -4 U F .0 r 34 0 0.4 41 a go+4 a 0 030 0 -. r., 044 V4 a a -1*-4

344~~~ C4 un100( 3 4 . .04 0I ul 444 43334 4 3 * * . .401 0 04 -go+Ut 434343 Q3434305OC240 334 44 'A 0.4 +N-to 4344 44441'I~4O-% 0 V 4N1N 43 4, L C a t 43344 0*1 A1; U..0 43 03 03 .- , !30 4 0-

34 043 . t 4 , A 43 43r0- 4 . ' 1 0m 0 to 0- Im1 0I *4014 0

4343 03 +3 1 000 q. 43 0 W 044 144 4 00 ~ ~ 0 V344 41 at aI .14 .444H.4 . 03 4 * 344 0* 1 W0.14334 43 43 -0 ul 00k X43d o ot 30 01 M 40 -110.

4I 43433.0 4J031 0440-44 91 0 V 0 0-4V 4 9441VVI-4 4M4 J 40 (4 0 96

43411.0 414 -4 4 0 M30 'A1 . 0 0mU -to 04 441 0 0 043 443-400 034( r40 u40- 0 *p t0 4343 043 4343 0- 0 14 is0

14 403+ 44L,4 4 0 .40 --- 0 * 0 in1 I30 3t1411( 41 44 3.N 4 U4- 4 4 0.* ) t V &I3 u3414 to (014. 0L.430L 434 r4 3114 W 41 4 U).4 3 43t QL d. 0.t 044

0. 4 -A M 46414 t.-414 - - 00 0 0 t341 - F 0304 0 44 0 - tP 3- .0UW4 %43va0V0 v 34 -4w3043034 W104 44 -1 3 04 0 ;10 43 440. -0 W -444 01N0 W 00 0 40

43043. 1 4 4 . 4 4 4 4 4 0 0- .4--W . 1 0 44 1 0 0 4 1 34 W 0 4 41 4 0 0 . 4W3 43-,43OVA-310 30r*4 -H-H - 44 -141-A44 .1443A. -03004 04 -ox 4304 U w 3 44 4 4 - -

N n 4440414441-.1 n *.. . r4N443434 *4N414W U41N -n -'a

I 04 0 u '1424 031A.44144A4I1-44 1 111111 4044 u1114141 1111 0 ~10

113

Page 115: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

to

0 1 -

tr4 0- 9 0> > 4'0 0 4

+ ~+ on N

oo AO 0 La

0 Co 41

*~ ~ .0 W-~Cr

0. Cr4 0+ .00Co U .4 U) (E4

0 010 to + '-4

w ---0 U~ 04k

-4 01 .. 4 Co4Co.. 0 0 + C

04 0 Ou Co 0

w0 A 00 0. 0

ON t, 00 4 o4. -.4 to. I- C0-W 0 -04 -N M M01

044 >o IM ON NC C

*4 -4-- 0 Co4

U 04 U40 '00' IoN

06 00 a4 MI 1.+0-t0 -. 4 .4 N w .4+- 0.44mto 4U u 0 0 U .N 0 i

0 40 00 4140

044 4'1 -u u 114 4 .0 00 M t.0 o U1 0 -U 0 0' 0A

00 00 4W10 0-0-0 41 3-4Uo *04 M.0 0 0J 0

-'-I~~ 44 + ~ 4 N- 4' 0co -41 0-U C oI4'. AO .44L04144

M 04' 0 V 44 ' A40 0 A 9 C0 4J 4 r0 1U 0 IA- I U t)' 1 11 44 O

w~ U90a4 40 Co - L4 * U0l 0 e -IVa SX*jt o H 0C4+Co -I-+0oH41~I go ls 4

H 0 4404W0 4J'1 0 *4'r400004U 0 0 MI 4

-f41040 44 4.1 Co - 2.- 4.H w4 A' 0 Z4 t)0 o0 44 U A'

-4.0O0 vi -4C o- o40 44- C4.I~

0~~ 0q r0 4 4 4 -40 ~ ~ ~ ~ c .- o 0- 0.I -4 0' -

0 0

U U

M

-AI41 00 -40 44

44 4

41 --04Co -AOt

0 .44

044

0

II 0 00440

U U

4o4'

V-4 is Co

to 4 . V 1-

Co.- - 'A t Co4 40 ' 414 r4 Co54u

CON r .- A- V4 W - -

'4 . U Vo to--- 00 to U w C

90 -- -I -I 44 C -

4444.4 ' 44 1 -'4 M m

41C.I- 41 C 41

-4-4- 0 .4 44 0 -Co4w in0 - -4W 'I Id o

0140 4' 91 U4'VCutp -A.A Co n 0. - 4

'44 oom 04444 0C

0'I1-A-I 0 -0 44'

4o - 1 3Cl .00 - -1'-i OWA V -Co -. n 4 L, 440

44U~" -U UU '0

'" 4 .r-I -H4 - 1-4 - V CoV

4t t) -A -- I 0. 4'to AW o04w

C2 4 .-. 4 -1 o 4 Eo N N

'V H I _q a.-m 1-44 '

0) .94~ 4 1- 4 0')

Co ~ ~ t -C41.444 44

010 % . 004

V = u 0 Id . a 9

0 H -IM 44 0 0

. 0 U 0 0 0

to A0 4C1 H Iw I

41

-4

0A

0

00

U)

0

0u

r 31 U-4 0

0. .0 -0 0C444 N >A- -4m01 ; N Co0i

M. -.4 AA-4 >

-4 to >o

0. -4-0

0..14 Co -A C Co

4jI~ 4-.4 -a

4J 00.4 U

9: ag' c 4 a4> o t.14 A ri0. y 0XxU

xU J4 Qo Co0,9 W

N.040

N.

0

N.

0 00 0

0 0

U U

N.

0

0

0

u u

114

-44

o-A

U

Page 116: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

-,4

- \N

04 -

044 -

M $4 t -4

0 M 0 -

*-A

0' -\A1\

-A4 44 Ael

-4M4

S- - 44

am In

to -A % r4 -1

*.4 43a

43 0| -N-.4 ON

04040 N.Mi ao'

a. 0-'.-

0 a 4 l 0,

044 -V -4

a NC eW

041 -44 n -

43-# -M n-'0i - fl - 43M I

00. ' -3

0-404aiN .0' a

0444 M - a

41 41 4 4 4

4 \4e- e to a t v

0 I - -C4 -1

- - - II . -

0 N X 44 N0N 04N- -M a NM

4 43.' AW .40

* 0\ \3A

0.'\ -'.4\\ 140.4. -\

-N- .4 44-4 -4-4

'-43O e- - .O- -

OM44NN e- - 4 3-

ON-N -II Nif

000 0r- r co co

S0

--

.4 00 41

.4 .4

.4 0

.4 0

. 0A A

00

4 0- 4 %

0 a-. 4 0

14 01

> -4

V 144r I 4 4m1r

a m 0I 14

0 0 V >0 N -.-40' 04 >

0' -. 4

+ 004 0

N '0

N 0i 0'+-. 4 04 00O

.4 431 0- e o

-.-4 . N.-4 N 0tM

-. 4 0. *0'aa14aM C

aad - --- 4 1 143 X a

A43-4 11 O00O43-I l M-4

al 14 0 4 '- 43 43 43 43 > X a 14 0

N * O a

0 u

44

4

to4

0

N,

\-A , t+

0.0M

0449

.4-4

t40w .4 0-

44 - 04

.4 -- 0'

14 --. 401.41 e

0 a N-- 0

00a -\ aA N 0 -.4

0 d+ I

43l -- 4 - N

-d* \ 40

>.4 +. 4-.4 -d 00

4 * N I

04- 04

14 1

.4

0 0 00

.4

44 V

0 >

.4.4

.4.4

.4.4

.4.4

L.

0

41

a

0"

.A

U .

41

140

to x

4 04

A A 04

0 0

-.4 040'4 0'-

a 03

M .4 M

o Vo O

N N

414

N N.4 .4

C4 N4

43 43

0 0

41 41. 41

4 t4

o Vo 1I IN N

.4 .4n

.4 .4

So o

In 0.n 0.

Ne- -4.

1043 40 43

.4 0 N 0

a' awen

-.4 M-4M

to

44.4

.4 0

.4

.4

.4

.4*.

0.-a434 4-0 100-- 0

a14a

*040-d

> 1.--4^O -. N *

0414404

0 0 4j 4 0 e o wV-' * A - + - + 93 vU 0 C3 m

0a44-A . 4.4 0 1013 V 0%4.104 C.A * in ( n a -4 0 0 +

w C4 No O 44 4 . -I 4 093aq0000 0 o0 440 -aOsw M M N * IM jo .a-0- 0 1O 0 O0'>43

.* * -4 0'4 ' 0-

a1 00-0 - 0 44 0 -4 I. 04IAttII IIIIu l -- A . '0 0.4 . 0' Ia.-a- N N '0 4 -I a C>

.4. .* e-4 0N .4 V4 -4>3

44. .%3 44 00

00 00 0 w04

115

.4

.4

.4

.4

Sa.

4 AA -.4

A L.a aA0M- 0

41

0 .-a

AU

co

4 -MA

43--0m

40d

a -

4A0.4

04 y

a--a-

4-al

-4 -4

---

1414

I-

40g90 -.

4

'04

S0

0'a-.4

04

-- a

4

'0-400-

-a

-- 0,

-da

0 --0

A -ag14 A -.4e-43

04A 4

o -ad- a -e-a

a OXd

-NO

0 OXO

04 4 .X4343

-4-4-4

0 .14-N

V.40.434

0 0

e-4

0 U

Page 117: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

0 1 0 i

V . V

0o '44 4

-.4 $4 0;A

V0 m4% x 4 I 01

r0 +1 10 V

4j n a4 4 Q to

'to 4. -0 A 0" A.1.

"it4 U '4 :! -41

C4 m0 4" 0 44 ?A~4

N, 0 Il + N4 *4 44 14V 0 1 -

0 - ' ' 0. 1% 0. 0. '44 A'

to4 4w 0 >4 4.4 q :t0 A 44 N4J V0 In to a. 4 Do

* ~4' V. 44 M- 4144

H1 .4*4 >4 in 110 440

,, a- -,4 c , 4 n0.- 4. > 0 V0 0 0 4j .44 a. j0 *o4 00 *...4 > 0 0 q % >L 4 0 v 1 0 04 14 -44-4- >>mm- 401N0 a.4 0 IN V. AC. N N

to ~o I -_ 0 is a. 1O s 44 c 0u0N A"4"V N0 H VV>% 0 r or ~ 4-44 j -4 4t 41 4 A w 4L4 Na. 44

.4 n 4>1 GoN.0 W% 0 t. a: 4j 0'C4 V .-4 '0- la. to 10 > 4 N>* V 0 -W4.%- m 144 01 11 - to m- ; *U4 wA a.

.. 0 *11 .'. 0 . 1- 1 f 444wt r4 vie -A -w 0 N 0f 01 a. '44

N 4to 0 0" > I M >.440 > .4"'4 > - "4 4 * Ao U. q 41 4 .4'41VI r d 04-1 40.0 N U04. . V> 0 f0 w :f vau 1 1001 10 0 11 IN .4. 4 N N

> *>4 q tot tI3,0 4. OOA I . 0l4~ c - U 0.0 0 1 a.' . ' 01 4

N 1 If*4. ON" X 1 x 0 If 4 4a1 44 .0 a.>O4 u 4 u 4' 4j 4' a.0'1 4 4' 1

I V -4au >a4 X *1 4O 44 *4J >U -14 04 44 0 0 A0.2'.-4-W4

4'-4~~N4'4'~40-4 *0r~~m 04444' *.-4)4 .4 44 4 4 *4-44'44

-A-----4. *N4'40040- 441 0-4'-04 0.4 0. 0 .0 0

4'>4' *4'4'404'0~'40M ' -. 4 '4'0 0 0 . 44 e'4 4' -* .14. ''

116

0 044 a

0'4.4

44A A4 q

44 Inw44

0, -4j -- 4f

410 -400. , 0aa .a,1.4.

1 44 A.-4 4wIA toI a, A044' . 444'

-40 V-40 04

00'-40

U) U

Page 118: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

4.

4.

4.

a1 a

U)0

to 4. a

O414 + ) aU

A +

A* 41 4 + *

-4A -A Nc a N

414 414 X 0

41 N * N, w

1 a U44 NA N 0 '

o, u t rfU f4' a 9

%'441- AA aa .1 4 LA 0 4 lA AMAto 93 C: 4.4 N -4X4 .M 04'aa (6 AA-

AUl 00a 1N 4MCU) AJ V14) 99 44'NUV u 0 1 34 fo~a4 VUa Va.N000C:1

> m N " to *U ' 40 1 - .-- 4 N a w 1*U u >Ut - > 41 +1U + + rN: r - > t U)4 tr a oa

-l a -' > 14 Ni Mi i -H M) a6 aJ I 01 - i C: V I N N 1 441

' 0 0 V 1 N 0 -4.4 r . U) 4' U) a.-. a> 14 N 0 .

0 . 0 a W - 4 A a a -1 iw a 14 aNto0-4 0l4E~4

0

4.

A. -.4 0. to

+N +

C444 U)4 ' 4.'- 4 a. Na14.' 0 a a4 J4-

.aU to N.4 x Ad

+- 4 Ad .44 a. + 4

U) *a -4 N. N1 0 4. 4'a 4.4 0.a a4 a. . .4 r- AU)4 -

Aa 4- - U) L4 u a 4-0 4 + as rN 1 . a.. MA 93 AU-4 44 U)

* n b') N A + low a. q l-4 a.M 4,- - . w -.4N N a' U) 4 a 4)

a 4M4 4..NU)U) q4 a-a a. a -a I . '

M 4 44 .1414 0 to'- 4cC 4a0 A 41 $~4 4N 0- 0

u 4'14 UC a AN) 93 go4Al o1 0 4to 4N 444.. 4 'NNa U4a. wN Q 4.4A--. 4a AC a.H

9:A4m ", 4 1 0. N MA a. 4' N: 1. .4V Q

-A aC4NofIa.MA -Aa -4 -49 0 -44 '4 1

U Ma 4A44. -K. a. -. -.4 0.04 U aaa UO4.444 A4 Na M C MNU + U'144

-14 444. U4 4. u)r -U) A A Aa.-U m -4VU

" M U44 A U % a1-A4 U) -4 iU)4. 4. * M 40U'4.I4% a.Ca v tNa _14 U) U4 0.4 a g U, t UA -4 toU) e w U) W 4

t', 00 1444 V .Ua0 . U % a4 . .14 r4N0 1 II 1 04

*a . to N n..4 U).)-.4AU-4A4. oa rI4 X

LI -0,14 tr N a-.14 w 0U a c U)1- --- 0'-1.Q 41 Ca.A 0. .- A 0 U- -NNN . *. A go4 4I 1 1*4. U W144 44 44 N ",t UlV VA-A V-- A 04' ti 6 - r-14 j -. A4 U) U) U L).0A w- U) 14 9)4 4 A to V,> a-4 eU.N4. *4. vU) 01 4U U- a-a1 4N 4 W.4Ud : A oUt

+ 44 UOU)0 "44 14~"~1

-A U) WUN 044 ..44 :U4440 44-A. o bm U) -I 4 U) 01U l q 4( N, NNN NN - 4 0'+ - to I to to

144 V ON )t 41 4' U) 11 Ht 11 11 11 11 11 11 .4 11 .q 4 N 14 a olr, 0 ,Nto a d U) a. to 11 tp b41 a to to a*: - a a: a 93 1 1 - a U) 0 4 U) U)t

to a a >1.9 u U) U U) U)04t a. U) U) - H aw -A 4 Nr4 : a: -4 s -4r411 :> 1 11 11M 1 C a0. M tPM a. 4M -4 .9 4N(4 4 *"4 %14 4.-V 11 (11 %Df- a )4 o V - -Uf C C a aa.,I4- --.04.4N-4 -4 4 W W M.U) 0,a.-4 M a. -A4 -A -A 0 N 44 M 4"..4to)-4 U L 0UO'w4w4w4w4u u U U UUOM.to-A 4 N -A -

U00

4.4.U

*: U UL)

a' 1 w

44 0a a N0* 4 U) -4 a.a go 4141 at41w) I N4

U1 1 -N 0)od- UU 1,7

U.4 V V * C40441411 M 4

-A)1a4 -4NMM

ax + a vo a 4' -f 4. N 0

a.4+'0)4 V 4

to044 VNU9: 1

0-. 0 V N a.a

o a -a N.- 4+O4. a.

4 -A IS a -Aa. U)'4 U)1 0 0 4

u a. 4' a N i-11 U a1 4 44 :

C4 ao 0, - 14 V

04 N 4 440

117

wommoolmoul

Page 119: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

14

4):0 H

0-1 - 4 .1

b'q..o)4) 014 1

so 0 - . 14 14

H0t .14 -0 10 '-~44 41 4 5 l

002 0 T 4

'84 0.II -. a,--go

- 14 -0

0- -2.A 020.0 in 4 x ..0 ~ '4 - -.4 *'bI014V 0 o.

w 0, 4fl,4 *2- o ! x I j

4 '-. 12,A4 V) 4 -. w 4)4)

Lq.0 1400240.104- -A 4 1115c s -. I

*j 4.4 .. to ch ; 14 .0 1: . I .0 4w a L2 . w

U4F b'1 1 H-4 tO ' 4N W

1* 40r.4 .- -04 l 0 b'a L0A 1 1 -2-M .40 u X-I 4 A 44 F-t

U U - C4 W 0.40 W NO )0.0 -- 0.4J

-4 02 4 -4-mI-4Le023N4'HH* o4 pto 4 ~,0.0 0 - 0-44go) -A '4I4 0 V 0220 -

0 - -0 -H 04J'4 H 4114 r.4 q 44..4 w -. 4402.0 0

0v. 0'0ee--4.04 N, 02141N01 - L, 2 4 1-0.2.00 0.

00-em4 NOI004 0.1))40 -1 - * 0 0 0 N

M -4 01000N ..-40 02 0 U I0m -40.02 .H0o0o 0 0 0 0

0 toU) H 0 0 0 0 0

-H4.94-)

S41-4.44

. 14

41 0 -4

-I 04 414.

0 t

0 ofA ow

0 -1 u

.U) 0 ':0

0, -A; -

V.634 4)*-40 tl V A0 t40O 44)104J

0 .- _I_ -

V- 0-

4-1 co '84 0020 - U) 4)

.4)24 04 -

u-0--"I4A--4

a0

00

00

0u

0

4.

'A

u02.*

0w

N,

0 0

0 40

I 0 102

cd ~ ~ ~ 4J4 J nO

44 ~ ~ ~ ~ -00.-41I.1 11o

a Q -4 " m , , t

'-400 -4 -4 - 42

- " -A - -4 to02(

0

0

0

a0

4w)

0 9

01 4

4'A0

.410

1 00

11~ ~ ~ 0 .C4 4to 11 L. r 0 0 11 Ax to 0 4 -143-4 x wN 41 4002

w 41 w w 0 -Iw A 0 0q. 4 0 u0 0020W 4J u V V0V)

C4 f 2-CD 0 4.

.4 a CD 0

0 00 0

118

4.

0a

V

u !0

x4

-400 l-.1

4-)

Page 120: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

Ac

a -4

1 + a

-4 -. a4

43 4+- 0 -4-

0.0 A 0 0114

0.4e 0 04 rNO u 0 1)11u

4 I

4 1

0) Ingo- V

140 1

-1 -

0'-

04)3 1 4.

HAll- -

0110 ty

nn- 4J+fo 00 u"4

w u - 4 43vv ow

44

4

1)

'a00-4

00-.443

014.0

11

S43 I0 -

14 -41) -0 ~ -0 * 01) '1.8 -.4A N

4

40

40 H

'-0 _j 4

4N 1" 1 41 t

44 u.4.

'1411 in~ N,4Q0 11 r: N

Id 144. 4.11. -i 4In

NO .6 -I N ).81IM %D-- I OW '0 F 1N

14-A, V -41 1 -41 N

'8480 '- 44 *' W1 -

0 14 83 4 W 1 .4 0'N 4J W

FM - -.- 4 .41 S. 41 41

.- 4A.. N a.1ga.14a

-- N .4 - -0 29u 1N 0

'44 -4.41-.4 . V 144to -

to 3t *.0 -144.10V A 0.

0'0'4 - - M - W If -.44Nu Nq - - -. 4 0.- Nt w 0.0

%w 0 "410.1 to 181 r4 w

IA- N - -10'44 U f 143is4-4 ; -'.8- N-c- aa

0''4.4.-4.4 IdANNN

.- 4M0 .1 . N84 A~ 4-w ' -4 4 r A14404IA

14 0 4 '0 00 IdO4l0 1) No N 1 01N4-4 0.14 *.r4 go 1" 0 41

0 4 0 -H.I444 0N N

A41 -A4 w14 If8-

0 ~14 FM N0 0 0.40 M V 01)0 0 0

OUr-,400 00-.4 - - q

A

N-4 No 1)* 1143 -. 411 UN N

r0

0

0

00

01)

Of

0 '

C! -0 - -

..4 U1OV(-4 -r4

0 40-A'.0 0-3 0W14) %4

N -0-

. -. 1 -

0) 114'.

V 4 '.0 r4- '0--43

* : *.-.0 -;

10 -.- 404

-. 48314 0 V

0--0

A"I N. 1

00

0

0

a0

0

0

1)1)1)

0

'-4 0 at

N 834 n 0.Ia

* (4 W111VA1N0V

1"4 0 .4 ~4 -A4 -A4 -.4 0 '14 N 1 484 11 I44 11 11 NI 11 11 - H %w 4 444 1

-.4 0'"1) -14 - -.4 -.4 -A4 -1 va N & S.M 413

-4

1)

119

Page 121: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

4 441 . .4

.4 -00 -A

A -- ".U)U40 - '4 4 4 1

V-4V6 f4J J 4

.400.4

I.'00.4

-4

4.

U)0

00

0S0

4)0-A

4640'

-.4 44-'.-. 4 -

-.4 -U)-

'.4'14'-.4 -

~0-

.446I14-6*A4)

040~

-.4

U)..4

0.4460

0U

4

ul -.4

4.4~ MA . -; "oww 0 + 1 A

.4 46 -A

o '- *+ .1 w -rI .

*r w 4 00 n o - r- I+4 u .4 0V.4 A

14 V4 0 4j q4 0

1- .4 1-

0 W- 3 0 A

14 4t a. U r4

A . 06. A

a. 0 0 41W 0-46460 0 0 t 4 . r -4

414 r a.A v A +1- 0

,4 4.0 0 0 41 - )- -.

11 1 4 0 0 VI4444710 4 0 10 4 60-4J 4 40) 1

U140 0 u u r.Aw -

Inc,

U u

I., U)

U)

U)

U)

0

00.4

r-40

4 u

~40 N

%a4 A n1

44 0q4 1 N

u46 4-4 -A t) 1t

0 U.

%4 u0 0 H ie:0 - -. 4 :A14 "

fq :..I 4 I

e4.4 a U) 44

of414 1141.

,4 - '0 3C i 4

tq- a -10 **U)4 --0 '4 40 F, 3-4 'A 10

U I 0 -A 4 44 watooo~ 46-4j 04 W44.

.AA 6-t9 . 0. 044

'44 093 4 0 0040wVto 0 ..4 r4 0 a r .4

0e %4 -- -4 flUq 4)U1." 41 N,0 )6 ~-1

4) 0 a .)..00 4 0 0 04 -40~0

.4J 4 -4.aa -A -a.:A 9.0. 0 ~.4- a 0 04-4.)1. 0 0-

0 n .41 U) 'O14 11U

o U )). 0 -6-. .

V. 00114. .UN I4) -4w -. aa.0))

120

U)

U)U)

U)U)U)U)U)

.4 '

H 46

U)0 44,4

4JU0

A01

0

4.4X

U) V

U) 4 .

00

A 0

46 -

V. 00

100

04).4II00

4-4

04.4,46-u-4 04140 -.4

-4)4)0

'4400-040

.4

U 4.

Page 122: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

4 a 4t 4 1

0.

*0 0 140.-O 441 00 A1

*0 V 44 0V 44

08% - I - .

.04 0 3 13

V 000

A 4 V - 0 fn U--- 0 V- V V

04 .01 *0 00J 0

w1 5% V4 j +L 448 %4Vin408 -"4-4

480- a 1 en- 844

4800 480

.. 0 . -. . - II0 ~ ~ ~ C 0en .- 80 48

048 0 0 8k0. 00

80844 0 884 04 co. 48 88 0

000. i 0 I 00 Im u

0 40 v4V 0 V8 V 8 .4

0 .0 A-I IN .40 481 .0

-- 400 -884Im 14 40. -88V 4 0 . . In I41' ;1 ts 4m 4j~ . 4 .0 4

0 04 -M coo. NN r4 -48 0o0Q*0-. 4 U 0 0 ... 4 .,4 0 .. 0 0 .. 4 A

c o 0 u0000 4 4 0 eo0 4 4 0n If 11 04 0.0. 1 1If1 I *0~ 0.0 00 00N

0 3V_ 39 0.0 0. .- 48 00 -8 0. .0 48 :844 rrl~8 4 48 pq X _#g3W A -

0 0 44 44 0 04N 0'0r0W 1 rr 44N 44 C30 .0N N 0rU .4.0-484 N'-. 0 N ' N * 4 M -

4 8 0 8--*8 4 8-,48 4 0 88 4

0 co n 0 00 . 0 0 .- 0 0 0

U8 .4 i 808-4 . 08-48 48 08.48

48

0,

-40

484 u

a,8.8048 N

0l 44 -A %4

O4V -A.4 8-i

44 0 *- .48n

-4 -.. 4 VI 0 * inJ'884 4 *N0.

.4.4 -. 4.m 48

80 -.4 08- 0.as-8484 A to0'88.1

*0'.4. m .0.4 U ?M.4 4

4 0- -.-- (A4 X -

in 840 .4 - 1 o N o

- .4 .84 no4 41 '4 84i

0 in4 -A U -- I; 48 I

-. 4 Dt 39 1440 t - rm4 -.. 4W.4

88. 40 N 4 .4 00 Il 084811 O -A~ to0,48 L -.. 4 -

0d to-.4 -0. -- 0.r4 - .w-0. 0.

48 40 -4-84 40U.0 t*r-1 . fn AC '.4 0 4 4 'A

0 - 884.40n84. -d 4J4

0 0 -4 r0 %in84 "Iol 'O-0 -. -0-80

0 .8008841- 'AON0 w04' 0--.40. -0A nn

0 0-8864-0 N LIO 44

U 08-0A 0 N

10 0 0 0 8 4 0 4 in.

.40 .. u0 0 0 0

1 .00.,4 I

toU0 0 0 0 0

.r.4

A41

0 0u0

121

U P 4 q. 48

44 8- '1 -T

Ck 80 I If

V- 0 NI

o41 %0.o0i

04 r4 N

r.8 4 44 440 ,8

4.8 N 4N*0 .4 U4

.4J

N,48 N

0.0

4J

C4

0

4

0030

0

0

48

0 0

Page 123: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

0

40

01 -

100

10 O

0 NA41.V

004

W 04

-4 -1

S1410

440 0 w-.4

-40" 1411'

0 0 0 0 001

0- 01 .00 NO.0 0-4. 4t0 I A 041 9.d

o* NA-1 048

00 - . a 0

9: 1. 884 84 10 X8* 0. 't

1. ' 0w1 go-40 41 to40 884

NN-0-. 11 41U0 0.r4 1 -I-I.4 0 0 0 p uAu - C" 84.-I T.10 U801 03 V4 u U441. - C0 41 4 0 -

V C.- I 1 1 00 oO 1141 8. * -4 U4 00-0 is0 0 9: -h.4. 00,w d0 -N .4 C4 N0410 -1 '0 10 >e- 1- to X x 0 .q 0 0'8414 01 I- 0- . 00 a L. 41 '0u

*.-144 010o -44. 4 4 ' 0 4 0 .11 w' :'t0a 0 a $

1-1-is 41 A-. *rX4Z8' 0 V '0'4 .4' .I N-0 H 0 0w - 0 4 14H 88 +

0 -A 41N w .0 .- I 0~ -. 4 0 .480 0 *.4 00.0 r I 0 40 u -4414811 4j 48 0 148 0 00 01

11'88.4 0 0 - I V 81 0, + - I' .'I -140U . ." u 1-4 .0 0 % 4 A -4 0 A.-.IN x8 +4'A0-041- 0 0 0 A484 0 41410 -4-4-0 0 N-aN 31 4u0u0 a8. -1 14 0881 0 041 44 4 .4-. -A A 0 40 ;1 4 00 - A 88. V 044 0-1-4 A 0 u 40 00 X -il r41 0 A. 04-0 8 40 114u a0u1&n 0 0d V'N8400. 004.-I V - V 14 01U410 0. fn 41 -.04 t4H I ~ 0

0f0048 0 '0 41 48 84.8 N O 0 0 10

0V0 -n41 0 .84 0 01' W'01400- U-I U0a 0 14 1114100 0 0 4 0 -+*0 0 a 0 xx X'0U 0 +40

4 u-in 0 00 1,1 '. M 1, 4to A '4'NNO +4J r.-W 0 %0( -0%0 '1 .14 of : .4 14 -1 0

0088'4 0 e' tfA4 f0 *0 .414 0000 0 0 00r00- uk u0 1484.1 0 0 CD .48 *- 4 0 U U 0U U 04 00+

0048 0 44 0+4o1008D00 1 00.14w . w . 210 0 0+0+', A0N14 .- H4 014 80 -M -fl o810A4 U1111110) UU -4 *P410 41 to

C; o 0 - 10 C, -1 0 s 0o*.K .4.-4 1000 0 I" V '0

0- C-4 H A t A4.I *I0 O W u 1) 1 do 0.I V11 0 k)1

IN- 02 U .- V.to 0a.11 11 1 0 0 ' -- V 1 ; U XA.0 S 11:: 4 ' It 1111 11 01-4 1 N O O wON 1 1 N : 0 0 4 e1 N1;VIle a 00 .1 -1 1 r4 0" to0 -f N 000MIN-4'-1 - LH q V04 - '' 44 L) 4 004800-4-. 4 4 *0 04 U UN 0 U to V r 40'00 v0

- ~' 11 t)00 I C: 0, t0. ' I - - 0 4 - . 0 l 11 1 1 1 1 ' 4' 0 1 4 -

V1' - 3 41 1 0 0000 :1 W t0 '- 4 - - 00f 0 )uNAO OO O - -'tl-I u I0.41 0 N4 V0 V V0 0 0 0 .- 01o8a 0' . + w .04 0000j 0 0 '0 0o-IAAMw 0HN-4 11 900(0HN0 -4 N 0 0 W ( U01.4 08. '44480 0 a m U .) 0 - 4'INH1$4 " H48X -44 81 9 44 0140>0H,8'8488-IAW0W00U H4V4- H -A.. *.0 29L# 80 u U L) ON4.I- NH H NV t r

41 0 . 414 0 tO C fn 9'0 44 t 004* .40 3t0 *4 q.1 844

u 4' U u 0

122

44 u l

-4

V' -0

4A'U.0- 4 NH0

'40 0K

0A N

r. 41 -

140m

-41 140 -

'- H 0 000 1.r

140.--1u'

00 8

00.-.4uA0848

Page 124: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

$A41

es A0 a .

y ru U 1

-o -o g. - -

4)15 A0 0

.. 15 0.-.4 01.4I- 4.4 4 >4 - -

-. 4 1 -444 -44.41 * H. 4t

- 1140 A fl-Iu

0. - -. 4 . AI 14.A-4 0-t - A-I. -D4

r- 0 4- .140'

-A .41 5 -4 - e ' 41

.4 a- -4IflA% 01-4tw

-- 54.1

PA 0. - -4 0 0. 0. 'S01 -4 -I .- V A

-4 A - - 141.-I

.1,.. U ;W . 0 ,. -.A IM -. 4.4,.- 0 a . W

4 40 U4 14- .. 4 M.1 0 . 4A 4 -

- 140.4\ U5 0\ 0 14

m0 t e1 4IAU )141 -0 .

.-- U)-w . - 4 .4.4 015r . 4 r.4 %4 ON -14 4) 40 14 '

4 0.11 \ a..4 0 -0 U.- 0 -4 1 A A --N 0

-e -- is -405. 0 .0-.4 -4 -. 4 4W V A 1 1M 5

,A-11 15 1 M . P 0. - 0 04 0 0 A N - 0

1,-.00 - S

0154 . 14050 A "t l4

0A 1%4. Ns 44. 0 . "10-I

-1 so 000 %4 40-.40 0 001 V0 0 .4-.

0100 00 0 140

0 .4 u 0 0 0 00 0 %.40 H

V-V

0

1515

151515

0

-4

I

0

14

U)1404)

.

g

-4i

-U014

S

000

A-.4

>10.

0.4

InU)

C.4

00

Si

15

@15

e >

0

. .

'UU0 e-4e.14

IN

-4.

-- 4 N

14 - -4

0 wS* U) I

*1 - -I0 -4)-

0 -%4.4 to4

4)- -

U 4 X 11

4q.0

I- .40 qu

4 44 0

CM .N Nr4 C4-r - 5444 -4% 04 :* 0

0 0 \0 >

44 4 4 4' 4-4 C4 0 'r- r- co -

a OO O O0

". I

0 0 0

C,

*

-i

0 4'

N, 4 4-4qA-.-4

40 4

-4-t

-.4

S A -4*OA e- .e

0.-- 0 s

.0\--I* 1*

N -4 4 -. 4.4 A

14 II - U) II 15

'I A* I I-4 Im0 0A-. Aa -

0 I II *4 -. 4

N- -

*0.00

0 .-I

0.4)0m 41

0 -aI* 4M14 N

-4 0

A -4

41-a 04)1

I to

-. 40 .

-4 -04

A

-. 3 4 . w.4 0 11a

0 04

0 aw4 0 -g

144 0A-.

4 4 0

IA 0.-A to

-.4

-40-I 0 1

0 0O

.0 V U)10000

010 1

4 I -.4

.40s. ; 40Ucj4

-.4 -. 140a

S. 0 q4n)

3t 44)4) 4441 L-I---C\Oi

a . -Go1 -le'4

0

123

0

-4

0

41

0

S4

00

-A

-. 4

01

4)

0

4

14

S0

-4

00

a14

:3-

140

0 0 000

0

0 a-4

00.4N A

Ol

-A

1A,-0.

.-4

0 V00

Page 125: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

464646

-4 - 4 4 14 x-4

1 .0 ed 4- 4 1

IN *46' d -

-4 ~ ~ ~ r A -4 .0 4 N

q . -4 r- 0 4-4 Wt41 %4 100 0 4 1. 0 0 2- -1 46

. .. .1 a .. x f46 .1

-44

'-0

46 4

0

el-41-

-4 ...44. -4 4

-4 4

"44

V -4 p4

-4 $ - 4 r4-

04 44

x 14 4 t 4

46 -4

N 4H 4-A6

40

N-41..46.NN

-.4-4

46

--I

46 -4-. 0

-.4 14-4.014

-.4-40.Li -.4

-- 4.4 04

*46

-4

-4 -4.-4 *-446

0- 0

044

046 II440 0.4 14 044 1414 0 0-4 ~~4444.044

00014

4J

00

0

.41

.041

440

44

46

0 0-

4

0..10 A

-.4V r

44 v

0 1w'

0

4144 5

0'1

-V' 0 44 3414 .0 V -4 t6' 46 -1 41 A.4

-446-4 4 - .040-- -q to04

0'44.-4.4 43 4 441 446. .- 4 6044 F6 044

r4 at . 046 'A '. -144644 1". _ 41~41 4q -4 0 0.4 0.46 W40-

444 -4 0q1 a 44. A -NOe01-0D -A W4. 44 W 0-z4t

414-.-O go44 4.1dV - TO04Vv 44-4 A . . -A 4604 4JtP 440 - -A4 -M 044014 -0

46 j1m- Lsin AciV -, 46-444

46 "- -. -04 M.46 01 m4

44-4.04 4 - 04 0.4N001V 44 VQ .4 - u - Im 0~0

-4 ., .4 .444-146 -.- 404 f 04V4I'.A*'V) a

40 fn 03 -4 0-.4 40 -- t'AU 0%4 IM -. 4 i V -4 --- 04 tO 46-44A

-4I -4 - -A00044 U3 3t ..4 -.4 -4140 - "qW 31t60446t

VW 4N-4 -I - -. 04 is C 3t-A4 - so6q04. v TO rn -4 '-.414Wt C4 OW-1 U -40446464f4440. V -

to im.4 -- 4 0 V m0 9) 9 3c31446o - "-4 .64 -4 - -- 4 I% 4is -4 On

Of44 .4 39 4 4 -4 N4 44J U 64

Im 40.146.00 - 46444-4. 4 4660..0,444 .4

44 0 V -1 .44 . 4j0 0 -04"44 -A -4m f" I x UM % 0*444A44- -4444 N o 46.1

.0 -0011 N-'-446'46.404. .000 0 00 46044 044 1 46rlt a 0 46

0w4-4 0 -H 00r..0 44 ."0 44N .- 4 .4 -A40 46 V 0

.m 41 NN N, " " N N N

~0 - u0 0 0 0 00 0 0

0.400 0 0 0 00 0 00 -4- 0 U0 00 V 0

-4 'A6

-4 L) 00

124

00-4

0-4-4

0 a00

Page 126: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

4t- 04r

0. ~-44 w Il -

0. -u tao -0 ; -to- r.~ w 014 4 w A -1

41 1: .40' - '14 1 0.I 0-- 0.0 A.04m

lQu) -00. Il qM 0.l0M 4 4 o 00 0 to) -A A0 t4

'U 'A -A * . Q 4 - 0 -4 -

0 l 4 N.01w 0 .I -Q l 0.trU V0 AO.. -44 >0

. %44.4001 fN -A -A :-.0-1 . .4 00--

U 'A N 40IU . UL- A- 0-4.03 N V0.0)1 0. .0' >'

to -4 '0-4 >1 .04

4)0-4-0w40 0 N.0.4 r4 l

u 11 -. 0 -A u 41w u.14 Ifl -. 4t 0 41044-0 - -M0.v 1

1041. 0. 0) .10 ' 44 ->

mA -0A a- 4Ius -- A40'14IU -'U.-1 4'4j U a'U 14j4;);;._I L. to0.0.0

r." .4,;t4 -0.0N-010-N -. 4

I 0 0 0 -H.4 - 0 o A" 0 - .4 140.I 4 - 1 04

I.A 4) .. X N4 a. - 4 0' 14 >1 tp .- I A D, 000 $4 V4 -14 -00 - > 0 - : -

- - 4 -. 4 -A-.4-0 - -0.,4 toI 000.*444 . 'U410 444

14 r. 'U r Id A 63 14.40 m4' 0N ' 0A -. 4 A.-4 0.0 0 u- q . DA4-40. A 3 Igo 'U Ad 41)41 'U 1 41 .4 w 0 r41)4V 0.0 al Nw4

-. 4

0

0

N-40'4)0

-. 4

N

00II00

%4--4

~0.00.

N

0

04)

- -4

44 04) 0 1 U

V V 1U0 A0

0 0 0 N "4..4 01 0 4) 1 0 14

-4

0

44

U

C0

0.. 4

414 "

44 h

40

.44A

-4 -4

-. 4

N N

No N

4) 1

40 4J 9

0 4) . 4 114

-4- en

0 0

.4-4

-4P

+

-4.fA-4

N u4

0 .,1

-4to 01

4) +

14 -

0. 14a +4) H

0.

*3 N0 0. r

14 0 4

04

00 14N .0 V.0 N 1'U 1

0 lo

00 0

.14 u V4 u

N N.

'A 1 -AH 4 'UN

4) 00 -1 4 n144*2 14 14 0 %

0 4 0' 44)

0 0

-4

4

.04

-- AN

4-4

+ 4.

-- 4

-'- 0.4-4 -4 4 4C

_U. .4 Aam

%D4+ 4.

4)-. 1,014 tid 0. 4 a1

A00- u 4Io 0.0 t 4

U40.1 0

0

125

0.

03

0

0.

Page 127: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

m 4 j4 4 0%goI. - 0 1 4

0.-.4 0

N 0 w '

"4A 0 "

'U t I 0 41 4n0 q + W 0

A4 t , 01 >I. - 0 114 0.

U4-4 4 S" - 1

0.4) A U 0 V) 04 N U

- - 1 o . 91 -0 4 04 --K rqu ; q q . 0)1 1.4 1

12'5 ~ L) 44W+r J ) 44 L

HI.1 0'N 4) 0-. 0"40.4- 4 0- .,4)-

U--- 1 114j 1 144U

14 N 0 U 4 + 4 0'

t. - ,40N01u N 4 -H " H N

'0.0014 4 I 00

0. th44 44

-go

0.

01-A-4a I . -04 4 X N *-A4 A

A U ) U)A r4-4 U-1"4 - Ch

0 U 0ut "N

4 H 4" A Nt ' _-4 A 14 4 00r 4 -1

Af --- If1 O 10 -4

.4 04040 r., 0.0. .I

.0 _1 -d( 4 4 4M 4AO -4 W 4 - r 4 1+, v00 NOww u

U Q

m4).

A -. 4 A r4"4 "4 4A

S 0+ +toam

0 I 0...

v 40 +0

-- 6 14 -. 40

1' 0 +""

14 4 0 A 0

"4-+to. .1"4 -4 0~"U N "4U .30,:

144 11 4J :

-H I-H N a II

N-4.00014 "4"

U

0

I 0

A 0

0 4)0

14 0

La 4"4 0

0

14 03*4 -41

* 0

N 0l

0

4-.0 'DO l U1a .

0. 11 1 1 3 e 4 4C4 0 00 w 4j t

-. 4 0 4) 0U) H 00,4- 4. 0

U 0)

- -0 .0CD A A4

4 4)

U0uU u 0U

126

44 444

S 4

4.

S1

x 04 h

n to r4 "4 "4 0.

*0. 0 L 0.0

H' A' 01

Im -. 0 0

U

Page 128: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

-4 0 - 0: 04V

4 4 0 29 - 'W I b

Id 14 > 1>1 13

I" > a, -.4 4 0 4 OL

4is v0.N 0 0 -0 a.H.4 ) C4 N 04 U '0 'A

4a to A 4 .- 4 u4a M, AdW0,q 4

w0 O A' uJ. N 4 0 w 0441'-: "4 H 0 0. 4 Q,

O'Iflf4 ty > 1*54 g,0 0 x t - t"14441 > VHU 44 .0 U-4)

w' 4 . 0 .- " 4 bH - 0 U 1-4t 0 44

4144- * > 4 A 04A N V U V

> >44 -- to 44 -0 4.1 1 tp #a29t-.~ A W 04 A..044a.

44 0 -4 -. 4 3, t) U) -04-14 a !0 1 -IA fI H04j0V&.4

0l --- & A H Q, 0 44

.. I~ 0

0-4 4A -N0 44 -40 '4 'A.tn~m -- 4 7O.40.4 -u ITW

0 M41 l. > WN r t4 44I 3 -

- -; 0 ' -. 0.4 W . . M .'N0.qJ a, : .4 -'44 0 - go Vis0. -

b'-.114~-1 -4 4JI4H44H.~-0t; 41 t41 *-H. -4 ; U.0oN..I

a . r~' 'l 'A. 4j0 -4H41 ; X 01

V4 >0 "4 - - 939W a- 4 to 4 4- . _ -4 OH .4 doV - t 2 04.40-_44 a- O14 0.0 t*-H.4-.44 ANIU.4.U.4 I-AO

#-4A4 -0aj "I A.A 3Na - .NMON0 4 4.4 ; 0 FAA V '0AA A. 0 W4)4 0A44

HO-4b' 0-4 a 0, 4.0l1 '4 44I A.. 4 1 u

a 0.4aN N- H,-44V 0.I N4 NNNNV _4 . .4 .4 :3

0 -A. U 0o 0 0 0 0 0 01 0-.4 0 4

no 414'O 13 a N : N:10a 0 -1 00 0 0 0 0 0to 1 .4 14 I.) u 0 u u

r:

H ~~~ 0 u 4. 44I

.f O -f4 w 41 Hl0. w40

-4~ -. 4 0 N N d 0 . 4to 0. WNto.a U t" .

Ni uW- 29W 4A.rn--aW " -

H .1HN :.4 0 t3 oO,-,a 4

4- t.a -N.I4 UO0NI44 0. 4 .4In *..-.4 4' ..- M . U -w X 41 0H A04 A-4N 14A0 44 .4 44 M.4Ch -

aH; 0 W .H4 - 1 wA O 0 U N

* 4 N 44INW U3 1 NH -a Go ONH 3. -4A A e g I 9 04 -0 4 to -H.4I 0.

-~ ~ Ao ~ * 0 4 4 U N 4 -A -4

U IM 0 #A 4 -N0av9dAo.-4r. 044 444 --- 4 . -4J U14 V 44 4 .a. - r.

0 Q A .4aWI4 -4' -H.44 0.On ;0-4-N UO 001 --- 44-.V.1 - -

V L V0A ;1 A'a0 -'-4 0 0A o-A 1 A v -N 31 4 N 0 4. --

A V.A4*- -4 A -4 4aH4H C *.U44a u ---. 40 .4 a HO41 r a -0.4U M 'A A 44 44 :14J0 -. 4 U

a. N4-A0N M0 10 4j . w. :p -4g44 VN -NH, 0H. A---.111.'.3414:04HMA- ~ 0 H go 'i d so u -V4 0.-4404*.4fis40-1 V 4 U3 -1H

to -- 0- -4 0 14a- - - .4.;00-.44 U V V 0 -n ' O NU --. 440 93 r FA 04 V- t

H 14 A :140- 0* 4 00 A ~--4 a r.410 0000 ato-1 0. :0 0-4-4 31A tP UO0-44 U -. 4 0 -4 CAI4W . N-4-1

0o Iol 04- ,4 a a a 14 41 to.I 41 a x 41 41 44..- 14 A

0 0 4.0 0 0.b ut140 V r a N41 aa. 0 0 44a 0

-1 'A W-4

aar0 0

0 0u0

a30

0

a0

0

'aa0 0

0 000u

a0

0U

0

-'4

0

ba

440 1

0441

4400 44

0 -.4 0V4 -4- V44J

0o 4+ H,HA +

C441 V~Na 44

044 .

C4 4

414-4 0

V41 .. 4- 4N 14

is- 41

NC4-

IM 0-N V~IM 4A-'I

V 0-4-0 0

-I41-.4 11"I I V 41 0 1I I0--A 44 N tp-I A a WA >4144- 040 a >

0 u 0

127

Page 129: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

> 9 H 0

4 4 0 14j4 -4

1110 - 4 4 If44> 4404 'q 4 0 4 0V

> 11 - Q04 411 4) 032t 0144P0 (000 ( 0

> -14 41 u 4 r. S. U

4

141414

14

141414

14141414

14

14

14

1414

141414

14

1414

141414

1414

14

14

14

14141414

1414

1414

14

14

1414

000

04

04

0 4 .1% .

0 0 4

44 +' .4

0 at0 I .

S3. 4)0 14 0 4) 04a,0 ON 0.

AH 04 04i

4) *~ >

0~ >4 0

4-) + :1 0 0

40144)N 040ww w-

44001 N 0 140+1 04 q

14

1414

04404JN

I

'.40040

44-.40

0A4)

14.40

4)

.4400

.44I0

0A4)

04)'II-4044-401.)

141414141414

14

14

1414

1414

0044

t 0

0C4 0.a

A 4 -

E) 0 "1.,-14 14 I

41441 93 . 4

\ a* C, w

0 n N .40,

-4. w1 41

.4- -H (n

*4 t 04 ' 0 0. l

ANX a -. 40

4410n0

.1A0

0in4C

00

-. 41

* - -0 :04, u to ' 4 in1110o1 t

4 .4 - V , >4 44

0a 4 % > 0 14j 04 "4 404)4

3w4 41 0 0

oj 444

-4 .0 0 4r 9 J- JU U 0 - 4- -' 4e

04~ tse - 14-0'L 44 .40 -

128

Page 130: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

0

~0

0 0

0 i0' -1

0 a. 0'4 J a1a.. . 1 > 4

o 0 >W-i V- ol ca 4L.

41 -o 4 n04bl ot RI C4 rl a.-. 0.. a. " 410 0m0

41M4 V : 100, V 114 4 0N 1 4

%14ao om 4 40 M 0 t1 0 0 f VU0000 0- X go 1 .-i x 41V 4 J 4 0 ' 0' 41 141 VI a. to IM414 A 0110I 00V0

Im400 I 1 %D 0% 0DIn440 n in If r-

-4In 40

0%04

4c

4.

4.

03

In t

41 4a.!

".44

0 V Vl4

ON r400

40 14+W1 o444. -1 4n 4

40 .40 4 a.1 a1Ha.

r4

0~

r-4..4.1. !4

co V4 44

- .0 1X 4V 0 --0 4 40 . 000A4

0 uNf4 O4 -A4, 0- --U.4

u0 0

129

Page 131: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

0.

m 0.0 -m -Nr

U 11

* N a

14 44

C 4 -0 -0 V

14 fn

V en 0O

an o 0% 1 c Tm4 a s 13,14 4 0 '.4 1

> (A 4 m 00 >4 0

Im .. 4 ", .- -1> t

a. A4 A 0

- .> 4 +01 1.. a,. 14 I=.4

Na. 4 ~0 0k ' n 0 M CD4 O

11 0 1 00 w '-101 fn - C 0

tp a -IA 040 0 0to4 %a *4N %a> > 14n M I0. 01IE 010 4 . C

A a NINI b'L4 -10 4M > * i0t'a* 00m 0ow sr- a 4 -i

VNI > -0 aa0 LA-N+ co a g0 0

0I * 4 '44 14 14 0.+ 'ON *5 000At, 4" *1A~ M ~ -4-.o 4 '-+ V to 0r-

> >'&4 Id 0 II -,I5 +~o a * N.w m O-k aM>'OU fe a w'a Ara. a **g ra'-1n1

Att --a 4>--a 4 MO go4 51 1> 0 4a~I .a4 Aa 0 w .0'4.4 11 0 144 11-a0- -.- w4.,M w M >*4 ., r - M o n V0 o

0a- r". Vr 0 .0 0 M 1 4 4 -H 'H1 0z C > l 3

-.4 a., a X a w45 0'

415

U u0

'A

> xA N,

a4 C4 14

-"4 N. 39 .

A0 41 4w 00 . A

41' 0. i %4A, 0 14

11 + t a+ ~ + , r

a - V4 3

-K A A I i . A4w N C4Ln NA > -A A 4

"4 -V0 IQ.1 4+ A ON4

> C,

64 ~ ~ AA 00N. 3 11 A > '

r. A AZ AA A a 0 - .4

0 0.0a t A A to 045w

u 41 Q>A >. w X9 044N

130

a0

' .4

a! A

'4 0

a e0 !I

mawo 4- V

440co .

114'144

0-

043a.-4

4-4

'.4 1'011C'-'0>

u00000

Page 132: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

0

A

" 1"4 gN4

4'

0.e

S0'

U aa a -

A A >

a|- - 0.

.0 -4e -

0.' 4'- 0'

4'4 e * .0%

4's fl *l M 0'" If

-41 4 4 4 4 4 O*-10'f q m'-(-- U-

-114 6I66 6 6 0

0 e

4J

'ao r-

00.. V4t

11 0.-

%W in.0 4e

'4 .S\>

4 A

- , A S - > 4v0 a # 0 > r.C

1 m4 44 e

41 N

14 0 I 0 4 .-

S U " i :

4 0 -,

.40 . a 1 0 0 0 v t

6 4 U -

4' * 0 e \1

3 4 60 00 ' -0041.0*41.4. A>Ae a 4 * 0.-. 4 > 6

60* >N-0 f Al4

00.00.06MM -. 0 I

4 4A NO.1.N * 6 4 .0 6 U 4 0 4

. Au >*0.'0 U '11.-.- II0004 0:.14-M

II I .4 6 0 I 0 A 6 1 . ' 66604.0 4'M-6 *

o6 .0 6 6 0' 14.04' * '4

o .00oOO g a

-4 d . m| 4- 46 * .AM44-o .iM AX : - .I

0

414 0

0 tr0w N0 0

4' 0

0 A\M .-46

> > v .d444 441 A.

V.01.41 114A

6 0%4 .0 140'f> 4 - ' 41(

II M 44 A -4'

tp 'a 'm y

N 6'0. 64

6 00 L6d ~~ 0* M0 0 u MO66.0 to1

A1414-16 011 41

- .-- 40 A 'J.00.066 4 +0C>-a >'014 -- 6

0'00'3\61 I,M.4 6- 0.6

M0 UM4 446

> N4* - 44 0

0. Q 4' 6 - 61 a0 \.4 .- -4 N 14. 6

.0 -. 014 0 \- 4 40'6M'0 eI * A 6

DI a ii 'a 140 '14

.0 '' 011 o-I 0 a*aa ci- 1 46014

II 0 0 11 4' 0. 14 0 06 0 0*-ei a A 4'C A 11

6 0 4 a6 0 6 66 0 0 14

0'04 44aQ FA0

0 000 u 0 01 + 0 0

b3 .m .A> -q I +3: 3 NN 0

N N 44 14> -4 N N -M 4' -,4

> >-' ' aNM o oa

0 0

0 00 0 0 0 0 0

44

4

40% +4

0% 404 4.-4 4

%14

114t 0

440

e c!0 t0 0u 41

w V

4

V' u

A41

144

4 6

A

A

40

.0 w

64

0

0

M 14'5

1 44

V

v04' A

O 0446'

11.44 e-4

A 4 040o

44 40'

0M -.4 A'-M4'114

14et'0 *0

0

N0(' -

C4

4 4 --

+ a V04J-4

va a-+ +('4-

6 --

a N 0

F- 3I r

0.4 4 4

44

'eN 0.0.

4' A 6'6 .-I*-4 .' '0 e

o N a-e d i+ -4'..4---4 a

+i 0.' 4 4 ' $4.I 4' 4

ii- ,-4 0 6 6i 0 0 0

0.440 .46' .e'- .4

0 00 0 0

131

6'

\ II

NaO

i9 a1l 0 1IMO a,

Page 133: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

-V4.4W

4.)

4 N

04 0 Cc

41

.. a a - -. 4 4j-.

t), * - 00

0.- 4,

gn C1

A A4

N N

+ + 0

"4 ON04 00 0 41

NA ?N 0 to

A1 'A '-4

04 4 ~ 4

Ad41 . 41 41

41. 4.0 0 0 '

tn Q 1 4 'a-a . 4.44p, A 41. 4 4 9 N44

to41 4 4.40 A 014D

>1 *0'a 1 r. +

go 41, .'. 4-- 0.6>' 0 > +-4---u 0A4. '0 0 1, 1 0It

N4 41 29 1 -4 0 41 .44 . I It0 11;t 0 V 0 > 44 A

4J0 . w 3u 3 9>-W-14

a'

0 00u

tit

A 0.4

*4 A 4

0 . v 4 . -.. I40 OA1

04 .0 t4b

0.0. a ax u0 0 .0w a 1 104 41-A 0.4r 1t t

> A4 0yau4

4 -4, 0 b'4-A

A.U 41 4.''41.44 . 0

.4,,0M '40

Uu0

132

0-4

0

-414I

444

40'

>-4

- 41 fa4

A41

4,14

U 44-0

4J - 4 r-I

N t) 4 #

01 A Ny U9

.4414 0 4 0

0j 01440-.44 0A

to A. A4 -4 -. 4

NM0Nb3

44.,IVa .410

'A441

0 0 0 00u0

Page 134: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

14 0 3!.-) 0. ' 1 .. V

t4O r4 > .w 4

>) t~--42.4

W >N 44 4WA w-4 N4 0 -0 4)21V4 t N

.- 4 t -a. -4 442 014 tr.I > . H N -9 N

U"14 ~ u rl 114).4 '4 -inu to 0 > 0 t.- !0 . - -

r ' 29 >N 0 4 ai L. m

-.- 4 a.4 a 31 v u 14u u l0 )

'1.44 )tI * V f:I '14 A N a.

-4 m' 4 4 ). 31 V ~ 0 . '

'40' - f _'4 .. 414 a4

C'4 ck t" V 4 4 0 A.4A 4M

.A -*. 4 -4).4NA

N2a.14 p2 -'4I > 2 up 24)4

N > : -N :1 1A44N $ '1Id -N -N- 0 of42 4.93 A

4 '0 - 4 1" "4 144 -

M b 43 A-3t a M V .A4 0 -a.)f" C14 04 0 N 4 A44 w t D*.

NM -, "I.~N0a. .

'1444~ : : 2211 --

0 2N - '1 -414a. 0

>a NA144 to

.- I N*

0 10 0 02

o 0 0 0

00 0 0 0

NW - 4 NA V4a to

Ca. 4 -AV442NN

A .4 mrq0 NN Id >Na.N

a.WIN 0A 0 . X 0 .a

AC A -N.C 4 o A w V an D..

4. M U 0 tO > -~4 ( -a. -Io1.4~ -a

'A W 1 .41 -Ala. -NU14

u a*.4m 4 -4) -Naa

_A-.4goV0 . ed -

to42 r. '.. . .-1>t L. *.0

A 1 -'4 -14 0A N -a,aCW1 N -. 14 ..4

.A a U N0U .NN> a

u~1a4211 N4214A 420

-'4 N 0a. - #A U' 9 a. to w2 '4 fL

0 4 42 - W . 04 1 > N a -> a l l4) . -4 aa Le- 4 NNN; 14 N

u to - 0 to A- A -04 -4N0 3M4'. -4 a. Ch4 0 ) ti 1 a. N N = N

--.4 -a14 N) toA 1 W

14 A 14 r.4 w N > 12 '4 NN0 0 a.4u -- 'a %I go tp I*4.

N~~~~~~~ N 4- 44 .~ .4 4 Aotl -N. iC ,

N .9 1 4 N to N. AW WI .- N

0 40 4) N%

42 42 .4 aN. N.N. N

a0

0

a0

0

a a0 0

0 00 0

. 0

'4J

IA 42

No 41)"

a A"

- 4) ..4le

W, A 4) .

0 00u- 0

.0 -NW f

0q A N N

F'-rA ?AAAA 42 N

go.1 N N 0-m -. 4 0

N.1 -IA N.11 4141

'A

04)

0.

0U

in

a-

4'4 00

., a

0 -

-4 0

N 41

N. 41

t2 0

Na4)

. 4. a4

to t -0IJ ( C A D

'-.- 0j AN.-I4 44)4 '-4 N 4I

1% a' 4) a U'-

N3 IN to1 4) N( 1 '

u 0 I4N N.M1 4 4:

A 14 HA "N owC0 44

0

133

Page 135: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

024

04

to41C4

0. 30

02 w

030

U . V 0

0

U u

*0 0 .@

A ' M2

a 14 0 0 0

U @4.1 u 0 A*4 02 U %4.13

is + 0 l '4J

-M 1 I'dV 0-0 0 4.

+@ N. +. >o * 020 to

0 +. + @2

14 a 2 r @2 A 41

* ) .20*@ N r4A 4 C,02 0 M0

UW4 U 01-4+

w M N02 r4 .. .-@2 W+a0 @2 4'0en04

41 .-q 0, 0 V401

U >>-.4 4) 0214+m NM

A u -I-~ 0 u

-4

31 w

Au N 11!. .

01 @2 @2.

?A0 U 0 A 0

~14 04

ol *. c w *. 03

C4 H 4 @2

44 N . 00

@2 H A4. ! 2i

-1 41 -H 14w0. * @4'@2 -A

4.4

0 4141

0

A.n

00

0% 4 vo A Wta. 00 0in F [email protected] InNi N 0 0j

04 43 0 10V 4 0

w4 fle A.r- >

ND 0'1-C V L 0 0- 044jt J> a o 0 0 to 02 02 - 0010 0 0(i0 11ul 0C M -I 4J . 4 0 C-I .4J t 41

11 r- 0- "4 Iq In.- Le> 0 @1 j 0, 0 1 2 1 1N I 1 4J 0 0

w ' 02 42 -I - A. 401

.A02 a 11 04 4 ' 4f Nd Ck- ~N 2 -4 ' @1 *0+*m ot) - 1; -r4.4'4 QN. 02q-34'l _ qM _ o

*.4. 41t JW0 l4 P00 001 4t J 44 44 '4 4 0%4.0 4 - 144.1 44' 0I

4 1 4 .. 4404 *JN 0Vr 44 4J -4 4.4.- - 4J 4V 'a r'l.4 J020-A

0uU

H4 c Nint LnfLin

Hoin %a

134

Page 136: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

41

0

C14

'A.

0,0

414

FA 4 0

+-O 49V 40

440

4af 4: 1 a? 40A

0 a41 0' 41

I x U 40

v q 39 4 0, f h0C, 4 - 4 U A

41 14 4 0 A 4 J C > ad N 4 0 4 n11D >>u 08 J4 0+ C4> 1 4 0a0._4Nw 4a 1 4 1 (4 > 4 8 4.40 141V 0 4

0 0 t 0 0 > . 48 3t. 3t is000 3 paoI ) -

04 O 4'0Vi 0 NI 4P' 04J 3L 40* 48-r

m80 .0D -WM~ 484 %C m 0 0.4-'0 W -- %N>N 0n g0n4 04 0~e 04 aa.o 00' 0 800 .0 . .N1 0 0 u 100

N 0 VA

v080

.4 4

-A 0I q00

N to>4 48CN4 0 . 4-

O9im 4 - 0 0

A A-..4A.

.0 . : M0"0A. M

481 41 -4N 4 .NN 4

tnto11110. (44 1.0 01 0 fId--.0 4J l 84N 0.1Do1

48--0 48 a.4 .4a C4 44

0 0-- 00a,-A *- q>NN 4N

4I84 -A4 % 0 I 0 0 r 0 - 00 A 8. 4 21 9 .410 N-

0 0 0 . A0>

0U>

0

N,

0 >-4 1

C to >0- L.

-A 0os 4 14

U. 0 N4

48. 0. >> a4 14

-.4 -.

a1 CN

0 ' +

W.01 40

0 - - 1

00 :N>t

AC 0 a 4>

08%8.814 a A

ofN >

01*-8>4 >a-rn Na I

0w-d >

4t.1 0 0 pr

084 A

0-t A 11 1'80 Jr..0

14 >

0 0 u0 U

135

Page 137: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

14

No 10

C4.- N 4

-4. 1 lI

A A4 C. 4 14

14~~C 4C4P1

L9 fn A 4

36+ *.n +m + 4 4

f4 M ~ X - l tp

N4 m 0N 0 A

m Im m. eeo A v 0* .. 4e4NNm 14 01 > a016 s 4I

> m . 0 U 0-0 U 4l Ga> L fn

a. o 01 41cc4 mg A a.0 0 0 *- 4 a,* NN + > w

>4 4 4C 0 * A 1 m 1 fn *W do ?4 4 (4 4om 0 + * :z-4 .440,0 4

>0 43 A 41 MO 13% E0 4 -f0-I

009 u tp A , a4 -0. -4 &4 +0 A A +A E.4 o.40 1.4 oN 0! N 1.0. 494 0 .,4 f4 00A4

C41 4' 144 *@ 04 o+4 eUH lN . A . .14404O H dA0 0 0 . -4o9%0 0 WM 14 a N 4.

C0 01.-'i 4 O n E '04e N NVt01 01. 4, 44 04 04 M4 I ' *0 A. Nt 1q .m a1

NoQ- .0-q : ~4 0to 00 x -1>0 f0 X1 w0 A 11 ON w6m 0 A111"o41- n v(n1>f I N4 93 .01 -1n- 1M 0 . w H0I44 *-11 4 A to > 4 4 Att W( 49%

A4. a *N 1 10to4 - 00 -A90 NN0 U)a 3 -+ 4. 441 1 . 11 uwA 11 a. 4j -11 A 11'-~~ ~~~~~ .0- z40 as0M~ b'O.- *N A0 * 4 A4- 4.

N'. 14' a o .4 -I + wl 'a -44 > 4A WV > 14 b W04-ma4 0 " -a. A S0A N r 0 4A r a.44440 q b o -A H.4A , 5 00.r . 0'd4 NO (1) A a.EN .- 0 A w4 ANN Z; A4 -H 49 e

N 3 .- 4 x u 00N0.Ch0+ >N -494 00> *. u. X~ go4-N 0 1. V3HIw-4 u 3 ~ . -4I.N1 I--- 4~J14 40 109 N- . . 010- * I

.0 ~~~~Nb'b'U~~0 943 90 1. -. N -. ~ 4N *4 ~ a.44a4 .419.~~b"14A00I *0II--9104 .I0m0.I4A U ~ 4.10*.44. 0~~oU4 . -A 1~~~4.4 NI N *o- N.N N N 3 N 4 40 49 *m b

N~~~~~~~ Q ~4llo1a .boy N0l~I9. >lIIIN I 11U N*.bN N~ 6A-~'4m

136

Page 138: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

41

41 l

U

44

444

U :

44 -4

o 4'1

.. 4441-

'%4 .-

a a >n

a 43' U 4 >

'6 u 3 a-

to 03 N NI A

04A 4 Nx N6 0 Q 0 q'

U 4 w 4' a-44'.fl14.4 Om a

to 'I It to 4.0 I-4A

0 9 0.- f 04' t

VA u.' b1 V -Nil 14 344 L I A N fd

@3' 0"40 0.4a ~00 3 1.I

0.0~. 0...04

120

14

C4* 00

t.4 44 O

NO +

.41 N

1

1 0 6.64 to11 1

@3 a4140 . a

%4 N'4 @3M.44 4N f .3' 0@w- W

.1M60 06 0 a

a W j t +a" .

V 14N 4 N 4

r431. 0 W 44 1 0 11 .11 000 0 o a .4 1414 0

a'0a'@ V 44 ra t 3C 1

.9 a 3 5, o 0w a'2''4 4 .4 1-

4'N''0304 0000

U...-.- 0N 4- ON to I+

4 ' 3 4 . 1 0 1 4 I NM02. 14 V" 404

U UU U u U U U U

4 11.4

4' 40

'4 14 4

44 @

a 14

4j

'44 D3.

43

* 41U

a a0@ 0

14 0 43

*i 0

.0 0111

a' 431

a' 00

U a o0 1

-4 4 43

U 3 003r

-4 C144 f4

14a

41 44

04

N 3

34 3 w- . 4 C4 L

-'-

Q.- 13. . r5

r V3 4 0a - 4 0ag11 44 0U) M 0 0 Ll 011 44 r0 0 00 44

a -A _f 4 A M0U0M' v4.4AFI0U H

o .-I C N-4 N12' N.4 N

137

4

A0,

>3

a' nC' 43

I; *a4a0

a

o ..4'44II II '4@3 @3'aU@3a

0

Page 139: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

3.

A4 C4t

0- 0 0

N1 U 0

U, N 'A 0

I 4 > 0 UlAmt 4oVV +IV 1 4 1 + - r 1.

A- 41 ' V a.u 04 00 t ,N d 1 0 14 0 .0Uw V A4U)V u * N

0 4 UN C4 A

01A UW 4 41 J> 400N tr FM- t"3 0 N

>4W -A .. a U11 -aa>0t

0$4U) U - % 4)' A C t N0 4 0 1 V UNH041 Nr 4I

-4 V to- . * 4NN(

44 W UA> 4WO N4 0 2t +2>4-

-H IAy 1 444aO. UU14u.I 44UU AJUU

U U U

* ow

04 + +.

4at A

0N N,

0+

a- . .

*0 V t

-4 4 V -4*d 44 N -4)

A Al U 0 ,4

0 A -- 5 4

0U

+ + o

Aw J4 0 a

0 U 0 N1A VA w4 0A

'A 0 FA 41t

-4 -44 fmA

A AA

ol m o 0 4 >3

A1 141 + Uto 4 wiN+

N : Ni N44. 0)t4 4)-0 4 a " "

U U44 X V N >

O4J ot A4 60 0 N 4-

VO- V owa NU31A w

UU44-4 1 >I -> r-UO 4 " : t 1

141 4 4.5 V V. * .N CJ 11 1 1*b -'a > 4444 V HI--L3N( 4 4

> 4 0 0' 0) I- > '.4 M 1U'

IY.- 0 0 -. 4 )t>-4 444 4455NN II0 0 -. 4 -A a 0:3N -54.

V u3

U 0

+ a.A. A 0

N.A N 40

-4 N tp.

a. 0a0 044 4 44 U 4-4 4 -- 4 id >4

a. 14. go

ar4 44 0 N 4 w4

14 - 41- U0 Al -

.14 4.4 V x4V .4 4444 + A.

44 W U0 0 U ?A 44N.4 U 0 O?

44 444 t), a Uf t

44 q NN 1

A C.64444 >1 D -4 a1w

1444A1 11 Of X X >H +

W4 5I r.t I PM 44 tl( aa 4 N144

-4uUU >Nv 4 N0 4U 4 U 44 ) X >4 N0 .4144 U'51>4 a.0a- a:

U343

138

-A31

4AV

0u

41

.4.

U4in

Page 140: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

444

t 0.0 '440 tot 4

-00 41 -0to 4 N,-. 4.44 44 04

> to to -4 a' N%4 000 + 01 A 4A o04

4 ~ ~~ 0 - N" L.)0 )Na A4 gflJ4) 4 4 1 J 0 I

0, -- fn N 4- a :! '41 0 ov '-4 00o0 N) -4 0* FA. N. 4 4) "-40

0 +-I- 0q Aw40M-0 044 4 0.4 40. '

4 D,~ > I + 0 . 44 41 *C4 N .4.4 W - - . '. I m A It .+ to

*4- toa 44 to I. tr 0 1,*4. S- ul.

4 -4 - N4 - *a a- 0 .44 NtoiaM A41 a4 0 'AN 104 0 0f 44 41 .04 0 4 ON I

m4 I rO 0 0 .M fn 41 Id 144 > Ao N>4.4

O -. N+4.4 ) 0 0 . SId NO'A 44 NAM to C3 54. 'O~~~~~% 4) NO:4 4 4 - .O 444 44o; 44" 0 0 >.- H 0. 44 A1 4- 44 N W0S-I 0 N 4)4 .0 >54) en V4 0 4) A N, AS- S-a aN N

1. - 4)4- 0 4)4 In vs a-:, W a a 4 aA 0 , 0 * 00 I4,4, o VI ---44)V > e o'oC, 0 4-.> 4) 1, 00 0L 0h 0q 04 N 0 4S-4 V t to 044 N 14)0 0 *n r- *4 -ni C- 4 .4 Ao 0 o q I0 -4- 014 a a -0

0 0. V 0.0 '1 * 4 4V 1 1 440-a -0 - 4)-,> 4 rN -4 0 04 W 44V+4 41 - 441 > wO N 000. .0.4 NO 0q Nan * U-OoW- 1 C

N- 4N-00f-O Go-bVI 0% %00W4 I- N 0 4 0. no S-m 40..0.0 'AM-r4 4 -N C 0 V 4-. 0 mf n W 0 -J .0W~ *C 4) V O; -A4 4J 0 w NIt

00o400 ON4ss M'w nI N 0-4frn4.0 w) b'f r 4) 3' S -0. H 44 4)4UkV . N~Im- -4 - 4 N tA0 0 04b. 11 1A 'A W. '54 t4 'A00 0

-40 ) 1 - 04 '-1 j N4.4 * .0 44) - 4 .44 '4 N-)4.. 0' 0 544W4)4s 4-A 0 N' to >41 > *0 4 V3 1-v 1 4)4.44 44 > * A 0 0a- 04 44 0 .. 4)'440 ' 44 04))4 )4 100 A 4 V >> 4 4J)4 V ' 4)0'a V4) M -- 44)4)444 4go 0 .Z 11100'10111 11 4)441 - 444. 4) 4 4N t -, -4 VtA4

O > > V .44) IN 01 0 OS 0. 04 0 ra-4 4J 0 - 'A 0A 'ai. 14-- M- ~ - N 0 4I5 N 4 0 4N ; %4i>-4 I-.401 11111 ~4)~54I I Id5-5- 5-1400 10.00-4.-. W0l..4N,.4 441II S. O4a.v

11- > 114tl10 11101101111 fl-4S.A .4N -4 0.4)

0a 04 4J 4)-f 0u > a4X. 0 V44)-1-,~4 ~ 4 0 0 0q 0 0At.0~ -4 00-.

004 0 u 0 u

139

Page 141: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

0 '

'0 Aa

40 0

0 U 440

41" 1q D

04' N

11 ' 4 04C J 1 f 1'. 3 JN 4 C4 1 4

0' > 400 4 -A

.04x400-40-N4

0440a0'0I

140

994444".4U00.00

4J00A

0000a01444440

99..140'00a.0A0440-00

0044.

4400'0'0'('I

14 I,0-

'0'.-.a *.~000U,

to L00 01 4A 0 11% t

a 0 4

0

*3 A muo

u4 a 10'0

-C ~ ~C 0NAaatA 00 4 o t

* ;. as ,* ! 00.0 V VX 4 4

A 4 f I J9 0 0 11'

t * 0 'A4 01 4 l04 0.0 V V.041u' .4

1 00 0 4104t) 44I I 440 'A4.0 0 b 0 A V . Im AI 4t 0

40a44 U' 44> '0 r4 (4+

.00-.A 0 . o. 1A 0.4 wVV4 ". 14410.0444> 1044 A 0 V1

N4444 N444 *0 0014>0t-A-0 0 9l> 4 0 v 0 q0 N01

W4 o 4-1 0 . -A 0 a0U44 3.. 3. > 4

4j 41

0

104

0

0

41m

.H

a14

MOII 44'00000140

. 1x4 4

t(4 0A 1 14

am f4 0 4C

A A.-4 31 0 C0I

0 Ch

A~fl414 a inot

t0.I 44 fmm3t- 0 a

!4 u - > N sa 40 n 0r.c

fl A 1 0 041

~oWe 14g

aau go0awC0 0- 0 N .4 4 m*,

40IA 10, .0 o44M

1A!0 to44M

e01 ~ 00 04

0 64 V 0 0,0 .. 4 omI-ow 0 0 4-44.00. C44J440 VA0 a a 0 . 40 to -l

4l-A-4 -.- *4@I@+ -0040 I4'.-

- ~0 -0- 41. .

0 0 00uu00 0 0 0 u

140

000

Page 142: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

NN

%0

1 oo - NO I man

-400 N4 %a404 "

In -C11 0 04 % % I 0 C40 N4 -W I4a m N 0 040 Gov 01

1 o 0 *4 en Ian4 IO 0co c aq 1W n n t ON 0

. nt -r 040 0 04 IV4 %0 * 40 r c

N 0 4f 0 an . No (nI 0.%

40 0 .4 0o 0- N- (4 *

N 0 IN "a n %o t, MM-0 a.. a

.-o 0 Ch % 0 V4 fnO 40 10 -W0 0N0 1 *. q I 1 * o 0 NN 0$

O4 r (40I MIO -4 MN4 0 i40 in -WN0 - N W 0 -W - a i n ko -4 W a%

I 0an " .4 0 O %0 %00 Ncan4 .,1a Na %M cc t4 C4 4

f an4 .1 o' 14e V40 e r- 0 1IV O an 0 I I 0 4 I -4 4 0

In .0 a n r,40 -WO NW 0 . %0 .% 00 O-WM -. .0 in %0I qNI N 4 -r- i

0 A.. .00 4 IV O . 4 VA en 0 -- Ar .(0 0.(4 0 a IN Oana. A 0 Ch 0 .

A co an - NI 0 4 *NM to No0W n rq-W

%O *. 00 > . I . - i 1-4 -0 A

%04m N 1 C 13 C4 (4 - (4 04 0C 0 tO 4 0 IA14 -4 0 > -a - n *N G -I go m r 00NNNC -M

in1' 0 m4 h-4 NN -N %o o I 4 A40' a -f i4.-4 AI

q4 N.004r40>f -. 'oanDA 08n D OI a0 t 4 4N oFmanD4j0wmw 4wL -0U .41-- -400 W W 0- to

C, q.10 .- WP4 *' N .0-' Nr- 4a. .'004

.a-n-1- rN 40 U .MMA 4 M 0M4 - 4AC

M0..0 00 4 . t)$41 IW 'A l IA0''A t-I4'0 I

o4 d 0 fNI IN 00 Nd ON tN N O toN I'IV-4V V V V V Van.041 VV 4 4 43 V.0 V-V

o * I 0 0d to 0 d to. go 4. is n an I" N an 'A to an

uu0

a+

+ 4.- .

41 + C4

+ 0

-t4 > 4 .- .KV04C

to>* 3t 4 #A 44 $4.0 +. 0W' n Jt 4.'A -A0 n 44

4400.. 1 4 04.0 +

+4 Oa Oa t.0 V 0Ar

an(4 4 o C4.0 a-K +$

O1 9 1 00- 'A W Oa+n0- 0 fV4 4.

.0 13 .U t - -4 N V - AIV M n 4-A -4 M4r.+V 4. 0 m . m V%00P + -

-4 NC 1 . - 4 " q -40an nmv> , r q 0 + n t 4 4 +N f4 ..

fn4 ' 0>-4N , -r40.- - 3 ,qi N. 0,4' n4 40- .0440 'A ..4' 540 4. A ir , o) - 44 iu 04 4v -A0 Awu *-f )04. '-D: , 0 +*V , 4 44 t

1f A4.4. :.g 41 4 4C 4 dm 4..r 4 - N 'A 1 Q.m r

9U 11 0. w0 11 11V*+- m1 1 vo n0- 444J in A. n -4-4chu -o)cv+tj q+ + --4jV 0 r4 ..- N 4 ++--0 3-0 00 040' - 4 an

O04JC Crcob "I*r4'%AIm q o -4 t 0 A C -4. 'Ao4 4 4

O 1 .. 0 0 4 - 'A' -a4 N 4.4. 1 t 1t " -- uv wt

'A 4 .4- 4 09 4 44 ,a1 . Of -)- a A -*V+ 0. Q 4

N4 - -00 V 0- 11 - W 44404V- 'A0 -4)* -4' 11

4 -V J4 - fn V 0 011 0' 'A .- V4 .0 4 443- 1- N -4..

110 4 V 00.4 0 M44 04C MVd00 0 H 'A' 4 044 0.4 0 ww 4

V 4 V 0-- A A o W 'A U04 U)000* V:-1)'0'0. 4H '0N M - '00.- 0 w4'A4.4 .--. 4. ' + 4 .I 4O -4n 'N . +-

.'U44 4 N 10 Nn + 4....ea 4~.oaO+nn~44. an4 0 +an 'V4 jJ 4

0 0j u

141

Page 143: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

0 4

u41

00

64

C4

54

0

IN o t> " 4

000 o nL r 4%> yr % 0(Ak % 7 - nCOr n lC & 0 M43W-14 D %Il 4 c%a r n c nA . 4c nr a 0 4 - C 0 a o% C 0 4 v 4 c & h CNN m m v 4 " 4 " " m m > 0 r -Il% o ODC 0( G W .CaN 4 *4a * . w 4 m m w w - n D a a a a CC 0 C MC, lo %a n w c m 4 4 4 i i c Dg g g G 0 NU) 4 0 oo 4 m L c J 004 00 0 CDC W ~ 4 a(

4 34w m N - m 1 ; 1 ; 1 ; ; 1 ; 1 ; 1 4 4 -U1 1 1 od1 t! . . . . . . . . I 11 0 0 1 if 1

V m V " V V V -W V V - W - -. .r

4J kor o1 o 4r w0n -qrr: C 4 n m n1 m N m %to r w. 4r c qr 4c n( me 4r i or o0 i+ J 4 ;;; -: ;:;: ;:4J04JD. 3 ;0>-J-4 401 oI o d t a@ *~~l~- 4 0 00' 4044e 0to4 do d vg 1

$4U eV) U) U) U -to ml ) ) o oo .lU l-M )U l t0o U) Mo~ tot aMM M )UaMI-U ) f o o0 t ))Wt0 0 ama u'4e~qq'..a UIb-**.~e o cfl . 4144qfOl I-u oc oc c 4 eJo-.0 * e m m 2'N..44 t0Oa2-4 40 f. 0.e mo~- 0. A. ~ ~ O ~ .e* 3 14 0 0.4 q t o M3 II I I I I i I I 39).'.e ... m I I I I I I I I I I I I I U

ui If u. uf II II I I I I I I U - - - - I I I I I I I I - - - -u-. . - 111 I I I I I I

142

I

Page 144: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

.1 !C

C4 .4 0 C, 0 0 .- 4 N4 r 33 33 43 03 m 0 43 0a a 43 a a3 03 0 0 0 0 04 04 0 0 43 mw

---- ------ a---I aW4 --------------- IL

V to VA

U

43

4

la,0

'4

la

4.34

43 34

*m a# .4 . >

a.U q+.1 41 +44 41 f

+. V3 V n a )-I3.Vo N 4 + -.

ed U o U '4 4 J R : 4 K 0 M4J 9 0M 4 a

%D -q N4 41 43 .l to*V 1 1 1(n to31 l11 1 1a0 43 V 11 0 1e* 4

4 1 -10 1 " ' " 0 4 w 4 Id ' 4 .0 'a 0jW - 4 ja.aloV41- 4 U 430 Mt 4 . 3 4V Cl- N a. *i a - NI4OA 4) a~n + -4* *4 34 t) 1

In 3 .a n 1.I 0 43 . I

0 0 U

143

-- I

u u

Page 145: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

in 0o N

-4 -4

S. *. .

4-4 Mt 43

'. N 0 0

- m - 1 - .

04 ,0'0 10

\OA,% \A e11 -- a

o - \ 4 0 4 4 a In 40 U- t 460 Hr .I n

-- =0+ 4 43 r-46'0

....-. 44 %. - e - -46'N '44.446'.4414In a .-44-.44

0. -'e 0- -0-+000 e00C11000.000 a . 0 4-.- - e -.

0.0'4. .0.0 .0110------0#

1. 4-4 'U 4646'U 46 43 1 44 400 0 0"-4 -t r40

-. -.4444 44 0 0

0 0

Gom_4

0%

446

-

.4u

La Z41

41

0

4 0

41

4V 0

1.46

1.41

Id 4

4100 M

60

SU

1.046.0

464

460

4M

'O0

43,4646

43 -4i

f'M a40r' f- Ln InwDN tn mn m IV W 7 0! e 'i 0! eQ! ee

. . . . . . e . .C3 eq %0 co 0 H0 m n 0n mr 1m in %a a*O co 40 c In %a r% 0 o v4 - 4 en w n 4--fn ' In t 0o 1 0 "4 N 4v v v n In In In In In n(n ' 4 ' ' 4 ' ' ' I Im If Im Im Iv I- I- IW II II II

lI Il I IIIl I I II----------------------

N N -N N N a (4--- --O 4 4 m w ' %0 r, 00 .m 1

----- ~~ ~---- ---- 4----4--

-4-4.-4-4--4-4--.-4-4-4-44-4-44-4-

.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0

0 0 u u

Le0

Ls i

4VV

0-4

44

0o 0U

L

u W

4-1.40

430

0

OA -

U

0 4S4

46043e'

0460

0

0 m

e N* O

o w

In -

C e

- a- -. e

In 0 .0 -

M- 4*4M- %0-t e 0.0 .- n *m '.- 4

- - \ - -ro

'-4N -. 4NIC

10- e fl- 46

.0 - -4-4. - --- In -- n,-to

e-00 O -0-

-- - -- rm00#- 00 #-4

-- 46.9 - -46'

- 04 0e M mu 0

.0A .0.-.4-

- ..- Ir- - .- 44-I

.- 4.-4 M 444-4M -

-- 4 *- -'-4#ei4-240 54 0- 4

.0. - '.0.0 - -

- -446. -- 6'

- 4-. - -4-4

46 46M e 0%et =

46 4 00

'U 'U 1 .0

0 0 0 0

144

-1

-. 4 4

41 u

0 A

4 0

1

., 03

~.60

0

-4 ..

0

A !1.A

0

. 0

-,4 41

S0

45

S4

041

.4 4

0 -

1. 4.00

S0* ..

.044345

0

00g

U00.4

4A

0

>

0-

w4

41.

- -

-4-

-0

.M - 4

M -.

.- 0.A

>.4 -46s

0 -iM43 .4 1..000.46Ae0, U' 0

.0 0.43 N46 -4.4 U

0 0 0 v 0

Page 146: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

C4

>- 14

N -

0t 0 -4 -rd W

AA44 * V 4.V

> -N * 4 r4 -l

12W:9 N N~8 li

4j !14 o a 0-.0 0a4 -8.4 1)(.4a. > -

"4 AU.4

AA-4 0 .- 1 4 w 4A.(4 N to >0 0 4 a t I

tr A ~ r .03 ,xA"

41 ~ 414 (.

A to).(.A~

0-1 0~Gr

0 004 M ~-u008 0 ri2

*00

o~ V0

01 43

a,* 0 V.40, 0. -- Lto40 0 0 t +4

041 A4

82- 0. 14 1800080 0 13 1

. 48- -A -A414 4V 4" ..n00 041 +0g

48 V4 0 0t go 140 A 0M0

04 u 4 A -4

00 48+0 a0n4 -0 ?At -148 m 0C . 04M0w 4

o 1 t 14.44 tp 4.4 4-A 2- 41 0 N N W 41

N .. 4 rlm VA4 14 1. 00to -m w( FA > 0.04 8~a, *- 0 .Ir %0%0 in41

V V 3 -4 0 A 1 43> - ini

00N41 41 no0'

a p p V0.. 14.L 0 1 0 n (0- Uto4 0' D.-4 04 .4 mff I0 * t1 4 1 4 1 0l 0. 4 0-- .

*.L (., W 'A-0 to " 0- 0 1 N A0 0'01:71 01 -. 414 V 0. 14 1fA -1 1 V

00nn>C4a-- -.4 0c 41 00D * -0 do

14- .( - 14 C.I4- w

4 C4 U) 4 -A40 0 1840.1AO.40 0. .4 0 . - :0, ~ 4. AA +

Ty04 *0-0- 4 3> 82+184m .4 0 %0AO O + 0 tP 4 0 484 V 001 0 WIn11 11 01 1111I I

X 4, * 0 11 toI go Im V40-4..4 X840 0 .A40 to 00toto44 0r-4 -4 -411m. i0t n- o t -A-V4 41 0 u 40 >V > > 0>> -4 4)44

a A 40 011114 1711u0 -4 0 In 0 0140M4 z;.0 0-40 - 049 0 'a

-A - '4 41 4A 04 41 43r40 > -4 0 3- 0

0 44 u

10 0 1) 0 1) 0

C.4 C.4

0 0

-4 -4

to14

AAA

001

00 0 0)T V 1r.4 .4 -4 144

41341 a a r0

of -A -

-. 04a a, >

v A w,

(.4.4 -. 4 in >-u 0%o - N 0>>41

W-4J -0 1444 .414 N4 A N0fn

- -. W 3tO0 : 04-Ty..4 -014 4 0 'm (44

It -4 A Z A 0004 04.1800

0 1 1 4 0 0 1 . 14 4 m

----0 ~ .- .4f0

U u

145

Page 147: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

.4 0

- 0.

t

0 -

." 4 F

.4 43A to 0

A 0 +

M -4 t+J..

%03 Ven 4 w -

0 3'. 0

- k,4

--4 M

U 0 0.

+4 4- 4 4-

a - A ,

4i ag o I O

m4 43

'14 4 41 - r 4

4

Uo AU 0Uf UjA0I 00 lV0 U1

a, -H .,q4

0 43 43 4 Nin -W400. 4

U n 43 .nN

44 CU U u

.41Aj

0

V-

40

NO-A

4j .4

.4 um 0

w . w -4 l '

43 04 U . IA)4 U) 0 .DR2

U AWWMt dQ0 14 H-I .U 4 .1111ini 4 10'43 00111

. > -4. a.-4- A

fs - )4

U ' 0 ~t .* u 4. .

-A

0

334

43W

3FA

'A 0 >> 11 ed .V to 31to 34.X m to .0 V0.0 f0 N

U" : 0 4>Nci1

0U U 34. 01 U0-A3 t cVU -. 4U4 01 WU .0 U A 0

U~301.,4 0IA l ~ ' .II ~AU'0 -4NI 1.lii o a

MI I 4 U~. 0 0 444. . . I U34 3~ 'U'I ~ U44~ ' '. Um

146

0 rto - -

0 0()

i

Page 148: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

~~mt >- -

q4- CI -4 >

>A -a 0-ad

!0 >I I 1 -d

-0-4 AN 0 - Xa,~ -:.w

0 0.-I > m 0. r4

---- 4 9 C~f4 ;

Ch ON :5 0 0 o4

tp N N a.

0O- -4 A adoA >ch~a >W -a.

-- 0l d aI 0N a,V.1a -a x 0 >W

0.0. 0- 0

0 -0 -

+'1-d.NfN

N

ID.

00

-4 -4

.4 -

0

tO 41

410

an a

V a 00Wt.0 0

0. Q - 0 to414 0 . 4 C4. a w0

4.; M4.O1.0M oM0w > ) 0 Q .0100 .U

o o o 0Q0 0 a -4-

41- a 9: 4.10 Q -4C V ; 4r >. % 4 4> 0 .

ma~ >' 0> .- a

0.4'0 0. - -- 4.-a - + ad Nd 4 ad4

00 0

41;

0 -

-4 t

-4 o 4

a U'

*a tp

U 4 4%0 4

0a 4

aa a

010 a '

04 -A4

0a -

to

a1 4-

v. u

147

Page 149: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

H H %. >1 41.5~ .U -

-00 a H1 ;1 A - 1 8 48814 144 21 ;_ 0 Lo~4 F'I tp 10 - -

FM 41 A W 814 4 .1 -, 1 -. 04 4H .,10. 0.4MH -44 .4 . .4 .54 .4144 0. I 3 ' -.- 4.0 HN a ~ 4 -4 * A 4j

t).. -0 1A 0I N' a.-- -I 0.u H U8 A .0 m 4 $4o.Ha1I.- 0. H3 a * H a -- .0 N 4 .4 U- 01 4- mNUQ. HA 4' -- A50 *- -I 4 t- -4 OH 00 I 0 0 f4 4 - U' U A NO U b OH 0 ow40mH& U'At4 *-.-I - IA w 4H X -0. a, I UN8 1U -. 4 %4 .4 -!l .44 I8H .4i A . mm.0-

j "4.4. M51 81 .9d qC4 A5UHU- 814 4.. 4 0 a4 * 0 &1N 0 H4 U'A 0 .44 4 "0 44

,-4U *p O: V 93N > 4444 Do U -~ N 81 3. -Ua A0.o-1 0 N " eO --- C'1H-- a8 -A4 0 -0. LH -414 0.. 0U UA100U 'U OAHtH f NNf4 n O.

14814.1~;A A14 -Nfc a* -:a -U-N O- x -Nl(4 A04.0 w 0.. 8'.

H44,,;"I- A00 4. 48 AU8 A'*8 O1N U 5 00 W..IU U -H U- AA H N. -. 4

814 .4I 01. -. IA -0. -r 0 .~ . - 54. .1. . 00 UA 0. 4. 4 X 4 NH H 4 .A45.14 3w - 1 0H. 1I"H814 r mU -N41~ .I-4 H0 U1 wH NA 4 OH U Uto -H A~40H x-,M-4aw 0t

H -A-I w-U' w 0H-A.14N'-HIO. UN OHH1 - - 048.0J.4.H.. . -aAmmiW . 4 t OAAtrO %N0. N0 1 0 -. 1 U 48NV U4 -1 V U w 91 o so.41N -4A a -0u I -A U44M>Id40VA.4A U -FU "4 .9IA 24NV.-0 A 484maF . N81 IA -1 04U .A.HHHMOOO .4*.4~. .I -I .4 ~ . 0 4 8 .I A i U 8. I -- .4 U - U W. 31 -I U U4U 4 - U 4 - 5 - - - 4 0 0

a 0-.0-IA. W -H-.484 -H-H00a' HaH 0.14 H4' -. 40N011 -A4-r5A -0 -M. ~~IU. .

.- IO *.4-I 0.~H0HA U1 -0. -- U- ' 0 -4 -UC 9 w0A .I - H 8 0 U (- 4u -0-A 31u 0t" -3a1'4 -1448C .0-.-8 -*I.8 4 41 -N -A 4 0 il 0L.4 -UH 48NA J .5------.I.0 w

4H-I." q- -H14 M A 0 .. 4 (00 a0. -HUH IVAt -OH-11 - 0 1 U 0o- NS.I U-3t*4 -140 --- 0.H 814N 4'UH -0. 140*IN.H -8''aI*4 .I A 0 -A

b--.IHH Up0.8141 9 IUAa -~--*4 O-N.~:4.- -A 40-a-.AA 8..00 O a

HHW0.1.101a14 V 10 H.- -0-1--O -1 4.H.-H -- O0-4 -14 AH0.I-~- . -0 o93V 4 -84-HI00 -H H U U 001.0.40. 40 H-H .84-UU4 a -I-IA-0A0 .Ir'4 -H -A 4 N48 -A HN 44a a .N41 O A H A H4 oN5 H. a. t.IH14 A &-H N dl

I8HO .. C4 C40 0. N 0 4 0.) V ' C l Aj4 M _ _H 0H N q . A 4 A- to..4 - k. 04 I 1- , d 1 - U f0 0 . 0.-1.4d 0 to 0 0 0 ryOma

Ha81a 4 0 H 0r~ 0 0. .14 U -. 14 0 4,I;.4 0. to .4, 0M Ul .0 .0 U 04 480 Hl 0P *.-1r4 r4 "4U'

'S - -A U) 440 U 3Nw 9 3t U 0. 0. H3 H4 14 Id H3 a- W.r0.4

0w* ' r 9 00 0 - %4m 0.00 0 .0 r4 0 t-1 )0I -4' 0 i 0 0 0 0 0 104.*~ 44 ip M U W 4j MU 1&4I -4 4'

44 IM A 44 U)EO U 0 V U U1 : w ME 41 a 41 41tA0. o o

0 00 0 0 0 0 0 0 0 01 0 04 00 0 0 0 81 001

U4 U U, Uf UU U U to U1 UV3U U . 'H

N, N N, I Nl Nl tp-1

C: 93 U

148

i

Page 150: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

~~e en~t M4~ Cf400 00 00 0 - V -40~ o a

a% I 4 004*co0 w44 - 4 fm f C ('(i V4 CcooO a ' 0 4' l -In 00 0O0'0'O0toto' 0

Iam m 4 4'mminmflq-4- 1 .4 INNOOONNo 0o 0o co No in 00 C.00 ( 0M . . . 00 %a . . %'0%000o'o 4 N'(n M 00000,4 1 1 It0 " 1 00 NOOOOON 4 4 .4 0 0. NI, ir Ln 0 . 0 CO .. - r * ' 4. 4 4 0 0 4 0 - *' 4 4 R 4. 4 0000 c . 4 41

In .wo.4 c 4M am N4 ooLn in a. o 44 (nc 4(n o40o A ao o o r c 0, w 4 4 f4(MNo..4-1 4 c a.4.o0 4 0 4.U 04 -k *'4 -44 3!0 4 4 - *. 4 .4 -*.4*.4.441 4. 4t46 t4 0 .00 .R ). G

0.4C4N OAC4 MMa 4X 0 .4 r4 N M V -0 f V 0 -4 44A OW 114 14 uN rn ( en(n 4 V4 44 N4 0.* 0 O04.4 * 4 : -004 4-'V.4L) *, . .4. 4. 0 * 0 0 0 4.'3 q 4A 0. * *4 41 4a 0 f.M0

-A-4r4fna. 0. -f w to m o %a a. to Wo to t' " 4 e'4 a. U -H A A A to to -. 40c -A4) 01 u' u 13 a. - 0 '44 to a. - in4 .44t4 toa04 4 DoJ%* 4 4toW5WxM.4 00 tA .4 W W $4A A J2 -N 4J4J44 2: 4 2t-4 iftn4J 1d n m

a~ to a. . a. 0 If a. 0 U M.jX 0 p 11 11 11 r 0 0 0 31 > L. A 1 11 11 L. 4w 14 t 4 U 11 11 A A A0 A r- 41 41 11 > f 1t t .0U11IN a0 Ii1i 1 .4W '0 Uo V 1 4 A C01i1 114 4J Q W V 4J 41 iIti 1' cu -I11 ft to U 11 9: 0 11 1 a. a . X 11 1I1 44 0: 4) t)M 11 11 r. If -A ii - 4 -4 . 4 M 4 to 11 N 0 11 11 11 11 11 41 -40 11 a. N.H ." 11 11 a. 0 A4 - '44 x 11 to Va a.-- 44 I If .4 NC I a 0 -4 .4. 4.444 3: I V' -A 0 44 0 0 a. a4, 4 a. No a. > A llI.44 a . a. od 0 0.4 U to 010a. 0 ad V' 41 a. r. 0 0 0 c idto 00 0 o U) -A 1.. i HA 0.'14 3t 44 3: -4 0 44 a3. to 11 0.4H1% wo :r A . . . . . . o.4 0 u ow to to . 0 0 0 0 ~ .t 0444 AAA4 a to wo > a.U4to to toU0 0 0 0 0 01. Ad~ Ag X~ X~ . tr tr tr 0' r t W4 W4 W4 W4 W4 W W W V V V 4' 4 4' 4' 4' 4' 4' 4' V 4' > X N4

~0 04

C4 4 N

Ad NN N

to 4 w C4~0'U v * A

-oIIN A TO

0

a

.4

0VU

0

.o I m

go0 n4 n a 0*q4ow4 0

44 4 " 7 40 -

-to 4 . .(4 04

000 .0*A .4 .. 4 M Woa

o mo U3 to U3 M. 1111 ti x~ A 0 tota 4)t to 0 it Uu 0 1 AI U I o

-4

1 A a .

0

149

Page 151: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

goNC O CO * O U)O C , ! ni!

v)O in x ) LOO .4 .. ..N .. .0 . .)N N C~~.m ~ mN N N N N N

U ). 4 4J u 4j 14 U i )------4 A 04 -1 *H to in 00 N H 0 0 0 0M--)~~ 0 In 4~.. g i 4N UIt - m-

U 4)) 44 25A tn 04)4 * m 04)4 4)4) rn )UA U1 H 1:3)4 b,44. 00 A* )UAA UA1A 4

U)U U )U to 4 04. 0 .~U .) U) . NL '4 0UU) NO" A a .0 N U to H ).1 N H) 0 0.4.. U)4 H )U

0.0. S. xN .X-9 4.) 4J 4) 44 31 4 1) nm 4) HU m to) EU M4.00 . )A- UN0. NU 0 0 0 0 0 0 0 0 0 0 0 ~U U U II I It I.E .. II ItIIAA 1gm I ~)'IAU.0 Ni0 U U.N 0n U). N444444 44444 M MXj

tn U) . 44 ; 0 ) I) N 0 0 11 11 0 U)i U _4 U1 11 11 11 U rm-4 4 ui .U) 11 1t 11 N N 0 0 0 0 J 4) -440 ,1 0 o,.-1 "4, 4 . o N 4m -4 Nm in sn %o i .- 4 n -H4-4 t U -4 .4 N4 44 2, U t4 N M) U) NQ > A wd In-4 .,1 1: A go A0 -4 ic U 11 I .. 4 0 vp -) 4 A.40 0 a 11 ) .0 A A 4U A4 4IE A A 3t x '- q-4 -4-4-H A A A -I

to U) fU V) 4) U) w) L, A w U) ))4 3t to) 1t 0 EU A5. H 0 N a ) W 0 A C40 A to 'U c A. a x U 0o 4) .0 N u) w N w to N to 41 4. 44. A.0 .0.A .0. A ) u) U) .00.. CAE U) to w A A0 0 44 0' A A4 U) U) N 4-4 N U). N 6 -4 aCA0.0.0 A u). .0 0 a U n ) N Ai * a A0 a A4 N N a N N 0 0 0 0 0 0 0 0 0 0 0 0 0

x X U NN .4 w. V 4J 4) 4) 4J V) > M -H fu E lU (a U U U U U XN . X .N4 x 4j V) V 4.) 4) 4J V 4) V 4) 4) 41 X 0 14 N 04 '0 '0 '0 '0 '0 '0

150

Page 152: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

r V. w w w r oa a m a a a a a

Cot '00505050o4050oN N N N N N N N

N M - N M 4 N m-4 -A -44 -1-A0 0 0 -1

0 r-.0 A A A , A ,4 4

A A w n 91 lfa V 00 0' 0 0 00' 0 0 0 0

II IIe N II II N II 0

-4 -4 -44- -4 0 0 0 44 -r4

-4 e-4 .0 .. 0.,0 -e4 45

D0' 0*'0 ' ' 0

-4

0

.4

041

qv V

0*

0 0 O A .0' -4 I I N N.-44 eI

to 1- 4 w m

060t tiee q40 00 ee

9. ' 4 A m m a o C 4J V - .

0,14r * 1 1 * .4 4Id4 I e.04 11 CI 9 11 -0 rN 044.4.4 d 4 0 0 4 0 X4* 0. 0

e l 93 V r -ed 9: -eiA A . 93 4-0

w --4 0 A .4 4 .9 A.. A A .h 0.0 -4 0. II 0 0 0. 14 '4 II N II II 00 4 4 ,.0 II II .1 Nl II - N 0 0 0

*11454 0 11400m 0 4 44

- 4 0 e0 0 400 4 -4 -4 0. 0 450. 4 a -404- AC -w V V Aj 4 0

444 0.14 0.0. 0sA.C.0 .. 0..0 0.0-4 4 4.0 0 0 .1 4 14 5 45 5 45 0

-40

-A

0

500

in 0-I.. I

U 4%as r-

* q.M 400

0m

o 4

o N I. 4

CO4 0

*-a 4do -

04 0 43t4 0

* -4 m - *i 0

u > e- l 0'eS> 41 m eX w 0 V

40 A1 A 0-I 4

-4. 0.11 4l&5 m 4 4.0 II 0 > II 0 4 1

-p.04045 &- --

A 0 04 0 -A -

C4

.4

0 0

V I

0 %D.4 w55I .4 00 a a 0-M

44 U - 01 f4 9:N140 . .

4 0 . N N0V 4 - 4 -d 44 0 0 ! 'o

4 0 0 0'N -0. 4Jgo U -Al .A V C:

14 4 0 0 : N 0- 0 0 0'MN 4 44 a 041 u0~

.4

u 0

04

0

41 000 -4 V4 m--

4 1 1 1 9 a c:4

.4 04 m an544 50 4 w

e e e

0. N M 000

-II N II 45 45 45 e

-d 'C eU e 0 0 0 140

4y (. p

0.-4

151

Page 153: LITFIRE USER'S GUIDE Third Edition · 2.2.2 Radiative Heat Transfer Radiative heat transfer rates in LITFIRE are calculated using the following basic equation: Q1--.2 = f Aio(T' -

References

[1] D.S. Barnett, et al. LITFIRE User's Guide. MIT Plasma Fusion Center, secondedition, August 1987. PFC/RR-87-11.

[21 D.S. Barnett. The Chemical Kinetics of the Reactions of Lithium with Steam-AirMixtures. PhD thesis, Massachusetts Institute of Technology, April 1989.

[3] V.J. Gilberti and M.S. Kazimi. Modeling of Lithium and Lithium-Lead Reactionsin Air Using LITFIRE. Technical Report PFC/RR-83-08, MIT Plasma FusionCenter, January 1983.

[4] D.A. Dube and M.S. Kazimi. Analysis of Design Strategies for Mitigating theConsequences of Lithium Fire Within Containment of Controlled ThermonuclearReactors. Technical Report MITNE-219, Massachusetts Institute of Technology,July 1978.

152