Literature Review: Dynamic Behavior of BCC Metals

40
Literature Review Examination Dynamic Behavior of BCC Metals Chia-Hui Lu Advisor: Prof. Marc A. Meyers Materials Science and Engineering Program University of California, San Diego

Transcript of Literature Review: Dynamic Behavior of BCC Metals

Page 1: Literature Review: Dynamic Behavior of BCC Metals

Literature Review Examination

Dynamic Behavior of BCC Metals

Chia-Hui Lu

Advisor: Prof. Marc A. Meyers

Materials Science and Engineering Program

University of California, San Diego

Page 2: Literature Review: Dynamic Behavior of BCC Metals

Outline

Background

Dynamic Behavior

Dislocation motion

Mechanical Twinning

Grain Size Effects

Impurity Effects

Shock-Wave Deformation

Summary and Conclusions

Page 3: Literature Review: Dynamic Behavior of BCC Metals

Background

Page 4: Literature Review: Dynamic Behavior of BCC Metals

BCC Metals

Some important Body-Centered Cubic (BCC) metals:

Iron (Fe): Engineering materials

Tungsten (W): High hardness, Electrical conductor

Molybdenum (Mo): Withstands extreme temperature

Niobium (Nb): Superconducting magnets, Superalloys

Tantalum (Ta): Electronic components, Superalloys

Vanadium (V): Alloys

Chromium (Cr): Corrosion resistanceReference: http://en.wikipedia.org/wiki/Main_Page

Page 5: Literature Review: Dynamic Behavior of BCC Metals

BCC Metal PropertiesPlastic deformation and

strength of materials are

Function of temperature.

Function of strain rate.

Irreversible processes that are

path-dependent

M. A. Meyers, Y. -J. Chen, F. D. S. Marquis, and D. S. Kim, Met. Trans. 26A, (1995) 2493

K. G Hoge and A. K. Mukherjee, J. Matls. Sci. 12 (1977) 1666

historyndeformatioT

dt

dPf ,,,,

Objective: constitutive equation

BCC metals: much higher

temperature and strain-rate

sensitivity than the FCC metals

Ta

Page 6: Literature Review: Dynamic Behavior of BCC Metals

Dynamic Behavior

Page 7: Literature Review: Dynamic Behavior of BCC Metals

Physical Based Constitutive EquationsMaterial responds to external tractions by

Dislocation generation and motion

(most important carriers of plastic deformation in metals)

Mechanical twinning

Phase transformation

Fracture (microcracking, failure, delamination)

Viscous glide of polymer chains and shear zones in glasses

b

bNbNb

2tan

Orowan Equation

M. A. Meyers, in “Mechanics and Materials,” John Wiley & Sons, 1999

Page 8: Literature Review: Dynamic Behavior of BCC Metals

Constitutive Equations:

Litonski 1977

Johnson-

Cook1983

Klopp 1985

Meyers 1994

Andrade 1994

m

rm

rn

TT

TTCB 1ln1

0

0

r

n

T

TCB

0

100 log1

rTTn eCB

0

100 log1

c

c

deffrecf

m

rm

rn

TTfor

TTforTu

TuTH

THTT

TTCB

1

0;

11

1

1log10

0

B 0 p n

1 aT 1 bd

dt

m

TT

TmMm

p

r

n

exp10

1

0

0

00

0

M. A. Meyers, in “Mechanics and Materials,” John Wiley & Sons, 1999

f ,d

dt, T , deformation history

Page 9: Literature Review: Dynamic Behavior of BCC Metals

Experimental Results

The rate of work hardening increases for

decreasing temperature

increasing strain rate

Johnson-Cook Equation to iron

U. R. Andrade, M. A. Meyers, and A. H. Chokshi, Acripta Met. et mat. 30 (1994) 933

M. A. Meyers, in “Mechanics and Materials,” John Wiley & Sons, 1999

300K

500K

700K

10-4 s-1

1 s-1

3000 s-1

m

rm

rn

TT

TTCB 1ln1

0

0

Page 10: Literature Review: Dynamic Behavior of BCC Metals

Dynamic Behavior

~ Dislocation Motion ~

Page 11: Literature Review: Dynamic Behavior of BCC Metals

BCC Slip Systems

1 10 1 01 2 11

Y. Tang, E. M. Bringa, B. A. Remington, M. A. Meyers, Acta Mat. (2010). Imprint

M. A. Meyers and K. K. Chawla, in “Mechanics Behavior of Materials,” Prentice-Hall, 1999

[111]

2 1 10 1 01 3 21

(110)

Page 12: Literature Review: Dynamic Behavior of BCC Metals

Asymmetry in Dislocation GlideCore dislocation structure: ½[111] screw dislocation

Maximum resolved shear stress plane (MRSSP) is

R. Groger, A. G. Bailey, V. Vitek, Acta Mater. 56 (2008) 5401

R. Groger, A. G. Bailey, V. Vitek, Acta Mater. 56 (2008) 5426

Vitek and Paidar, in “Dislocation in Solids”, Vol. 14, Ch. 87, 2008

TensionCompression

MoMo

1 01

Page 13: Literature Review: Dynamic Behavior of BCC Metals

Barriers to Dislocation Motion

Rate Controlling Mechanisms

FCC BCC

Dislocation Forests Peierls-Nabarro Barrier

C. Duhamel, Y. Brechet, and Y. Champion, Inter. J. Plasticity 26 (2010) 747

P. S. Follansbee, Metall. Mater. Tans. A, 41A (2010) 3080

B. Xu, Z. Yue, and X. Chen, J. Phys. D: Appl/ Phys. 43 (2010) 245401

M. A. Meyers, in “Mechanics and Materials,” John Wiley & Sons, 1999

Short-Range Barriers

* ~1001000b3

* ~10100b3

Τ Τ

Page 14: Literature Review: Dynamic Behavior of BCC Metals

Peierls-Nabarro barrier

Dislocation Movement

Seeger kink-pair

Mechanism

Pinning

M. Rhee, D. Lassila, V. V. Bulatov, L. Hsiung, and T. D. Rubia, Philo. Mag. Lett. Vol. 81 (2001) 595

M. A. Meyers, in “Mechanics and Materials,” John Wiley & Sons, 1999

Page 15: Literature Review: Dynamic Behavior of BCC Metals

Dislocation Movement

Stress (MPa)

50 MPa 200 MPa 1000 MPa

M. Rhee, D. Lassila, V. V. Bulatov, L. Hsiung, and T. D. Rubia, Philo. Mag. Lett. Vol. 81 (2001) 595

BCC Molybdenum (Mo)

threshold

stress

Uniaxial stress applied along the [001] axis

Page 16: Literature Review: Dynamic Behavior of BCC Metals

Dislocation Dynamics

Johnston and Gilman 1959

Stein and Low 1960

Rohde and Pitt 1967 for iron

Gilman 1968

kTQme

A

exp0

kT

B

kT

HK

h

kT a expexp

D

d

s

s ee ** 1

W. G. Johnston and J. J. Gilman, J. Appl. Phys. 33 (1959) 132

M. A. Meyers, in “Mechanics and Materials,” John Wiley & Sons, 1999

LiF

Region I: Thermal activation

Region II: Drag (Viscous glide)

Region III: Relativistic effects

Km

mI 1

mII 1

mIII 1

Page 17: Literature Review: Dynamic Behavior of BCC Metals

Dislocation Behavior – Region I

0

0 ln

V

kT

V

GG

G G0 G1At T1:

Apply Orowan equation:

kT

Gexp0

0

00ln

F

Fi

dFFGkT

Physical based constitutive equation

Page 18: Literature Review: Dynamic Behavior of BCC Metals

For different barrier shape, Kocks et al. proposed a generalized

equation

MTS Model (LANL):

G G0 1

0

p

q

Generalized Constitutive Equation q

p

GkT

0

00 1ln

Athermal: very small temperature

dependence

qPP

gGb

kT

TGTG

1

00

3

0 ln1

Schematic representation of lattice obstacles to dislocation motion adapted from O. Vohringer, private classnotes

M. A. Meyers, in “Mechanics and Materials,” John Wiley & Sons, 1999

Page 19: Literature Review: Dynamic Behavior of BCC Metals

Zerilli-Armstrong EquationTwo microstructurally based constitutive equations:

lnexp 431

* TCTCC

Hall-Petch equation: (D is the grain size)

Zerilli-Armstrong equation for BCC metals:

G * kD1 2

21

5431

21* lnexp kDCTCTCCkD n

GG

F. J. Zerilli and R. W. Armstrong, J. Appl. Phys. 68(4), 1990

M. A. Meyers, in “Mechanics and Materials,” John Wiley & Sons, 1999

Activation area constant in BCC:

Fe

Cu

Page 20: Literature Review: Dynamic Behavior of BCC Metals

Maximum load (true) strain as a function of strain rate and temperature

0lnexp 21

431

1

5 kDTCTCCnC G

nn

F. J. Zerilli and R. W. Armstrong, J. Appl. Phys. 68(4), 1990

21

5431

21* lnexp kDCTCTCCkD n

GG

Ta Ta

Page 21: Literature Review: Dynamic Behavior of BCC Metals

Drag Regime

Newtonian viscous behavior is assumed

and using Orowan equation with orientation factor,

Hirth and Lothe: viscosity coefficient from phonon viscosity

Dislocation Behavior – Region II

2

4

b

BM

B B0

1 2 S2 bw

10eb

10e

3kT

a3 Clifton and Markenskoff: additional

damping mechanisms due to the inertial

resistance of a dislocation to motion

Parameswaran, N. Urabe, and J. Weertman, JAP 43 (1972) 2982

R. J. Clifton and X. Markenscoff, J. Mech. Phys. Solids, 29 (1981) 227

fv Bv

Thermal

vibration

Electron

Bscrew Gb2

4tCs2

Bedge Gb2

4tCs2

1Cs

Cl

4

Page 22: Literature Review: Dynamic Behavior of BCC Metals

Relativistic Effects

Occur when the sound velocity is approached

Frank: total dislocation energy

Weertman: potential-energy where

Dislocation Behavior – Region III

UT UP Uk U0

UP Gb2

4lnR

r0

1 2

2

1 2

s2

1 2

Dislocation velocity approached

shear wave velocity, energy of the

dislocation goes to infinity.

M. A. Meyers, in “Mechanics and Materials,” John Wiley & Sons, 1999

Page 23: Literature Review: Dynamic Behavior of BCC Metals

Dynamic Behavior

~ Mechanical Twinning ~

Page 24: Literature Review: Dynamic Behavior of BCC Metals

Twinning MechanismsMechanical twinning and slip are competing mechanisms

Favored at low temperatures and high strain rates

Twin mechanisms for BCC metals:

Cottrell and Bilby: Pole mechanism Sleeswyk:

A. H. Cottrell and B. A. Bilby, Phil. Mag. 42 (1951), 573 A. W. Sleeswyk, Acta Met. 10 (1962), 803

Page 25: Literature Review: Dynamic Behavior of BCC Metals

Mild Temperature EffectDislocation Motion Twin Motion

M. A. Meyers, O. Vohringer and V. A. Lubarda, Acta Mater. 49 (2001) 4025

M. A. Meyers, Y. -J. Chen, F. D. S. Marquis, and D. S. Kim, Met. Trans. 26A, (1995) 2493

Fe

Page 26: Literature Review: Dynamic Behavior of BCC Metals

Constitutive Equation for TwinningConsider dislocation pileup: (a high local stress is required)

Frank-Read or a Koehler source

Individual dislocation (Johnston and Gilman):

AmeQ kT

RTmQmRTmQm

m

T eKeA

LEn 111111

11*

'2

2

M. A. Meyers, O. Vohringer and V. A. Lubarda, Acta Mater. 49 (2001) 4025

M. A. Meyers, O. Vohringer, and Y. G. Chen, in “Advances in Twinning,” TMS-AIME, 1999, p.43

Fe

Page 27: Literature Review: Dynamic Behavior of BCC Metals

Slip-Twinning Transition (MD)

J. Marian, W. Cai and V. V. Bulatov, Nature Materials, 3 (2004) 158

Screw dislocation in BCC iron (Fe)

Atomic-sized kink

Pinning points Twinning

Page 28: Literature Review: Dynamic Behavior of BCC Metals

Dynamic Behavior

~ Grain Size Effects ~

Page 29: Literature Review: Dynamic Behavior of BCC Metals

Grain Size EffectHall-Petch-like Relationship:

Meyers-Ashworth Equation:

T 0T kTd1 2

y fB 8k fGB fB D1 2 16k2 fGB fB D1

T. R. Malloy and C. Koch, Met. And Mat. Trans. A, 29A (1998) 2285

E. P. Abrahamson, II, in Surfaces and Interfaces, Syracuse U. Press, 1968, p. 262

F. J. Zerilli and R. W. Armstrong, J. Appl. Phys. 68(4), 1990

M. A. Meyers, in “Mechanics and Materials,” John Wiley & Sons, 1999

Fe

Fe

The effect of grain size on

the slip-twinning transition

Page 30: Literature Review: Dynamic Behavior of BCC Metals

Dynamic Behavior

~ Impurity Effects ~

Page 31: Literature Review: Dynamic Behavior of BCC Metals

Two-Obstacle Model:ipa

00

ˆ,

ˆ,

ii

p

pa TSTS

P. S. Follansbee, Metall. Mater. Tans. A, 41A (2010) 3080

1exp/:

ln1,

0

11

,0

,0

3,

T

TsTVarshni

gb

kTTSwhere

t

pq

ip

ip

ip

Strength of the obstacle vs. square

root of the carbon concentration

Fe

Page 32: Literature Review: Dynamic Behavior of BCC Metals

Shock-Wave Deformation

Page 33: Literature Review: Dynamic Behavior of BCC Metals

Shock-Wave DeformationShock-Wave region: strain rate over 105 s-1

Plastic wave propagation effects

Shock front (simplified hydrodynamic approach) : discontinuity

in pressure, temperature and density

41

5 K

J. W. Swegle and D. A. Grady, J. Appl. Phys. 58 (1985) 692

M. A. Meyers, in “Mechanics and Materials,” John Wiley & Sons, 1999

Swegle-Grady Relationship

Page 34: Literature Review: Dynamic Behavior of BCC Metals

Smith InterfaceMeyers: dislocation generation mechanism at the shock front

Elastic distortion at the shock front

M. A. Meyers, Scripta Met. 12 (1978) 21

L. E. Murr and D. Kuhlmann-Wilsdorf, Acta Met., 26(1978) 847

L. Trueb, J. Appl, Phys., 40 (1969) 2976

M. A. Meyers, in “Mechanics and Materials,” John Wiley & Sons, 1999

Page 35: Literature Review: Dynamic Behavior of BCC Metals

Grain Size Effect in ShockApply Zerilli-Armstrong equations

to Swegle-Grady Equation

Then

lnexp 431

* TCTCC

0' 21ln

1

1114

5

4543

GST

TKCCRTmQm

sh DkkeCeKK sh

M. A. Meyers, in “Mechanics and Materials,” John Wiley & Sons, 1999

Ta

Page 36: Literature Review: Dynamic Behavior of BCC Metals

Precursor Behavior Under High Pressure

The amplitude of the elastic precursor is essentially independent of

sample thickness

Overstress viscoplastic model: used for a parametric study of

dynamic material response under ramp and shock wave loading

'

ijpp

ijPlastic strain rate

effective plastic strain rate

effective stress , threshold strength Y

np YYA /

Correlate with Orowan

equation and make A in the equation a

function of dislocation density, which

evolves with deformation history

np YYA /

nn

mm

p YYAYYBbb //

J. L. Ding, J. R. Asay, and T. Ao, J. Appl. Phys. 107 (2010) 083508

Page 37: Literature Review: Dynamic Behavior of BCC Metals

Simulation Results . . . . .

J. L. Ding, J. R. Asay, and T. Ao, J. Appl. Phys. 107 (2010) 083508

Some deviation at unloading part

Model does not capture precisely the detailed material behavior

Unloading occurs in the later time reflected wave and

electromagnetic loading interaction

Total dislocation density:Ta

Page 38: Literature Review: Dynamic Behavior of BCC Metals

Summary and Conclusions

Page 39: Literature Review: Dynamic Behavior of BCC Metals

Summary and ConclusionsConstitutive equation

connect the material features observed experimentally and

numerical simulation

gain additional insight into the inelastic behavior, including

material strength, under dynamic loading.

Stress as a function of strain, strain rate, temperature, grain

size, impurity, and path history

For shock-wave deformation:

Shock front model explain energy balance

Constitutive equation: Apply Zerilli-Armstrong equations to

Swegle-Grady Equation

historyndeformatioT

dt

dPf ,,,,

Page 40: Literature Review: Dynamic Behavior of BCC Metals

~ Thank you ~