Linearization and LyapunovFunctions Video 5.1 Segment 1.2 ... · Robo4x 1.2.3.1.a 1 edXRobo4 Mini...

32
Robo4x 1.2.3.1.a 1 edX Robo4 Mini MS – Locomotion Engineering Block 1 – Week 2 – Unit 3 Linearization and Lyapunov Functions Video 5.1 Segment 1.2.3.1.a Dynamical Systems Theory Daniel E. Koditschek with Wei-Hsi Chen, T. Turner Topping and Vasileios Vasilopoulos University of Pennsylvania July, 2017 Property of Penn Engineering and Daniel E. Koditschek

Transcript of Linearization and LyapunovFunctions Video 5.1 Segment 1.2 ... · Robo4x 1.2.3.1.a 1 edXRobo4 Mini...

Page 1: Linearization and LyapunovFunctions Video 5.1 Segment 1.2 ... · Robo4x 1.2.3.1.a 1 edXRobo4 Mini MS –Locomotion Engineering Block 1 –Week 2 –Unit 3 Linearization and LyapunovFunctions

Robo4x 1.2.3.1.a 1

edX Robo4MiniMS– LocomotionEngineering

Block1– Week2– Unit3LinearizationandLyapunov Functions

Video5.1

Segment1.2.3.1.aDynamicalSystemsTheory

DanielE.Koditschekwith

Wei-HsiChen,T.TurnerToppingandVasileiosVasilopoulosUniversityofPennsylvania

July,2017

PropertyofPennEngineeringandDanielE.Koditschek

Page 2: Linearization and LyapunovFunctions Video 5.1 Segment 1.2 ... · Robo4x 1.2.3.1.a 1 edXRobo4 Mini MS –Locomotion Engineering Block 1 –Week 2 –Unit 3 Linearization and LyapunovFunctions

Robo4x 1.2.3.1.a 2

AgendaforthisSegment• AnalyticVF

§ have“simple”Taylorapproximations§ yield“simple”closedformflowexpressions

• Hope§ “simple”closedformflowoftheapproximateVF§ mayapproximatethe“complicated”flowoftheVF

• Actuality§ for“typical”situationsthehopeisborneout§ inthosesituations,getmorethan“approximation”

• turnsoutthat“behavior”isindistinguishable• uptochangeofcoordinates(ingeneral,nonlinear)

• Crucialissue:recognize&dealwith“atypical”cases

PropertyofPennEngineeringandDanielE.Koditschek

Page 3: Linearization and LyapunovFunctions Video 5.1 Segment 1.2 ... · Robo4x 1.2.3.1.a 1 edXRobo4 Mini MS –Locomotion Engineering Block 1 –Week 2 –Unit 3 Linearization and LyapunovFunctions

Robo4x 1.2.3.1.a 3

MultivariableTaylorSeries• Taylor’sTheorem

§ an“analytic”function§ hasaglobalTaylorexpansion

(aroundaspecifiedpoint)

§ whosefirstorderterm§ iscalleditslinearization

PropertyofPennEngineeringandDanielE.Koditschek

Page 4: Linearization and LyapunovFunctions Video 5.1 Segment 1.2 ... · Robo4x 1.2.3.1.a 1 edXRobo4 Mini MS –Locomotion Engineering Block 1 –Week 2 –Unit 3 Linearization and LyapunovFunctions

Robo4x 1.2.3.1.a 4

TaylorSeriesApproximation• Constantterm

§ exactatspecifiedpoint§ “close”approximation

• in“verysmall”• neighborhoodofpoint

• Linearization§ approximatesina“small”§ neighborhoodofthepoint§ nogeneralcriterionfor“small”

• …higherorderterms…better…• References

§ Taylor’sTheoremRichardCourant.Differentialandintegralcalculus,volume2.JohnWiley&Sons,2011.

§ Calculusvia“longpolynomials”R.Ghrist.FunnyLittleCalculusText.R.W.Ghrist,2012.

PropertyofPennEngineeringandDanielE.Koditschek

Page 5: Linearization and LyapunovFunctions Video 5.1 Segment 1.2 ... · Robo4x 1.2.3.1.a 1 edXRobo4 Mini MS –Locomotion Engineering Block 1 –Week 2 –Unit 3 Linearization and LyapunovFunctions

Robo4x 1.2.3.1.a 5

0th TaylorApproximationofFlow• Example:dampedfallingunitmass

§ ConstantapproximationofVFaroundv0=0

§ Flowofconstantapproximation(proposed0th orderapprox.ofFlow)

§ ConstantapproximationofFlowaroundv0=0

• Conclude:nottoobadforverysmallt andd

PropertyofPennEngineeringandDanielE.Koditschek

Page 6: Linearization and LyapunovFunctions Video 5.1 Segment 1.2 ... · Robo4x 1.2.3.1.a 1 edXRobo4 Mini MS –Locomotion Engineering Block 1 –Week 2 –Unit 3 Linearization and LyapunovFunctions

Robo4x 1.2.3.1.a 6

0th TaylorApproximationFailure

• Ingeneral,for“typical”v0§ flowoftheconstantapproximationVF

§ is“close”to§ constantapproximationoftheflowoftheactual§ forverysmallt andd

• Whatabout“atypical”v0 ?§ majorexception:failsbadlyatFPv0 =ve :=b/g§ since

• We’llneed1st TaylorApproximationfor“typical”FP• Firstshowthat“behaviorissame”intypicalcase

PropertyofPennEngineeringandDanielE.Koditschek

Page 7: Linearization and LyapunovFunctions Video 5.1 Segment 1.2 ... · Robo4x 1.2.3.1.a 1 edXRobo4 Mini MS –Locomotion Engineering Block 1 –Week 2 –Unit 3 Linearization and LyapunovFunctions

Robo4x 1.2.3.1.a 7

ExpandCCNotion• ChangeofCoordinates(CC)

§ continuous§ continuouslyinvertible

(one-to-one&onto)

• Examples§ Smooth(CCD):differentiablebothways§ Linear(CCL):similarity(withmatrixrep)

PropertyofPennEngineeringandDanielE.Koditschek

Page 8: Linearization and LyapunovFunctions Video 5.1 Segment 1.2 ... · Robo4x 1.2.3.1.a 1 edXRobo4 Mini MS –Locomotion Engineering Block 1 –Week 2 –Unit 3 Linearization and LyapunovFunctions

Robo4x 1.2.3.1.a 8

GeneralChangeofCoordinatesFormulae

• maps(e.g.,flows)

• VF

PropertyofPennEngineeringandDanielE.Koditschek

Page 9: Linearization and LyapunovFunctions Video 5.1 Segment 1.2 ... · Robo4x 1.2.3.1.a 1 edXRobo4 Mini MS –Locomotion Engineering Block 1 –Week 2 –Unit 3 Linearization and LyapunovFunctions

Robo4x 1.2.3.1.a 9

ScalarNonlinearChangeofCoordinates• returntodampedfallingunitmass

• introduceproposedCC

§ toassuregoodCCD§ assumeIC“far”fromFP,ve :=b/g

• getconjugacy§ sobehavior§ awayfromFP§ is“identical”§ uptoCC

PropertyofPennEngineeringandDanielE.Koditschek

Page 10: Linearization and LyapunovFunctions Video 5.1 Segment 1.2 ... · Robo4x 1.2.3.1.a 1 edXRobo4 Mini MS –Locomotion Engineering Block 1 –Week 2 –Unit 3 Linearization and LyapunovFunctions

Robo4x 1.2.3.1.a 10

NormalForm

• Previousresult§ conjugacybetweenVF&0th orderVFapproximant§ onneighborhoodsawayfromFP

• Leadstonotionof“normalform”§ thelowestdegreepolynomialapproximant§ thatstilladmitslocalconjugacytotheVF

• GeneralizestoanalyticVFinarbitrarydimensions§ Flowbox Theorem:

• thenormalformforaVFintheneighborhoodofanonFP• istheconstantVF,e.g.,fcons(x) := [1, 0, ..,0]T

• [V.I.Arnold.OrdinaryDifferentialEquations.MITPress,1973]

PropertyofPennEngineeringandDanielE.Koditschek

Page 11: Linearization and LyapunovFunctions Video 5.1 Segment 1.2 ... · Robo4x 1.2.3.1.a 1 edXRobo4 Mini MS –Locomotion Engineering Block 1 –Week 2 –Unit 3 Linearization and LyapunovFunctions

Robo4x 1.2.3.1.a 11

edX Robo4MiniMS– LocomotionEngineering

Block1– Week2– Unit3LinearizationandLyapunov Functions

Video5.2

Segment1.2.3.1.bDynamicalSystemsTheory

DanielE.Koditschekwith

Wei-HsiChen,T.TurnerToppingandVasileiosVasilopoulosUniversityofPennsylvania

July,2017

PropertyofPennEngineeringandDanielE.Koditschek

Page 12: Linearization and LyapunovFunctions Video 5.1 Segment 1.2 ... · Robo4x 1.2.3.1.a 1 edXRobo4 Mini MS –Locomotion Engineering Block 1 –Week 2 –Unit 3 Linearization and LyapunovFunctions

Robo4x 1.2.3.1.a 12

AgendaforthisSegment• NormalForm(introducedinsegmentjustprevious)

§ Flowbox theoremtellsus• awayfromFP• VFisconjugatetoconstantvelocity

§ nowseeknormalformintheneighborhoodofaFP

• TaylorapproximationnearFP

§ seemsdominatedby§ goodnewswhentrulyanormalform§ sinceweunderstandLTIsystemsverywell

• NowexplorewhenthisintuitionholdsPropertyofPennEngineeringandDanielE.Koditschek

Page 13: Linearization and LyapunovFunctions Video 5.1 Segment 1.2 ... · Robo4x 1.2.3.1.a 1 edXRobo4 Mini MS –Locomotion Engineering Block 1 –Week 2 –Unit 3 Linearization and LyapunovFunctions

Robo4x 1.2.3.1.a 13

ConditionsforFPNormalForm:Scalars

• ForVFtohaveLTInormalformatscalarFPxe

§ musthave§ else

§ inwhichcaselinearizedVFcannotbeconjugate

§ because,e.g.,

• soh growswithoutboundalongflowofquadraticfield• whereasitisconstantalongflowofthelinearfield

§ noCCcanconjugateanunboundedtoaboundedfnc.PropertyofPennEngineeringandDanielE.Koditschek

Page 14: Linearization and LyapunovFunctions Video 5.1 Segment 1.2 ... · Robo4x 1.2.3.1.a 1 edXRobo4 Mini MS –Locomotion Engineering Block 1 –Week 2 –Unit 3 Linearization and LyapunovFunctions

Robo4x 1.2.3.1.a 14

ConditionsforFPNormalForm:Vectors• ButforVFtohaveLTInormalformatvectorFPxe

• needmorethansimply• e.g.

§ hencelinearizedVFcannotbeconjugate

§ because,e.g.,

vs• soh growswithoutboundalongflowoffNLRC

• whereasitisconstantalongflowoffL

PropertyofPennEngineeringandDanielE.Koditschek

Page 15: Linearization and LyapunovFunctions Video 5.1 Segment 1.2 ... · Robo4x 1.2.3.1.a 1 edXRobo4 Mini MS –Locomotion Engineering Block 1 –Week 2 –Unit 3 Linearization and LyapunovFunctions

Robo4x 1.2.3.1.a 15

Hyperbolicity ofFP

• SaythataVFishyperbolic ataFP• Ifitslinearizationhasnopurelyimaginaryeigenvalues

• Examples§ scalardampedmass:§ dampedpendulum:

• FPwithzerovelocity• atqe=np• again,neednonzerob

PropertyofPennEngineeringandDanielE.Koditschek

Page 16: Linearization and LyapunovFunctions Video 5.1 Segment 1.2 ... · Robo4x 1.2.3.1.a 1 edXRobo4 Mini MS –Locomotion Engineering Block 1 –Week 2 –Unit 3 Linearization and LyapunovFunctions

Robo4x 1.2.3.1.a 16

NormalFormNearaFP• IfaFPofaVF• ishyperbolic

• thenthelinearizeddynamics

• islocallyconjugate• viasomeCCdefinedinaneighborhoodoftheFP• Reference:J.Guckenheimer andP.Holmes.NonlinearOscillations,DynamicalSystems,andBifurcationsofVectorFields.Springer,1983.

PropertyofPennEngineeringandDanielE.Koditschek

Page 17: Linearization and LyapunovFunctions Video 5.1 Segment 1.2 ... · Robo4x 1.2.3.1.a 1 edXRobo4 Mini MS –Locomotion Engineering Block 1 –Week 2 –Unit 3 Linearization and LyapunovFunctions

Robo4x 1.2.3.1.a 17

Pendulum(red)andLinearized(gray)Orbits

NearbottomFP,qb VerynearbottomFP, qb

red:

gray:

PropertyofPennEngineeringandDanielE.Koditschek

Page 18: Linearization and LyapunovFunctions Video 5.1 Segment 1.2 ... · Robo4x 1.2.3.1.a 1 edXRobo4 Mini MS –Locomotion Engineering Block 1 –Week 2 –Unit 3 Linearization and LyapunovFunctions

Robo4x 1.2.3.1.a 18

Pendulum(red)andLinearized(gray)Orbits

NeartopFP,qt VeryneartopFP, qt

red:

gray:

PropertyofPennEngineeringandDanielE.Koditschek

Page 19: Linearization and LyapunovFunctions Video 5.1 Segment 1.2 ... · Robo4x 1.2.3.1.a 1 edXRobo4 Mini MS –Locomotion Engineering Block 1 –Week 2 –Unit 3 Linearization and LyapunovFunctions

Robo4x 1.2.3.1.a 19

UnstablePend.(red)andLnrzd.(gray)Orbs.

NearbottomFP,qb VerynearbottomFP, qb

red:

gray:

PropertyofPennEngineeringandDanielE.Koditschek

Page 20: Linearization and LyapunovFunctions Video 5.1 Segment 1.2 ... · Robo4x 1.2.3.1.a 1 edXRobo4 Mini MS –Locomotion Engineering Block 1 –Week 2 –Unit 3 Linearization and LyapunovFunctions

Robo4x 1.2.3.1.a 20

ImplicationsofFPHyperbolicity

• LinearizationofHyperbolicFPpredictslocalnonlinearbehavior§ numerically:becauselineartermdominatesTaylor

expansion§ formally:becauseCCpreservesqualitativeproperties

• Mostimportantqualitativeproperty:stability

PropertyofPennEngineeringandDanielE.Koditschek

Page 21: Linearization and LyapunovFunctions Video 5.1 Segment 1.2 ... · Robo4x 1.2.3.1.a 1 edXRobo4 Mini MS –Locomotion Engineering Block 1 –Week 2 –Unit 3 Linearization and LyapunovFunctions

Robo4x 1.2.3.1.a 21

edX Robo4MiniMS– LocomotionEngineering

Block1– Week2– Unit3LinearizationandLyapunov Functions

Video5.3

Segment1.2.3.2.aLyapunov Functions

DanielE.Koditschekwith

Wei-HsiChen,T.TurnerToppingandVasileiosVasilopoulosUniversityofPennsylvania

July,2017

PropertyofPennEngineeringandDanielE.Koditschek

Page 22: Linearization and LyapunovFunctions Video 5.1 Segment 1.2 ... · Robo4x 1.2.3.1.a 1 edXRobo4 Mini MS –Locomotion Engineering Block 1 –Week 2 –Unit 3 Linearization and LyapunovFunctions

Robo4x 1.2.3.1.a 22

AgendaforthisSegment• Lyapunov functions:generalizephysicalenergy

§ FundamentalTheoremofDynamicalSystems• allsystemshavesuchageneralized“energy”• defines“basinsofattraction”around“attractors”(generalizedsteadystateconditions– perhapsvery complicated)

§ Ouruseinthiscourse• inferthemfromhyperbolicattractors• findthemwhenhyperbolicity fails• usethemtofind(conservativeapproximationsof)basins

• Longtermaim:programmingwork§ attractorbasinsassymbols§ energylandscapesasprograms§ seekcompositionalmethodsfordesigninglandscapes

PropertyofPennEngineeringandDanielE.Koditschek

Page 23: Linearization and LyapunovFunctions Video 5.1 Segment 1.2 ... · Robo4x 1.2.3.1.a 1 edXRobo4 Mini MS –Locomotion Engineering Block 1 –Week 2 –Unit 3 Linearization and LyapunovFunctions

Robo4x 1.2.3.1.a 23

PositiveDefiniteFunctions• Pindownnotionof“norm-like”

§ crucial:levelsurfacesencloseneighborhoods§ guaranteedatlocalminimumofcontinuousfunctions§ preferdifferentiabilityaswell(wanttocomputepower)

• Acontinuous,scalarvaluedfunction,V,isPositiveDefinite(PD)atxe§ ifitisnonnegativeonaneighborhoodandvanishesonlyatxe

§ oftenwritten(sloppily)as“V >0”• SayPositiveSemi-Definite(PSD)whentheremightbeotherzerovalues• SayNegativeDefinite(ND)orNegativeSemi-Definite(NSD)whenthesign

reverses• e.g.NSDproperty:

PropertyofPennEngineeringandDanielE.Koditschek

Page 24: Linearization and LyapunovFunctions Video 5.1 Segment 1.2 ... · Robo4x 1.2.3.1.a 1 edXRobo4 Mini MS –Locomotion Engineering Block 1 –Week 2 –Unit 3 Linearization and LyapunovFunctions

Robo4x 1.2.3.1.a 24

PositiveDefiniteMatrices• Aquadraticform isascalar-valuedpolynomialofdegree2

§ e.g.,norm-squared||x||2 =x Tx =x12 +…+xn

2

§ e.g.,totalenergy,hHO=k +fS, foraHooke’slawspringpotential,fS§ moregenerally,canrepresentanyquadraticformwithamatrix,

• Aquadraticform,V =x T P x,representedbythematrixP, isPDat0§ ifandonlyifthereisaCCL,y=P-1/2x, suchthat

§ inwhichcaseP iscalledaPDmatrixwritten(sloppily)as“P >0”

PropertyofPennEngineeringandDanielE.Koditschek

Page 25: Linearization and LyapunovFunctions Video 5.1 Segment 1.2 ... · Robo4x 1.2.3.1.a 1 edXRobo4 Mini MS –Locomotion Engineering Block 1 –Week 2 –Unit 3 Linearization and LyapunovFunctions

Robo4x 1.2.3.1.a 25

PDQuadraticFormUnderCCL

PropertyofPennEngineeringandDanielE.Koditschek

Page 26: Linearization and LyapunovFunctions Video 5.1 Segment 1.2 ... · Robo4x 1.2.3.1.a 1 edXRobo4 Mini MS –Locomotion Engineering Block 1 –Week 2 –Unit 3 Linearization and LyapunovFunctions

Robo4x 1.2.3.1.a 26

edX Robo4MiniMS– LocomotionEngineering

Block1– Week2– Unit3LinearizationandLyapunov Functions

Video5.4

Segment1.2.3.2.bLyapunov Functions

DanielE.Koditschekwith

Wei-HsiChen,T.TurnerToppingandVasileiosVasilopoulosUniversityofPennsylvania

July,2017

PropertyofPennEngineeringandDanielE.Koditschek

Page 27: Linearization and LyapunovFunctions Video 5.1 Segment 1.2 ... · Robo4x 1.2.3.1.a 1 edXRobo4 Mini MS –Locomotion Engineering Block 1 –Week 2 –Unit 3 Linearization and LyapunovFunctions

Robo4x 1.2.3.1.a 27

Stability• Asetisinvariant

§ iftheorbitthroughanyelement

§ remainswithinitforalltime§ itispositive invariant

• iftrajectoriesthroughitselements

• remainwithinitforallfuturetime

• AFPisstable undertheflowofaVF§ ifsufficientlysmall

neighborhoods§ arepositiveinvariant

UndampedPendulumnear“bottom”FP

PropertyofPennEngineeringandDanielE.Koditschek

Page 28: Linearization and LyapunovFunctions Video 5.1 Segment 1.2 ... · Robo4x 1.2.3.1.a 1 edXRobo4 Mini MS –Locomotion Engineering Block 1 –Week 2 –Unit 3 Linearization and LyapunovFunctions

Robo4x 1.2.3.1.a 28

AsymptoticStability• AFP isasymptoticallystableundertheflowofaVF§ ifitisstableand§ sufficientlysmall

neighborhoods§ approachtheFP

asymptotically§ infuturetime

• inwhichcaseitisanattractor

• whosebasin§ isthesetofICs§ whichasymptotically

approachtheFP

DampedPendulumnear“bottom”FP

PropertyofPennEngineeringandDanielE.Koditschek

Page 29: Linearization and LyapunovFunctions Video 5.1 Segment 1.2 ... · Robo4x 1.2.3.1.a 1 edXRobo4 Mini MS –Locomotion Engineering Block 1 –Week 2 –Unit 3 Linearization and LyapunovFunctions

Robo4x 1.2.3.1.a 29

Instability• AFPisunstable undertheflowofaVF§ ifitfailstobestable§ i.e.,everyneighborhood§ hasICswhosetrajectories§ leaveatsomefuturetime

• anditisarepeller§ ifitisasymptoticallystable

inreversetime§ i.e.,everyICinsmallenough

neighborhoods§ hastrajectoriesthatleavein

futuretime

DampedPendulumnear“top”FP

PropertyofPennEngineeringandDanielE.Koditschek

Page 30: Linearization and LyapunovFunctions Video 5.1 Segment 1.2 ... · Robo4x 1.2.3.1.a 1 edXRobo4 Mini MS –Locomotion Engineering Block 1 –Week 2 –Unit 3 Linearization and LyapunovFunctions

Robo4x 1.2.3.1.a 30

Lyapunov Theory• PDV,isaLyapunov function(LF)foraVFataFP

• ifitspowerfunctionisNSD:• itisstrict ifthepowerfunctionisND:• Lyapunov’s Theorem:

§ LFforVFatFPimpliesstabilityofFP§ strictLFforVFatFPimpliesasymptoticstabilityofFP

• ConverseTheorem:§ ifFPofVFisstablethenithasaLF§ ifasymptoticallystablethenithasastrictLF

• Reference:V.I.Arnold.OrdinaryDifferentialEquations.MITPress,1973.

PropertyofPennEngineeringandDanielE.Koditschek

Page 31: Linearization and LyapunovFunctions Video 5.1 Segment 1.2 ... · Robo4x 1.2.3.1.a 1 edXRobo4 Mini MS –Locomotion Engineering Block 1 –Week 2 –Unit 3 Linearization and LyapunovFunctions

Robo4x 1.2.3.1.a 31

PDandNSDQuadraticForms(Seg.1.2.1.3)

PropertyofPennEngineeringandDanielE.Koditschek

Page 32: Linearization and LyapunovFunctions Video 5.1 Segment 1.2 ... · Robo4x 1.2.3.1.a 1 edXRobo4 Mini MS –Locomotion Engineering Block 1 –Week 2 –Unit 3 Linearization and LyapunovFunctions

Robo4x 1.2.3.1.a 32

MovingAhead• LocalLyapunov Theory

§ necessaryandsufficientconditionsforsteadystatestability§ notconstructive(buttypically“energy-like”)

• LinearizedDynamics§ numericallycloseandbehaviorallyexactaccount§ offlowintheneighborhoodofFP§ algorithmicconstructionofLF§ conservativeestimateofbasin;ofrobustness

• GlobalLyapunov Theory§ notdevelopedinthiscourse§ fundamentaltheoremofdynamicalsystems§ idea:generalizedenergylandscapesforprogrammingwork

PropertyofPennEngineeringandDanielE.Koditschek