Linear Growth of Glycomicsglycobiology/GlycomicGlyco... · 2017. 2. 7. · 2/7/17 7 Pulse-Chase...

27
2/7/17 1 Lance Wells, Complex Carbohydrate Research Center, Department of Biochemistry & Molecular Biology, and Chemistry University of Georgia [email protected] Glycomics & Glycoproteomics NIGMS Biomedical Glycomics Linear Growth of Glycomics Glycomics/Proteomics KeyWord in PUBMED Publications 2003: Glycomics is 1.0% of Proteomics PUBMED Papers 2013: Glycomics is 4.5% of Proteomics PUBMED Papers 0 200 400 600 800 1000 1200 1400 1600 2002 2004 2006 2008 2010 2012 2014 Normalized to 2003 Year

Transcript of Linear Growth of Glycomicsglycobiology/GlycomicGlyco... · 2017. 2. 7. · 2/7/17 7 Pulse-Chase...

Page 1: Linear Growth of Glycomicsglycobiology/GlycomicGlyco... · 2017. 2. 7. · 2/7/17 7 Pulse-Chase experiment designed for dynamic IDAWG X 1 Complete Labeling X 1 X 4 X 4 X 3 X 2 0 hr

2/7/17

1

Lance Wells, Complex Carbohydrate Research Center, Department of Biochemistry & Molecular Biology, and Chemistry

University of Georgia [email protected]

Glycomics & Glycoproteomics

NIGMS Biomedical Glycomics

Linear Growth of Glycomics

Glycomics/ProteomicsKeyWord in PUBMED

Publications

2003: Glycomics is1.0% of ProteomicsPUBMED Papers

2013: Glycomics is4.5% of Proteomics

PUBMED Papers 0

200

400

600

800

1000

1200

1400

1600

2002 2004 2006 2008 2010 2012 2014

Nor

mal

ized

to 2

003

Year

Page 2: Linear Growth of Glycomicsglycobiology/GlycomicGlyco... · 2017. 2. 7. · 2/7/17 7 Pulse-Chase experiment designed for dynamic IDAWG X 1 Complete Labeling X 1 X 4 X 4 X 3 X 2 0 hr

2/7/17

2

Glycomics in the Spotlight (literature)

2013 2013

Athens Guidelines for the Publication of Glycomic Studies

All MS do one thing: Measure m/z

Block diagram of a Tandem Mass Spectrometer

Block diagram of a Mass Spectrometer

Page 3: Linear Growth of Glycomicsglycobiology/GlycomicGlyco... · 2017. 2. 7. · 2/7/17 7 Pulse-Chase experiment designed for dynamic IDAWG X 1 Complete Labeling X 1 X 4 X 4 X 3 X 2 0 hr

2/7/17

3

Quan%ta%ve Strategies 

LABELING 

STRATEGY  PROTEOMICS  GLYCOMICS 

Label‐free  Spectra count  TIM/Prevalence 

In‐vitro  18O‐H2O labeling 

13C‐CH3I or CD3I 

Permethyla%on 

QUIBL 

In‐vivo SILAC  

(Stable Isotope Labeling with 

Amino acids in Cell culture)  

In MS2  TMT  ??? 

IDAWG 

N-­‐  and  O-­‐glycan  structures  determined  by    “Total-­‐ion  monitoring”  Or  LC-­‐MS-­‐Quan;fica;on    

By  peak  intensity  (normalized  to  standards))

Page 4: Linear Growth of Glycomicsglycobiology/GlycomicGlyco... · 2017. 2. 7. · 2/7/17 7 Pulse-Chase experiment designed for dynamic IDAWG X 1 Complete Labeling X 1 X 4 X 4 X 3 X 2 0 hr

2/7/17

4

Relative quantification between 2 samplesof released and permethylated N-glycans

via isotope labeling with light/heavy iodomethane

+1 Da

* * *

Page 5: Linear Growth of Glycomicsglycobiology/GlycomicGlyco... · 2017. 2. 7. · 2/7/17 7 Pulse-Chase experiment designed for dynamic IDAWG X 1 Complete Labeling X 1 X 4 X 4 X 3 X 2 0 hr

2/7/17

5

Amide-15N L-glutamine “GLN-15”

Amide-14N L-glutamine“Gln-14”

Light Medium Heavy Medium

Harvest & Combine

Mixed Protein PowderHomogenization and delipidation

Peptide Mixture

O-linked Glycan MixtureN-linked Glycan Mixture

Tryptic digestion

C18 reverse phasePNGase F digestion β-elimination

Permethylated Glycans Permethylated Glycans

C18 reverse phasePermethylation

DeionizationPermethylation

Characterization by MS/MSQuantification by Full MS

Mass Spectrometry

300 400 500 600 700 800 900 1000 1100 1200m/z

05

10

15

20

25

30

35

40

45

5055

60

65

70

75

80

85

90

95

100

Rel

ativ

e A

bund

ance

486.23

901.93

799.88 966.47

474.23998.51

300 400 500 600 700 800 900 1000 1100 1200m/z

05

10

15

20

25

30

35

40

45

5055

60

65

70

75

80

85

90

95

100

Rel

ativ

e A

bund

ance

486.23

901.93

799.88 966.47

474.23998.51

1030 1031 1032 1033 1034 1035 1036m/z

05

101520

2530354045505560657075

808590

95100

Rel

ativ

e Ab

unda

nce

1030 1031 1032 1033 1034 1035 1036m/z

05

101520

2530354045505560657075

808590

95100

Rel

ativ

e Ab

unda

nce

HeavyGLN-15

LightGln-14

1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 0

10

20

30

40

50

60

70

80

90

100

m/z

Rel

ativ

e Abu

ndan

ce

1705.858

1708.859

1706.862

1709.847

1707.865

1710.849

1711.852

Figure 5 A. [M+Na]+: 1705.862 and 1706.854 m/z (mono)

hEShDE = 1.74

:* *

**

Page 6: Linear Growth of Glycomicsglycobiology/GlycomicGlyco... · 2017. 2. 7. · 2/7/17 7 Pulse-Chase experiment designed for dynamic IDAWG X 1 Complete Labeling X 1 X 4 X 4 X 3 X 2 0 hr

2/7/17

6

1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 0

10

20

30

40

50

60

70

80

90

100

m/z

Rel

ativ

e Abu

ndan

ce1432.736

1435.729

1433.738

1436.729

1434.739

1437.7331438.736

Figure 5 B. [M+Na]+: 1432.741 and 1435.735 m/z (mono)

: *

**

hEShDE = 0.23

Structure m/z Prevalence Ratio CV

983.52 21.78% 1.11 20.20%

1256.64 20.22% 1.09 14.42%

1344.69 17.60% 2.64 30.21%

895.46 8.20% 0.87 13.56%

and 534.29 6.76% 1.04 17.20%

1793.91 5.81% 0.64 61.95%

1705.86 4.93% 2.54 29.48%

and 1432.74 4.70% 0.41 37.70%

1879.95 2.12% 1.75 49.39%

1157.60 1.99% 0.99 29.78%

779.42 1.03% 0.79 26.42%

Table 3: Relative quantification of O-glycan expression levels in hESCs and hDE using IDAWG(Ratio=hDE/hESCs) (Prevalence > 1%)

!! "!

#! $!

hDE!

hES!

Page 7: Linear Growth of Glycomicsglycobiology/GlycomicGlyco... · 2017. 2. 7. · 2/7/17 7 Pulse-Chase experiment designed for dynamic IDAWG X 1 Complete Labeling X 1 X 4 X 4 X 3 X 2 0 hr

2/7/17

7

Pulse-Chase experiment designed for dynamic IDAWG

X 1Complete

Labeling

X 1

X 4 X 4 X 3 X 20 hr 12 hr 24 hr 36 hr

X 1 X 1 X 1Harvest

Release N- and O-linked glycans

Permethylation

IDAWG-hES-PC-12hr-14N-O-trapping-072009 #34 RT: 2.59 AV: 1 NL: 7.59E6T: FTMS + p NSI Full ms2 [email protected] [1225.00-1275.00]

1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265m/z

0

10

20

30

40

50

60

70

80

90

100

Rel

ativ

e A

bund

ance

1259.62

1257.63

1258.631260.621256.63

1261.63

1259.111258.11 1262.631260.111255.56 1263.631260.78 1264.601257.11

Heavy Media LightMedia

LightMedia

LightMedia

1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 0 5

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

100

m/z

Rel

ativ

e Abu

ndan

ce

1259.622

1260.626

1258.626

1261.628

1262.632

0hr-- >95% Heavy

Page 8: Linear Growth of Glycomicsglycobiology/GlycomicGlyco... · 2017. 2. 7. · 2/7/17 7 Pulse-Chase experiment designed for dynamic IDAWG X 1 Complete Labeling X 1 X 4 X 4 X 3 X 2 0 hr

2/7/17

8

1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 0 5

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

100

m/z

Rel

ativ

e Abu

ndan

ce

1256.635

1259.626

1257.633

1260.629

1258.631

1261.632

1262.635

6hr

1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 0 5

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

100

m/z

Rel

ativ

e Abu

ndan

ce

1256.630

1259.622

1257.629

1260.6251258.629

1261.627

1262.628

12hr

Page 9: Linear Growth of Glycomicsglycobiology/GlycomicGlyco... · 2017. 2. 7. · 2/7/17 7 Pulse-Chase experiment designed for dynamic IDAWG X 1 Complete Labeling X 1 X 4 X 4 X 3 X 2 0 hr

2/7/17

9

1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 0 5

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

100

m/z

Rel

ativ

e Abu

ndan

ce1256.630

1259.621

1257.631

1260.624

1258.631

1261.6271262.633

24hr

1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 0 5

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

100

m/z

Rel

ativ

e Abu

ndan

ce

1256.629

1259.622

1257.630

1260.623

1258.631

1261.6261262.626

36hr

Page 10: Linear Growth of Glycomicsglycobiology/GlycomicGlyco... · 2017. 2. 7. · 2/7/17 7 Pulse-Chase experiment designed for dynamic IDAWG X 1 Complete Labeling X 1 X 4 X 4 X 3 X 2 0 hr

2/7/17

10

Structure50% degradation time

(hours)Proportion of remodeling at 50%

degradation time (%)

Rep1 Rep2 Rep1 Rep218.6 19.4 1.6 1.120.7 22.6 0.0 0.07.7 8.4 0.0 0.0

16.2 15.6 9.0 9.7

14.9 14.1 26.8 25.420.4 18.1 16.9 21.218.4 19.8 9.3 8.421.3 25.3 21.5 16.922.1 19.4 27.9 27.0

50% degradation time and proportion of remodeling at 50% degradation time for 9 major O-glycans

Glycomics by MS

-Generating data very robust

-Data Analysis is getting better

-Quantitative technologies have been developed

Page 11: Linear Growth of Glycomicsglycobiology/GlycomicGlyco... · 2017. 2. 7. · 2/7/17 7 Pulse-Chase experiment designed for dynamic IDAWG X 1 Complete Labeling X 1 X 4 X 4 X 3 X 2 0 hr

2/7/17

11

Lance Wells, Complex Carbohydrate Research Center, Department of Biochemistry & Molecular Biology, and Chemistry

University of Georgia

Glycan site mapping: Glycoproteomics

NCRR Biomedical Glycomics

Page 12: Linear Growth of Glycomicsglycobiology/GlycomicGlyco... · 2017. 2. 7. · 2/7/17 7 Pulse-Chase experiment designed for dynamic IDAWG X 1 Complete Labeling X 1 X 4 X 4 X 3 X 2 0 hr

2/7/17

12

Site Mapping and Characterization

N

N

S

N

G Q M P

S S

S

S Q

T

T

V

A C L G

I C H

E

R

K

R

S K

G

E

A F D Y

P

P

M L

W

I

PNGase F Treatment and N-linked Glycosylation Site-mapping

Secreted Proteins from Adipocytes (insulin responsive vs insulin resistant)

N-X-S/T

56 proteins with 83 N-linked sites (all N-X-S/T)

Sulfated glycoprotein 1 precursor (SGP-1) gi|3914939 (K)TVVTEAGNLLKDN#ATQEEILHYLEK (K)FSELIVNN#ATEELLVK (K)LVLYLEHNLEKN#STKEEILAALEK

Follistatin-related protein 1 precursor gi|2498391 (K)GSN#YSEILDK

Haptoglobin gi|8850219 (K)VVLHPN#HSVVDIGLIK (K)NLFLN#HSETASAK (K)CVVHYEN#STVPEKK Decorin gi|6681143 (R)ISDTN#ITAIPQGLPTSLTEVHLDGNK

Adipsin gi|673431 (K)LSQN#ASLGPHVRPLPLQYEDK

Hemopexin gi|1881768 (R)SWSTVGN#CTAALR

lipoprotein lipase gi|12832783 (R)TPEDTAEDTCHLIPGLADSVSNCHFN#HSSK

vimentin gi|2078001 (R)QVQSLTCEVDALKGTN#ESLER

Page 13: Linear Growth of Glycomicsglycobiology/GlycomicGlyco... · 2017. 2. 7. · 2/7/17 7 Pulse-Chase experiment designed for dynamic IDAWG X 1 Complete Labeling X 1 X 4 X 4 X 3 X 2 0 hr

2/7/17

13

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 Asn 1 T / s 3 4 5 6 7 8 9 10NQ 0.157 0.152 0.099 0.045 0.202 0.246 0.509 -0.339 -0.413 -1.076 3.427 0.197 -9.000 0.246 0.040 -0.076 0.094 0.197 -0.076 0.152 0.045 NQST 0.110 -0.151 -0.061 0.024 -0.247 0.019 -0.410 -0.203 0.247 0.138 -9.000 0.019 2.977 -1.410 0.590 0.138 -0.066 -0.156 -0.066 0.180 0.253 STDE -0.638 0.052 0.052 -0.081 -0.081 0.129 -0.233 -0.041 -0.456 -0.340 -9.000 0.089 -9.000 -0.134 0.004 0.419 0.089 -0.041 0.129 -0.280 0.052 DEH * 0.448 0.443 -1.364 -0.779 0.443 0.630 0.800 0.215 -0.785 -0.370 -9.000 -9.000 -9.000 -1.370 -0.785 -0.785 -0.048 -0.370 -0.048 -0.779 0.636 HKR 0.063 0.013 0.058 0.143 0.101 0.095 -0.038 0.680 0.256 0.095 -9.000 -0.533 -9.000 0.008 -0.992 -0.407 -0.185 0.217 0.400 0.183 0.406 KRAG -0.111 -0.473 -0.361 0.093 0.093 -0.167 0.200 0.126 0.126 0.370 -9.000 0.433 -9.000 0.551 0.008 0.088 -0.167 0.126 -0.729 -0.258 -0.162 AGY -0.050 -0.318 0.061 0.061 -0.318 0.262 0.355 -0.645 0.442 0.525 -9.000 -0.323 -9.000 -0.838 0.162 -0.475 -0.186 -0.475 0.442 -0.055 0.360 YF -0.763 0.125 0.232 0.672 0.009 0.004 -0.581 -0.122 0.419 0.667 -9.000 0.326 -9.000 0.119 -0.411 -0.581 -0.411 -0.996 0.119 -0.406 -0.991 FW * 1.211 -0.116 0.469 0.206 -0.116 -0.122 -0.537 0.463 -0.537 0.200 -9.000 0.200 -9.000 -0.122 -1.122 -1.122 0.200 0.200 0.200 -2.116 -0.531 WILV 0.067 0.181 0.012 -0.123 0.087 -0.101 0.106 -0.046 0.057 0.032 -9.000 0.130 -9.000 0.286 0.130 0.176 -0.020 0.153 -0.101 0.111 -0.438 ILVP 0.453 -0.055 0.267 -0.318 -0.318 -0.475 -0.838 -0.838 -1.323 -0.645 -9.000 -9.000 -9.000 -0.186 -0.060 -0.186 0.603 -0.060 0.162 0.267 0.061 PC * -0.181 -0.509 -0.187 -0.509 0.299 -2.514 -0.192 0.071 -1.514 -0.514 -9.000 0.486 -9.000 -0.514 0.071 -0.929 0.808 -0.514 0.071 0.076 -0.187 CM * -0.774 0.636 0.221 -1.364 -1.364 -0.048 -0.785 -0.785 0.630 -1.370 -9.000 -0.048 -9.000 0.438 -0.785 0.215 -0.370 -0.785 -0.370 0.221 -0.042 M

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 Asn 1 T / s 3 4 5 6 7 8 9 10

Absolute Requirement Not Allowed Down > 2-fold STD (p<.05)

Up > 2-fold STD (p<.05) * occurrence less than 3% Down > 3-fold STD (p<.01)

N-linked Site Mapping from ConA-enriched glycopeptides from Drosophila heads--272 sites mapped from 197 Proteins

Pileup of the 272 N-linked Sites to Determine Consensus beyond N-X-S/T

Concerns: PNGaseF/A, Deamidation, C-terminal O-18

Cell. 2010 May 28;141(5):897-907.Precision mapping of an in vivo N-glycoproteome reveals rigid topological and sequence constraints.Zielinska DF, Gnad F, Wiśniewski JR, Mann M.

>6,000 Sites Mapped from Mouse Organs

>99% of Sites Match N-X-S/T(C), X is not Pro, ~1% of sites used Cys in place of S/T

Small percentage of sites (<1%) were N-X-V or NG (Real of False-Positives???)

Page 14: Linear Growth of Glycomicsglycobiology/GlycomicGlyco... · 2017. 2. 7. · 2/7/17 7 Pulse-Chase experiment designed for dynamic IDAWG X 1 Complete Labeling X 1 X 4 X 4 X 3 X 2 0 hr

2/7/17

14

O-Glycopeptides

Ser/Thr

GalNAc

Ser/Thr

Man

Ser/Thr

Fuc

Ser/Thr

GlcNAc

Ser/Thr

Glc

Hyl HypSer

Gal Xyl

β

No PNGaseF equivalent for O-Glycans

O-Glycanse has very restricted specificity

β-Elimination CNH

C

O

CH2

DTTCNH

C

O

CH2

OGlycan

H CNH

C

O

CH2H

DTT

Michael Addition

OH-

BEMAD --Can enrich glycopeptides before --Can map via the dehydro-amino acid --Can enrich the peptides after

Page 15: Linear Growth of Glycomicsglycobiology/GlycomicGlyco... · 2017. 2. 7. · 2/7/17 7 Pulse-Chase experiment designed for dynamic IDAWG X 1 Complete Labeling X 1 X 4 X 4 X 3 X 2 0 hr

2/7/17

15

β-Elimination

CNH

C

O

CH2

Alkylated Cysteine

Dehydroalanine(or

CNH

C

O

CH2

SICH2

H

CNH

C

O

CH2H

DTT (d0 or d6)

HSCH2CHCHCH2SH

Michael Addition

C

O

NH2

OH

OH

HSCd2CdCdCd2SH

OH

OH

Light DTT (d0) or Heavy DTT (d6)

Differential isotopic tagging of both cysteine and post-translationally modified ser/thr through β-elimination/Michael addition with light (d0) and heavy (d6) DTT.

O-Glycan or O-phosphateModified Serine (or threonine)

CNH

C

O

CH2H

O

(GlcNAc or phosphate)

β-Elimination

Concerns: Specificity, efficiency, recovery

Quantifying Peptides with D0- and D6-DTTTheoretical: 1 to 1 ; Experimental 1 to 0.98, 1 fmol scale

Page 16: Linear Growth of Glycomicsglycobiology/GlycomicGlyco... · 2017. 2. 7. · 2/7/17 7 Pulse-Chase experiment designed for dynamic IDAWG X 1 Complete Labeling X 1 X 4 X 4 X 3 X 2 0 hr

2/7/17

16

Ammonia-Based β-Elimination (ABBE) � Replace NaOH with NH4OH

� NH3 also acts as a nucleophile

Rademaker et al, 1998, Anal Biochem, 257: 149-160.

OH ( 17.0027 Da)

NH2 (16.0187 Da)

0.984 Da (1+) =

Teo_BPPCK2_Std #1-107 RT: 0.01-1.09 AV: 19 NL: 8.60E7T: FTMS + p NSI Full ms [150.00-2000.00]

554.0 554.5 555.0 555.5 556.0 556.5 557.0 557.5m/z

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

Rela

tive

Abun

danc

e

555.8013

556.3014

556.8024

557.3038

P S V P V S G S A P G R [M+2H]2+= 555.7990

Full MS of BPP

Page 17: Linear Growth of Glycomicsglycobiology/GlycomicGlyco... · 2017. 2. 7. · 2/7/17 7 Pulse-Chase experiment designed for dynamic IDAWG X 1 Complete Labeling X 1 X 4 X 4 X 3 X 2 0 hr

2/7/17

17

Teo_BPPCK2_ABBE1 #3323 RT: 51.22 AV: 1 NL: 2.02E8T: FTMS + p NSI Full ms [300.00-2000.00]

370.0 370.2 370.4 370.6 370.8 371.0 371.2 371.4 371.6 371.8m/z

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

Rela

tive

Abun

danc

e

370.5416

370.8745

371.2083

371.5427

P S V P V SNH2 G S A P G R [M+3H]3+= 370.5406

Full MS of BPPABBE

B.

A.

Figure 2: Site mapping N- and O-glycoslyation sites on proteins. A. Strategy for site-mapping N-glycosylation sites relies on PNGaseF release of glycans converting the previously modified Asn residue to and Asp residue (mass shift of 1 dalton). If 18O-water is used the mass shift is 3 daltons. This allows for comparsion between two samples where one uses 16O- and the other 18O-water. B.  Strategy for site-mapping O-glycoslyation site relies on beta-elimination coupled with Michael addition with DTT. DTT is available isotopically heavy (d6) so two samples cam be compared using light (d0) and heavy (d6) DTT respectively. The protein amount can also be quantified accurately in the same experiment based on the cysteine-containing peptides that are subject to elimination and addition as well.

β�Elimination"

C!N!H!

C!

O!

CH2!

Alkylated Cysteine!

Dehydroalanine!(or !

C!N!H!

C!

O!

CH2!

S!ICH2!

H!

C!N!H!

C!

O!

CH2!H!

DTT (d0 or d6)!

HSCH2CHCHCH2SH!

Michael Addition!

C!

O!

NH2!

OH

OH

HSCd2CdCdCd2SH!

OH

OH

Light DTT (d0) or Heavy DTT (d6)!

O-Glycan Modified Serine (or threonine)!

C!N!H!

C!

O!

CH2!H!

O!

(Glycan)!

β�Elimination"

Page 18: Linear Growth of Glycomicsglycobiology/GlycomicGlyco... · 2017. 2. 7. · 2/7/17 7 Pulse-Chase experiment designed for dynamic IDAWG X 1 Complete Labeling X 1 X 4 X 4 X 3 X 2 0 hr

2/7/17

18

Site Mapping and Characterization -Where we want to be!

N

N

S

N

G Q M P

S S

S

S Q

T

T

V

A C L G

I C H

E

R

K

R

S K

G

E

A F D Y

P

P

M L

W

I

(75%) (25%)

What do we need for direct glycopeptide analysis?

1.  Usually need enrichment

2.  Need glycomics/proteomics of enriched material

3.  Ideally would like to have sites of glycosylation

Page 19: Linear Growth of Glycomicsglycobiology/GlycomicGlyco... · 2017. 2. 7. · 2/7/17 7 Pulse-Chase experiment designed for dynamic IDAWG X 1 Complete Labeling X 1 X 4 X 4 X 3 X 2 0 hr

2/7/17

19

Alpha-Dystroglycan

Figure 2. Released O-Man and O-GalNAc linked glycans

Page 20: Linear Growth of Glycomicsglycobiology/GlycomicGlyco... · 2017. 2. 7. · 2/7/17 7 Pulse-Chase experiment designed for dynamic IDAWG X 1 Complete Labeling X 1 X 4 X 4 X 3 X 2 0 hr

2/7/17

20

Identification of Glycans using TIM-MS

MS Survey Scan

MS survey scan MS survey scan

MS survey scan MS/MS scan

Neutral loss? No

Yes Top N peaks? No

Yes

MS/MS/MS scan

SEQUEST ID

Yes

Pseudo Neutral Loss Activated Data Dependant MS3 for Glycopeptide Mapping

http://www.thermo.com If we have purified protein and glycomics data

Page 21: Linear Growth of Glycomicsglycobiology/GlycomicGlyco... · 2017. 2. 7. · 2/7/17 7 Pulse-Chase experiment designed for dynamic IDAWG X 1 Complete Labeling X 1 X 4 X 4 X 3 X 2 0 hr

2/7/17

21

Figure 3. Fragmentation of O-GalNAc α-DG glycopeptide

Page 22: Linear Growth of Glycomicsglycobiology/GlycomicGlyco... · 2017. 2. 7. · 2/7/17 7 Pulse-Chase experiment designed for dynamic IDAWG X 1 Complete Labeling X 1 X 4 X 4 X 3 X 2 0 hr

2/7/17

22

Page 23: Linear Growth of Glycomicsglycobiology/GlycomicGlyco... · 2017. 2. 7. · 2/7/17 7 Pulse-Chase experiment designed for dynamic IDAWG X 1 Complete Labeling X 1 X 4 X 4 X 3 X 2 0 hr

2/7/17

23

Assignment of Glycan Structure by Residue

Assignment of the phosphorylated trisaccharide structure to a specific glycopeptide of alpha-dystroglycan using MSn approaches. Displayed is a MS3 spectra demonstrating the presence of the phoshotrisaccharide . Science 2010 327:88

Assignment of Modified Glycopeptide

Page 24: Linear Growth of Glycomicsglycobiology/GlycomicGlyco... · 2017. 2. 7. · 2/7/17 7 Pulse-Chase experiment designed for dynamic IDAWG X 1 Complete Labeling X 1 X 4 X 4 X 3 X 2 0 hr

2/7/17

24

Another  O-­‐Glycan  site  mapping  solu;on  

High  Collision  Dissocia.on  (HCD)  Fragmenta.on  Genera.ng  oxonium  ions  

Electron  Transfer  Dissocia.on  (ETD)  Fragmenta.on  Targe.ng  Modified  pep.des  

Pep.de  Sequencing  and  Modifica.on  Site  Mapping  

BSA-OGlcNAcpepmix-2nmol-CID-ETD-HCD #5157 RT: 44.73 AV: 1 NL: 4.53E6T: FTMS + c NSI d Full ms2 [email protected] [100.00-1325.00]

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300m/z

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

Re

lativ

e A

bu

nd

an

ce

MH,  1313.48

 

y11,  1216.61  

y10,  1129.55  

MH-­‐He

xNAc

,1110.58

 

y9,  1030.51  

y11-­‐He

xNAc

,  1013.54  

y10-­‐He

xNAc

,  926.50  

y9-­‐HHe

xNAc

,  827.43  

b7,  827.43  

y8-­‐HexNAc

,  730.38  

MH+

2 ,  657.83

 

y7-­‐HexNAc

,  631.31  

MH-­‐He

xNAc

+2,  555.80  

y6,  544.28  

y7,  834.40  

S+HexNAc  Δ290.12m/z  

y5,  487.26  y10-­‐He

xNAc

+2,  463.75  

y9-­‐HexNAc

+2,  414.22  

y3,  329.19  

b3,  284.16  

b3-­‐H

2O,  266.15  

HexN

Ac+1,  204.09  

HexN

Ac-­‐H

2O+1,  186.07  

b2-­‐H

2O,  167.08  

HexN

Ac-­‐66+

1 ,  138.05

 He

xNAc

-­‐78+

1 ,  126.05

 

PSVPV  S  GSAPGR  

y6  

y7  

GlcNAc

 

HexN

Ac-­‐60+

1 ,  144.06

 

HCD  spectra  

Page 25: Linear Growth of Glycomicsglycobiology/GlycomicGlyco... · 2017. 2. 7. · 2/7/17 7 Pulse-Chase experiment designed for dynamic IDAWG X 1 Complete Labeling X 1 X 4 X 4 X 3 X 2 0 hr

2/7/17

25

204.084HexNAc+1

[C8H14O5N]+186.075

[C8H12O4N]+168.064

[C8H10O3N]+

144.064[C6H10O3N]+

138.054[C7H8O2N]+

126.054[C6H8O2N]+

HCD (zoomed in)D

PGGSTPVSSANMM

GlcNAc

b2,

154.

548

201.

858

179.

024

172.

741

122.

112

239.

007

110 130 150 170 190 210 230 250m/z

0

10

20

30

40

50

60

70

80

90

100R

elat

ive

Abu

ndan

ce

BSA-OGlcNAcpepmix-2nmol-CID-ETD-HCD #5085 RT: 44.09 AV: 1 NL: 2.23E6T: ITMS + c NSI d sa Full ms2 [email protected] [50.00-1325.00]

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300m/z

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

Re

lativ

e A

bu

nd

an

ce

MH,  1314.58

 MH-­‐H 2O,1297.53

 

z11,  1200.57  

c11,  1155.37  

z10-­‐H 2O,  1094.79  

y9,  1030.77  

z8,  918.54  

z7,  819.61  

b6,  769.57  

MH+

2 ,  657.51

 

z7-­‐HexNAc

,  616.57  

z6,  529.60  

z5,  472.66  

z4,  385.51  

y8+3,  312.50  

y2,  232.33  

S+HexNAc  Δ290.01m/z  

c11-­‐He

xNAc

,  952.43  

y11,  1216.62  

z10,  1113.58  

PSVPV  S  GSAPGR  

z6  

z7  

GlcNAc

  ETD  spectra  

Page 26: Linear Growth of Glycomicsglycobiology/GlycomicGlyco... · 2017. 2. 7. · 2/7/17 7 Pulse-Chase experiment designed for dynamic IDAWG X 1 Complete Labeling X 1 X 4 X 4 X 3 X 2 0 hr

2/7/17

26

gbpp_Recal #17-65 RT: 0.17-1.04 AV: 49 NL: 3.11E5T: FTMS + p ESI Full ms2 [email protected] [ 180.00-2000.00]

300 400 500 600 700 800 900 1000 1100 1200 1300m/z

0

10

20

30

40

50

60

70

80

90

100

Rel

ativ

e A

bund

ance

657.3386

1314.6809

328.6699 472.2516

529.2732

1271.6612

385.2195819.3852

616.3053 1094.5978917.44611156.5841

659.3430

972.49991255.6341911.4921

1030.5136

743.3290

x10 x15

GlcNAc

PSVPVSGSAPGR

+ 0.3 ppm

Z4

Z5

Z6 Z7

C7

Z8

Z10

Z11

Z12

ECD Fragmentation of O-GlcNAc Modified Peptide.Fragments in BLUE contain O-GlcNAc-Ser.

Promising Approaches: ECD/ETD Fragmentation

Simultaneous O-Man and O-GalNAc Analysis by ETD MS/MS

Live-120308-3-620etdsup_080312031606 #1 RT: 0.00 AV:1 NL: 1.08E4T: ITMS + p NSI sa Full ms2 [email protected] [170.00-2000.00]

400 600 800 1000 1200 1400 1600 1800m/z

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

Rel

ativ

e Ab

unda

nce

930.25

1817.58

908.67

1703.42

1844.50

1507.42354.08 592.25

844.50329.171159.42

1268.25 1450.42701.00 1532.17

411.00

828.171596.42

1005.17747.17 1090.33430.17 1344.33565.92

C2

C3*

C4*

C5^

C6^

C7

C9

(C10)

C10

Z3

Z4 Z5^ Z7*

Z6^

Z8*

Z9

Z10 (Z10)

C8

Ac-IRT*T*T^S^GVPR-NH2 * Man ^ GalNAc

+3, 620.6 m/z +1, 1857.9 m/z

Page 27: Linear Growth of Glycomicsglycobiology/GlycomicGlyco... · 2017. 2. 7. · 2/7/17 7 Pulse-Chase experiment designed for dynamic IDAWG X 1 Complete Labeling X 1 X 4 X 4 X 3 X 2 0 hr

2/7/17

27

MS Survey Scan

MS survey scan MS survey scan

MS survey scan MS/MS scan

Neutral loss? No

Yes Top N peaks? No

Yes

MS/MS/MS scan

SEQUEST ID

Yes

Pseudo'Neutral'Loss'Ac0vated'Data'Dependent'MS3'for'O:Man'Pep0de'Mapping'

MS Survey Scan

MS survey scan MS survey scan

MS survey scan MS/MS scan w/ HCD

Oxonium Ion? No

Yes Top N peaks? No

Yes

ETD Scan

SEQUEST ID

Yes

HCD$triggered+ETD+Analysis+for+O$Man+Pep:de+Mapping+

Figure 3: Two automated MS-based strategies for the detection of Glycopeptides. A.  Pseudo-neutral loss MSn sequencing looks for a peptide fragment that has lost the weight of a sugar (162, 203, etc.) and if observed in the top N peaks (usually 3) triggers that peptide to be fragmented further in order to be able to sequence the peptide (shown is a MS3 strategy but the method can go MSn (n<10) to complete fragment off the glycan and then achieve good peptide fragmentation for identification . B. HCD-triggered ETD takes advantage of scanning out glycopeptide fragments in the Orbitrap rapidly to look for the generation of glycan oxonium ions (163, 204, etc.). If a glycan oxonium ion is observed in the top N peaks, the instrument slows down to isolate the parent peptide again and subject it to electron transfer dissociation (ETD) that allows for sequencing of glycopeptides without loss of the sugar residues. These two approaches are complementary and combined provide for a thorough characterization of glycopeptides directly from known glycoproteins with defined glycomic profiles.

A. B.

Take Home Points1.  Enzymatic approaches for N-linked site mapping2.  Beta-elimination chemical approaches for O-linked site

mapping3.  Glycopeptide analysis requires glycomics and proteomics to

confine the search space and for structural determination4.  MSn approaches work for direct glycopeptide analysis5.  ExD (ETD, ECD, etc.) look promising for glycopeptides6.  HCD-triggered ETD approaches for mining deep and can aid

identification