LIMNOLOGY and OCEANOGRAPHY: METHODS - vliz.be · Neukermans et al. Optimizing [SPM] Measurement...

13
LIMNOLOGY and OCEANOGRAPHY: METHODS Limnol. Oceanogr.: Methods 10, 2012, 1011-1023 D 2012, by the American Society of Limnology and Oceanography, Inc. Optimization and quality control of suspended particulate matter concentration measurement using turbidity measurements Griet Neukermans1 '2'3'4*, Kevin Ruddick1 , Hubert Loisei2-3’4, and Patrick Roose1 M anagement Unit of the North Sea Mathematical Models (MUMM), Royal Belgian Institute for Natural Sciences (RBINS), Brussels, Belgium 2Université Lille Nord de France, Lille, France 3Université du Littoral Côte d'Opale (ULCO), Laboratoire d'Océanologie et Géosciences (LOG), Wimereux, France 4Centre National de la Recherche Scientifique (CNRS), UMR 8187, Wimereux, France Abstract The dry weight concentration of suspended particulate material, [SPM] (units: mg L_1), is measured by pass ing a known volume of seawater through a preweighed filter and reweighing the filter after drying. This is appar ently a simple procedure, but accuracy and precision of [SPM] measurements vary widely depending on the measurement protocol and experience and skills of the person filtering. We show that measurements of tur bidity, T (units: FNU), which are low cost, simple, and fast, can be used to optimally set the filtration volume, to detect problems with the mixing of the sample during subsampling, and to quality control [SPM]. A rela tionship between T and 'optimal filtration volume', V t, is established where V t is the volume at which enough matter is retained by the filter for precise measurement, but not so much that the filter clogs. This relationship is based on an assessment of procedural uncertainties in the [SPM] measurement protocol, including salt reten tion, filter preparation, weighing, and handling, and on a value for minimum relative precision for replicates. The effect of filtration volume on the precision of [SPM] measurement is investigated by filtering volumes of seawater ranging between one fifth and twice V t. It is shown that filtrations at V t maximize precision and cost effectiveness of [SPM]. Finally, the 90% prediction bounds of the T versus [SPM] regression allow the quality control of [SPM] determinations. In conclusion it is recommended that existing [SPM] gravimetric mea surements be refined to include measurement of turbidity to improve their precision and quality control. Suspended particulate matter (SPM) is operationally defined via filtration of seawater as the material retained on a certain type of filter with certain pore size, while the matter that passes through a small pore size filter is defined as dissolved matter ‘Corresponding author: E-mail: [email protected]. Present address: Scripps Institution of Oceanography, Marine Physical Laboratory, University of California-San Diego, La Jolla, CA, USA. Acknowledgments Daniel Saudemont, Mare Knockaert, Gijs Coulier, and Edwige Devreker of the Chemistry Laboratory of the Management Unit of the North Sea Mathematical Models (MUMM) are acknowledged for sus pended matter and phytoplankton pigment data lab analysis. The crew of the Belgica research vessel is thanked for kind help during sea cam paigns. We thank Lucie Courcot of the Laboratoire d'Océanologie et Geosciences (LOG) for electron microscopy analysis. The lead author was supported by the Belcolour-2 and GEOCOLOUR projects funded by the STEREO (Support to the Exploitation and Research in Earth Observation data) programme of the Belgian Science Policy Office under contracts SR/00/104 and SR/00/1 39, respectively. DOI 10.4319/lom.2012.1 0.1011 (DM). For DM, typically a polycarbonate membrane filter with a 0.2 pm pore size is used, whereas for SPM, GF/F glass fiber fil ters with a nominal pore size of 0.7 pm are commonly used (ISO 1997; van der Linde 1998; Tilstone et al. 2002), although 0.4 pm pore size polycarbonate filters may also be used (Strick land and Parsons 1968; Mueller et al. 2003). We note that glass fiber filters work by adsorption of particles onto the fibers at the surface and throughout the depth of the filter (Feely et al. 1991) and have no well-defined pore size. The nominal pore size of 0.7 pm is obtained from performance tests by the man ufacturer under controlled conditions and indicates a 98% retention efficiency for particles larger than 0.7 pm (http://www.whatman.com). Particles smaller than the nomi nal pore size may be retained, however, as pointed out theo retically (Logan 1993) and experimentally (Sheldon 1972; Shel don and Sutcliffe 1969; Chavez et al. 1995). SPM may also be referred to as total suspended solids (TSS), total suspended matter (TSM), or total particulate matter (TPM) and includes both organic (autotrophic and het- erotrophic plankton, bacteria, viruses, and detritus) and min- 1011

Transcript of LIMNOLOGY and OCEANOGRAPHY: METHODS - vliz.be · Neukermans et al. Optimizing [SPM] Measurement...

Page 1: LIMNOLOGY and OCEANOGRAPHY: METHODS - vliz.be · Neukermans et al. Optimizing [SPM] Measurement Table 1 . Overview of types of [SPM] procedural control filters and treatments. Filter

LIMNOLOGYand

OCEANOGRAPHY METHODS Limnol Oceanogr Methods 10 2012 1011-1023 D 2012 by the American Society of Limnology and Oceanography Inc

Optimization and quality control of suspended particulate matter concentration measurement using turbidity measurementsGriet Neukerm ans1234 Kevin Ruddick1 Hubert Loisei2-3rsquo4 and Patrick Roose1M a n a g e m e n t U n it o f th e N o rth Sea M athem atical M odels (MUMM) Royal Belgian In stitu te for N atural Sciences (RBINS) Brussels Belgium2U niversiteacute Lille N ord de France Lille France3U niversiteacute du Littoral C ocircte d O pale (ULCO) Laboratoire d O ceacuteanologie et Geacuteosciences (LOG) W im ereux France 4C entre N ational de la Recherche Scientifique (CNRS) UMR 8187 W im ereux France

AbstractT he d ry w eigh t co n cen tra tio n of suspended particu la te m aterial [SPM] (units m g L_1) is m easured by passshy

ing a know n vo lum e of seaw ater th ro u g h a prew eighed filter an d rew eighing th e filter after drying This is apparshyen tly a sim ple procedure b u t accuracy an d precision of [SPM] m easurem ents vary w idely d ep en d in g o n the m easu rem en t p ro toco l an d experience an d skills of th e person filtering We show th a t m easurem ents of tu r shybidity T (units FNU) w h ich are low cost sim ple an d fast can be used to o p tim ally set th e filtra tion vo lum e to detec t prob lem s w ith th e m ix ing of th e sam ple d u ring subsam pling an d to quality co n tro l [SPM] A relashytio n sh ip betw een T an d o p tim a l filtra tion vo lum e V t is estab lished w here V t is th e vo lum e at w h ich enough m a tte r is re ta in ed by th e filter for precise m easurem ent b u t n o t so m u c h th a t th e filter clogs This re la tionsh ip is based o n an assessm ent of procedural uncerta in ties in th e [SPM] m easu rem en t pro toco l in c lu d in g salt re te n shytio n filter p repara tion w eighing an d han d lin g an d o n a value for m in im u m relative precision for replicates The effect of f iltra tion vo lum e o n th e precision of [SPM] m easu rem en t is investigated by filtering vo lum es of seaw ater rang ing b etw een on e fifth an d tw ice V t It is show n th a t filtra tions at V t m axim ize precision an d cost effectiveness of [SPM] Finally th e 90 pred ic tion b o u n d s of th e T versus [SPM] regression allow th e quality co n tro l o f [SPM] de term in a tio n s In conclusion it is recom m ended th a t ex isting [SPM] gravim etric m eashysurem ents be refined to include m easu rem en t of tu rb id ity to im prove the ir precision an d quality contro l

Suspended particu la te m atte r (SPM) is opera tionally defined via filtration of seawater as th e m aterial re ta ined o n a certain type of filter w ith certain pore size w hile th e m atte r th a t passes th ro u g h a small pore size filter is defined as dissolved m atte r

lsquo C orresp o n d in g au th o r E-mail g n eu k erm an s u csd ed u P resen t address Scripps Institu tion of O cean o g rap h y M arine Physical Laboratory University o f C alifornia-San D iego La Jolla CA USA

AcknowledgmentsDaniel S au d em o n t M are K nockaert Gijs Coulier an d Edwige

D evreker of th e C hem istry Laboratory of th e M a n a g e m e n t Unit of th e N orth Sea M athem atical M odels (MUM M) a re ackn o w led g ed for susshyp e n d e d m a tte r an d p h y to p lan k to n p ig m e n t d a ta lab analysis The crew of th e Belgica research vessel is th an k ed for kind help du ring sea c a m shypaigns W e th an k Lucie C ourco t of th e L aboratoire d O c eacute a n o lo g ie e t G eosciences (LOG) for e lec tron m icroscopy analysis The lead au th o r w as su p p o rte d by th e Belcolour-2 an d GEOCOLOUR pro jec ts fu n d ed by th e STEREO (S u p p o rt to th e Exploitation an d Research in Earth O bservation d a ta ) p ro g ra m m e of th e Belgian Science Policy Office u n d e r co n trac ts S R 00 104 an d SR001 39 respectively

DOI 1 0 4 3 1 9 lo m 2 0 1 21 01011

(DM) For DM typically a po lycarbonate m em brane filter w ith a 02 pm pore size is used w hereas for SPM GFF glass fiber filshyters w ith a n o m in a l pore size of 07 pm are com m only used (ISO 1997 van der Linde 1998 T ilstone et al 2002) a lthough04 pm pore size po lycarbonate filters m ay also be used (Strickshyland an d Parsons 1968 M ueller et al 2003) We n o te th a t glass fiber filters w ork by adsorp tion of particles o n to th e fibers at th e surface an d th ro u g h o u t th e d ep th of th e filter (Feely e t al 1991) an d have n o w ell-defined pore size The no m in a l pore size of 07 pm is ob ta in ed from perform ance tests by th e m a n shyufacturer un d er con tro lled cond itions an d indicates a 98 re te n tio n effic iency for partic les larger th a n 07 pm (h ttp w w w w hatm an com ) Particles sm aller th a n th e n o m ishynal pore size m ay be reta ined how ever as p o in te d o u t th e o shyretically (Logan 1993) an d experim entally (Sheldon 1972 Shelshyd o n an d Sutcliffe 1969 C havez et al 1995)

SPM m ay also be referred to as to ta l suspended solids (TSS) to ta l suspended m a tte r (TSM) or to ta l particu la te m atter (TPM) an d inc ludes b o th o rgan ic (au to tro p h ic an d het- ero troph ic p lan k to n bacteria viruses an d detritus) an d m in-

1011

Neukermans et al Optimizing [SPM] Measurement

eral particles (Stramski e t al 2004) The te rm to ta l m ay be m isleading how ever since very sm all particles pass th ro u g h th e filter an d th e ir d ry w eigh t is n o t inc luded We therefore adop ted th e sym bol SPM

The dry w eight co n cen tra tio n of SPM [SPM] in u n its of m g L_1 or g n r 3 is de term in ed gravim etrically b y passing a know n vo lum e of seaw ater th ro u g h a prew eighed filter The filter is th e n rew eighed after d ry ing an d [SPM] is calcu lated from th e ratio of th e d ifference in filter w eigh t by th e vo lum e of th e filshytrate Protocols for [SPM] m easu rem en t vary w idely in p roceshydures for filter p repara tion an d trea tm en t in c lu d in g w ashing drying an d ashing an d w ash ing of sea salt after filtration Also w hile th e m easu rem en t of [SPM] is ap paren tly a sim ple procedure accuracy an d precision of th e m easurem ents vary w idely d ep en d in g o n th e m easu rem en t p ro toco l (m aterials used filter p rep ara tio n an d trea tm en t labo ra to ry cond itions etc) an d th e experience an d skills of th e person filtering

Because [SPM] is defined operationally m a n y m easu rem en t p ro toco l specifications have been eva lua ted previously The re te n tio n of salts by glass fiber filters lead ing to overestim ashytio n of [SPM] has gained considerab le a tten tio n an d w ashing of filters an d filter edges w ith deion ized w ater (or M illiQ w ater) after f iltra tion have been p roposed to rem ove sea salt (Strickland an d Parsons 1968 van der L inde 1998) D ifferent w ash volum es have been recom m ended vary ing betw een 30 m L (Pearlm an e t al 1995) an d 250 m L (Sheldon 1972) Despite a M illiQ w ash of 300 mL S tavn e t al (2009) fo u n d salt re te n tio n by 47 m m diam eter GFF filters to vary betw een 06 m g an d 11 m g w ith increasing sa lin ity from 15 to 34 PSU (Practical Salinity U nits see th e ir Fig 1) an d irrespective of filshytra tio n vo lum e O rganic m ateria l m ay be lost from liv ing cells th ro u g h cell-wall ru p tu re by osm otic g rad ien t after rinsing w ith M illiQ (G oldm an an d D en n e tt 1985) an d o r by air sucshytio n (G oldm an an d D en n e tt 1985 Kiene an d L inn 1999) Such m ateria l losses are d ep e n d en t o n species (Booth 1987 Kirst 1990) an d filter type (Kiene an d L inn 1999) an d are considered to be less im p o rta n t o n GFF filters (van der Linde 1998) w h ich w ork b y adsorp tion Some pro tocols state th a t th e r in sshyin g shou ld be d o n e w ith 10-20 mL of iso ton ic am m o n iu m fo rshym ate so lu tion to m in im ize osm otic shock (ICES 2004 PML a n d ICES 2004) D rying tim e an d tem pera tu re affect final d ry w eigh t (Lovegrove 1966) The vacuum pressure u n d er w hich filtra tion takes place was n o t fo u n d to affect th e m ass re te n shytio n by th e filters (Sheldon 1972) even th o u g h delicate p a rtishycles m ig h t break w h en th e pressure is to o h igh A pressure of 300-400 m m H g is recom m ended (Stavn et al 2009) The effecshytive pore d iam eter of glass fiber or po lycarbonate filters is kn o w n to decrease from th e n o m in a l value w ith increasing filshytra tio n vo lum e u n til th e filter is clogged (Sheldon 1972 Shelshyd o n an d Sutcliffe 1969)

The filtra tion vo lum e should be such th a t th e m ass reta ined by th e filter is sufficient to be precisely m easured b u t n o t so m u ch th a t th e filter clogs Despite its im portance th e estim ashytio n of filtration vo lum e is som ew hat arbitrary an d depends on

th e experience of th e person carry ing o u t th e filtration Typishycally th e person carrying o u t th e filtration determ ines th e filshytra tio n vo lum e from visual in spection of th e seawater sample In th is study we investigate how low cost sim ple an d fast m easurem ents of turbidity w hich is a good proxy for [SPM] (Boss et al 2009 N eukerm ans et al 2012) can be used to estishym ate filtra tion vo lum e objectively an d hence im prove rep ro shyducibility of m easurem ents We fu rther investigate [SPM] m eashysu rem ent uncertain ties associated w ith filter p repara tion and trea tm en t salt reten tion an d filtration volum e

W hereas th e approach described in th is paper is specific to th e m easu rem en t of m ass co n cen tra tio n of SPM th e concep t of pre- an d post-filtration tu rb id ity m easurem ents m ay be applicable to th e im p ro v em en t of th e quality an d th e quality con tro l of th e m easu rem en t of m a n y o th e r physical or ch e m shyical properties of SPM (eg G roundw ater e t al 2012)

Materials and methodsMeasurement o f [SPM]

M easurem ent pro tocol[SPM] is de term in ed gravim etrically follow ing th e pro toco l

of T ilstone et al (2002) based o n van der Linde (1998) by filshytra tio n of a know n vo lum e of sea w ater o n to 47 m m W h a tshym an GFF glass fiber filters w ith a n o m in a l pore size of 07 pm The filters w ere pre-ashed at 450degC for 1 h (see step 1 in the flow chart in Fig 1) gen tly w ashed in 05 L of M illiQ w ater (2) to rem ove friable fractions th a t can be d islodged du rin g filtrashytion dried at 75degC for 1 h (3) pre-w eighed o n a Sartorius LE 2445 analytical balance w ith an accuracy of 01 m g d en o ted wb (4) sto red in a desiccator for use w ith in 2 weeks (5) an d transferred to clean 50 m m d iam eter Petri p lates for transport

Seaw ater sam ples w ere filte red im m ed ia te ly after co llecshytio n o n trip lica te ashed an d p rew eighed filters u sin g a 250 mL M illipore ap p ara tu s w ith an app lied v acu u m of 300-400 m m H g Filter su p p o rts w ere w ashed before filtra tio n w ith M illiQ to rem ove an y partic les th a t h a d ad h e red to th e glass After p la ce m en t o n th e fritted glass filter suppo rts (6) filters

Laboratory

1 Pre-ash (450degC lh )2 Wash in 05L milliQ (5 )3 Dry (75degC lh )4 Weigh (wb plusmn01 mg)5 Store in dessicator

1 r

15 Dry (75degC 24h)16 Weigh (wa plusmn01 mg)

F ig 1 P rocedural flow for th e m e a su re m e n t of [SPM] of seaw ater

At sea

6 Place on filter holder7 Wet with milliQ8 Filter volume V o f seawater9 Rinse m easuring cylinder

with m illiQ (3x30mL)10 Wash with 250 mL o f milliQ11 Rinse funnel with milliQ

(3x30mL)12 Rem ove funnel13 Wash filter edge with milliQ14 Store in freezer (-20degC)

1012

Neukermans et al Optimizing [SPM] M easurement

Table 1 Overview of types of [SPM] procedural control filters and trea tm ents

Filter Filter op era tion s (nrs as in Fiq 1) V olum e filtered n Sam pled

Dry blank 1-5 14 15-16 0 mL 87 2 0 0 8 -2 0 1 0

MilliQ blank 1 -16 rep lacing sam ples w ith MilliQ w a te r in s tep 8 250 mL 96 2 0 0 8 -2 0 1 0

SSW blank 1 -16 rep lacing sam ples w ith SSW w a te r in s te p 8 5 0 0 mL 126 2 0 0 7 -2 0 1 0

Sam ple 1-16 variable 366 2 0 0 7 -2 0 1 0

w ere w etted w ith M illiQ (7) a n d a k n o w n vo lu m e of seaw ashyter V w as passed th ro u g h th e filter (8) T he m easu rin g cy lin shyder w as rin sed w ith 3 x 30 m L a liquo ts of M illiQ w ater to flu sh an y rem a in in g particles (9) To rem ove salt filters w ere w ash ed w ith 250 m L of M illiQ w ater after f iltra tio n (10) The filter fu n n e l was also rin sed w ith 3 x 30 m L a liquo ts of M illiQ w ater (11) After rem oval of th e fu n n e l th e filter edge w as carefu lly w ash ed w ith M illiQ to flu sh possib le d iffused salt (13 S trick land a n d Parsons 1968) The to ta l M illiQ w ash v o lu m e per filter is th u s 400-450 mL m u c h larger th a n recshyo m m e n d e d by S heldon 1972 300 mL Trees 1978 50 mL an d P earlm an e t al 1995 30 mL T he sam ples w ere sto red at -20degC u n til fu rth e r analysis in M UM M s M arine C h em istry L aboratory (14) u sua lly w ith in a few m o n th s after sam pling Filters w ere d ried for 24 h a t 75degC (15) a n d rew eighed o n th e sam e ba lance (16) g iv ing w eig h t w a from w h ich [SPM] is o b ta in e d as (wa - wb) V

Filter blanksAt th e start an d th e en d of each sam pling cam paign a

series of filter b lanks also te rm ed procedural con tro l filters w ere inc luded to assess uncerta in ties associated w ith filter opera tions in th e labo ra to ry an d du rin g filtrations Three d ifshyferen t types of b la n k m easurem ents have been m ade w ith filshytra tio n of a) n o w ater (dry b lank) b) syn the tic seawater (SSW) p repared by dissolving 34 g of NaCl in 10 L of M illiQ w ater an d c) M illiQ water An overview of these filter b lanks a n d th e ir opera tions is given in Table 1

The M illiQ an d SSW filter b lanks w ere trea ted exactly as th e sam ple filters (steps 1-16 in Fig 1) except th a t 250 m L of M illiQ or 500 m L of SSW was passed th ro u g h th e filter in stead of a vo lum e V of sam pled seaw ater (step 8) N o liqu id was passed th ro u g h th e d ry filter b lanks w h ich were subjected o n ly to freezing (step 14) before fu rthe r analysis in th e lab A one-w ay analysis of variance (ANOVA) was carried o u t to test for differences betw een b lanks (details o f statistical tests are described fu rthe r in th e text)

Salt retention testsA labora to ry experim en t was carried o u t to test w h eth er

salts diffused o n to th e rim of th e filter w ere p roperly flushed by th e rim rinsing procedure (step 13 in Fig 1) First all steps of th e procedure as described in Fig 1 w ere carried o u t filtershyin g a vo lum e of 250 mL SSW o n to 10 replicate filters N ext all steps except th e rim -rinsing (step 13) w ere carried o u t filtering a vo lum e of 250 m L SSW o n to an o th er set of 10 filters Differshyences betw een groups w ere th e n tested u sing an ANOVA test

To test th e d ependence of salt re te n tio n o n sam pling v o lshyum e d iffe ren t vo lum es of SSW rang ing betw een 150 an d 2000 m L were filtered accord ing to th e procedure in Fig 1 Differshyences in wa - wb betw een SSW vo lum e groups were te sted w ith an ANOVA

To check w h e th e r salts w ere p roperly flushed w ith the M illiQ w ash of 400-450 mL on e u n rin sed an d on e rinsed filshyter th ro u g h w h ich 500 mL of SSW was passed were analyzed using scann ing e lectron m icroscopy (SEM LEO 438VP tu n g shysten filam en t SEM) w ith e lec tron dispersive spectral analysis (EDS) Sam ples w ere spu tter-coated w ith A uPd (Polaron SC 7620)Turbidity measurements

Turbidity T defined by ISO 1999 as th e reduc tion of tran sshyparency of a liqu id caused b y th e presence of und isso lved m a tshyte r can be qu an tified in various ways (eg Secchi disk ligh t a tten u a tio n side scatter) The H ach 21 OOP portab le tu rb id ity in s tru m e n t m easures th e ratio of Light E m itting D iode (LED) ligh t scattered at an angle of 90deg plusmn 25deg at a w aveleng th of 860 n m plusmn 60 n m to forw ard tran sm itte d light as com pared w ith th e sam e ratio for a s tandard suspension of Form azine This op tical tech n iq u e for m easu rem en t of T from th e side-scattershying coefficient is in accordance w ith ISO 1999 an d has signifshyican t advantages over alternative m easurem ents of tu rb id ity Secchi d ep th m easurem ents are obviously h ig h ly subjective an d th e use of in s tru m e n ts w ith a b ro ad b an d ligh t source such as th e tu n g sten lam p suggested by EPA 1993 m ay be m uch m ore sensitive to spectral varia tions of lam p o u tp u t an d p artishycle absorp tion properties th a n for th e m o n o ch ro m atic near in frared source used here T is expressed in Form azine N ephshyelom etric U nits (FNU) an d in stru m en ts are calib rated using a set of Form azine T urbidity S tandards At th e start o f each sea cam paign in s tru m e n t stability is ensured by record ing tu rb id shyity of H ach STABLCAL Form azine standards of 01 20 100 an d 800 FNU an d an in s tru m e n t recalibra tion is m ade if n ec shyessary Side scattering signals are averaged over 10 m eashysurem ents a t 12 s in tervals Glass sam ple cells of 10 mL are used to record seaw ater T The glass cell is rinsed w ith sam pled seaw ater before filling The ex terior of th e sam ple cell is rinsed w ith M illiQ w ater dried w ith paper tissue sw iped w ith a soft m icrofiber lint-free c lo th trea ted w ith silicon oil an d sw iped again w ith a d ry clo th Prior to tu rb id ity m easurem ent the sam ple cell is visually inspected for du st particles co n d en sashytio n d roplets or air bubbles T was recorded in trip licate gen shytly tu m b lin g th e sam ple cell betw een each m easurem ent

1013

Neukermans et al Optimizing [SPM] Measurement

T is recorded before an d after [SPM] filtra tions to check adeshyq uate m ix ing of th e w ater sam ple du rin g subsam pling for filshytra tio n T m easu rem en t typ ically takes abou t 4 m in u tes to com plete an d portab le tu rb id ity m eters can be purchased for less th a n 1500 US dollars The 2100P m odel is n o longer m a n shyufac tu red an d has been superseded by th e H ach 2100Q portab le tu rb id im ete r w ith im proved m easurem ents for rap shyid ly se ttling sam ples C alib ration standards are available in sealed con ta ine rs an d are stable for at least 1 year facilita ting use of th e m e th o d for scientists w orldw ide w ith m in im al resources an d o r in rem ote areasOptimal filtration volum e

T as proxy for [SPM]T an d [SPM] m easurem ents w ere carried o u t in surface

w aters in coastal an d offshore w aters a ro u n d Europe an d F rench G uyana betw een 2007 an d 2010 Sam pling sites are described an d m ap p ed in N eukerm ans e t al 2012 A least squares cubic type II regression (York 1966) is app lied to th e log transfo rm ed T an d [SPM] data The least squares cubic regression w h ich takes in to accoun t m easu rem en t u n ce rta in shyties is app lied after rem oval of outliers iden tified by th e MATshyLAB robustfitm rou tine C orrela tion coefficients are given w ith th e ir 95 confidence intervals o b ta in ed from b o o ts tra p shyping Details of these statistical p rocedures are described in th e w eb ap p en d ix of N eukerm ans e t al 2012

Based o n th e [SPM]-T regression an estim ate of [SPM] can be derived from m easurem ents of T prio r to filtra tion From th is estim ate of [SPM] th e vo lum e of seaw ater to be filtered can th e n be estim ated so th a t an op tim al m ass is re ta in ed by th e filter as described below

Determ ining optim al filtration volume T he filtra tion vo lum e V shou ld be h ig h en o u g h so th a t

th e dry m ass of th e particles re ta ined by th e filter wa - wb is sufficient to be precisely m easured b u t n o t so m u c h th a t th e filter clogs Its es tim ation requires a q u an tifica tio n of m in ishym u m m easu rem en t u n ce rta in ty o n wa - wb assessed from p ro shycedural co n tro l filters an d a m ax im u m value for th e relative u n ce rta in ty o n [SPM]

For m easurem ents of w eight th e de tec tion lim it (DL) of th e balance gives th e m in im u m m easu rem en t uncerta in ty The

m in im u m u n c e r ta in ty o n th e d iffe rence b e tw e en filter w eights before an d after filtra tion w a - wb is th e n given by (ISO 1995)

Awm = V 2 D L (1)

In th is study DL = 01 m g so th a t AwM = 014 m g Let Aw d en o te th e co m b in ed u n ce rta in ties o n th e d ry m ass of re ta in ed particles resu lting from filter p repara tion an d h a n shyd ling (including w eighing) in th e labora to ry an d at sea th e n Aw gt Aw m This estim ate of com b in ed uncerta in ties Aw is p ro toco l d ep e n d en t an d can be assessed from procedural c o n shytro l filters It follow s th a t th e u n ce rta in ty o n [SPM] from rep lishycate m easurem ents A[SPM] is a t best equal to Aw V (in m g L_1) Further uncerta in ties o n [SPM] inc lude uncerta in ties due to sam ple m ix ing an d uncerta in ties in m easu rem en t of sam ple vo lum e For th e relative u n ce rta in ty o n [SPM] A[SPM] [SPM] we can w rite

Aw A[SPM]V [SPM] [SPM]

Let us be th e m ax im u m allow able relative u n ce rta in ty on [SPM] from replicate m easurem ents T hen

AwV a r n (3)

us [SPM]

The op tim al filtra tion vo lum e V t is th e sm allest vo lum e th a t satisfies Eq 3 w ith a certa in level of confidence w here [SPM] is es tim ated from T before filtration

AwV = ------ -mdash (4)

opt u [SPM] 1 rsquo

Effect o f filtration volum e on precision o f [SPM] m eashysurements

To investiga te th e effect of f iltra tio n vo lu m e o n th e p recishysion of [SPM] m easurem ents six experim en ts w ere carried o u t in th e so u th e rn N o rth Sea in Sep 2009 an d 2011 for clear (T lt 5 FNU) m o d era te ly tu rb id (5 FNU lt T lt 20 FNU) an d tu r shyb id w aters (T gt 20 FNU) For each w ater sam ple lis ted in Table 2 [SPM] m easu rem en ts w ere perfo rm ed w ith filtra tion

Table 2 Overview of w a te r samples collected in th e sou thern North Sea for filtration experim ents with salinity tem pera tu re Chi a concentra tion and turbidity T with s tandard deviation AT

Sam ple D ateTime

(h UTC) Latitude L ongitudeSalinity(PSU)

cE u

D epth(m )

Chi a

(m g m 3)T

(FNU)A T

(FNU)

Cl 14 -S e p -1 1 1212 51deg 2 9 2 5 9 N 2deg 5 0 4 9 0 E 34 6 7 1715 2881 2 98 0 32

WGAB 1 7-Sep-09 1948 51deg 5 7 6 3 0 N 2deg 0 5 5 1 0 E 34 89 17 63 09 6 83 0 1 4

0 9 2 4 A 16-Sep-09 1359 51deg 2 6 0 1 2 N 3o 28 474 E 32 70 17 39 16 12 45 10 93 0 18

M od 15 -S e p -1 1 1125 51deg 2 0 7 8 1 N 2o 5 7 2 5 4 E 34 63 16 86 1 2 64 12 18 0 42

T 14 -S e p -1 1 705 51deg 2 2 6 6 3 N 3o 0 2 1 9 4 E 34 69 1695 1 0 77 2 5 53 031

MH5 1 7-Sep-09 1416 51deg 5 0 9 5 4 N 1deg 3 8 9 6 5 E 34 73 17 30 2 2 65 lt 0 06 5 3 3 0 159

N o t available

1014

Neukermans et al Optimizing [SPM] Measurement

no rim rine

rim rinse

x io

tgtD

-6 -4 -2 0 2 WD (g) x 10

-4

150 200 250 500 1000 2000Vssw (mL)

Fig 2 D ifference in filter w e ig h t before an d after filtration of 250 mL of SSW of 34 PSU w ith an d w ith o u t rinsing of th e filter rim (step 1 3 in p ro shytocol in Fig 1) G ray d ash ed lines rep re sen t u n certa in ty on W D = wa - wb d u e to th e d e tec tio n limit of th e b alance S w bd = 0 1 4 m g

Fig 3 D ifference in filter w e ig h t before an d after filtration versus filtered vo lum e of SSW of 34 PSU N u m b er of o b se rvations for each v o lu m e are 2 6 15 95 5 an d 3 respectively

vo lum es of 02 05 1 an d 2 tim es V t an d every filtra tion was d o n e o n five rep licate filters T was c o n tin u o u sly m o n ishyto red d u rin g th e course of each filtra tio n experim en t to ensure good m ix in g of th e sam pled seawater Table 2 lists th e sam pling tim e an d location salinity tem pera tu re d ep th [C hlo rophy ll a] an d th e m ean an d s tan d ard d ev ia tion of T for each sam pleStatistical analysis

B etw een g ro u p d iffe rences are in v e s tig a ted b y o ne-w ay analysis o f v a rian ce (ANOVA) c o m p a rin g th e m e an s of sevshyeral g roups to te s t th e h y p o th e s is th a t th e y are all th e sam e ag a in s t th e a l te rn a tiv e th a t th e y are n o t all th e sam e To te s t w h ich pairs o f m e an s are s ig n ific an tly d iffe ren t paired - sam p le t te s ts w ere d o n e a t th e 5 sign ificance level A naly shyses w ere ca rried o u t u s in g th e s ta tis tics to o lb o x of MATLAB v R2011b

The d is trib u tio n of observations is illu stra ted graphically w ith boxplo ts The edges of th e box ind icate th e 25 th an d 75 th percentiles w hereas th e m idd le line represen ts th e sam shyple m ed ian The le n g th of th e box is called th e in te rquartile range (IQR) O bservations fu rthe r th a n 15 IQR from th e 25 th an d 75 th percentiles are m arked as ou tliers an d ind ica ted by crosses This range corresponds to plusmn 27 s tandard dev iations an d 993 d ata coverage if n o rm ally d istribu ted The w hiskers ex ten d to m in im u m an d m ax im u m observations th a t are n o t m arked as outliers

Results and discussion

Uncertainties in [SPM] m easurem entS a lt re ten tion testsResults from lab experim en ts w ith SSW show significantly

h igher residual w eigh t (P = 0003 F = 1176 df = 17 ANOVA) w h en th e rim is n o t rinsed (see Fig 2) com pared w ith w hen th e filter rim is rinsed This is in accordance w ith previous w orks th a t stressed th e im portance of rin sing of th e filter rim to flush o u t diffused salts (Strickland an d Parsons 1968 van der Linde 1998)

The vo lum e of SSW filtered was n o t fo u n d to affect SSW b lan k residual w eights (P = 072 F = 057 ANOVA see Fig 3) w h ich were n o t significantly d iffe ren t from zero This suggests th a t salts are w ashed o u t u sing a w ash vo lum e of 400-450 mL of M illiQ in d e p en d e n t o f th e vo lum e of SSW filtered The ind ep en d en ce of residual w eigh t to SSW vo lum e is in accorshydance w ith Stavn et al 2009 w h o fo u n d salt re te n tio n of 11 mg in d e p e n d e n t of vo lum e of seaw ater filtered for a sa lin ity of 34 PSU an d a w ash vo lum e of 300 m L (see the ir Table 1)

The rinsed an d u n rin sed filter for SEMEDS analysis h a d a W D of 0 an d 18 m g respectively SEM p h o to g rap h s of a recshytangu lar area of 172 x 229 m m 2 near th e cen te r of th e rinsed an d u n rin sed filters are show n in Fig 4ad Patches w ith h ig h c o n c en tra tio n s of sea salt are clearly visible in th e u n rin sed filter (Fig 4a) an d absen t in th e rin sed filter (Fig 4d) An

1015

Neukermans et al Optimizing [SPM] Measurement

Detector = CENT Detector = CENTUniversiteacute du Littoral Cocircte dOpale

Miireg

Fig 4 SEM im ages of d ried GFF filters after filtration o f 5 0 0 mL of SSW w ith o u t MilliQ w ash (a b c) an d w ith a MilliQ w ash of 4 5 0 mL (d e f) G rayscale levels d e p ic t a to m ic w eig h t Patches w ith h igh c o n cen tra tio n s of sea salt (exam ple show n in im ag e b) are clearly visible in im ag e a an d a b se n t in im age d A few sea salt particles (w hite circles) w ere identified in ran d o m ly se lec ted zo n es (e f)

exam ple of such a sea salt p a tch (123 x 164 p m 2) is show n in Fig 4b A ran d o m zone of th e sam e size (123 x 164 p m 2) is show n in Fig 4c Fig 4e f show ran d o m 123 x 164 p m 2 zones o n th e rin sed filter o n w h ich 1 an d 2 m icrocrystals of sea salt w ere iden tified respectively This analysis show s th a t a M illiQ w ash vo lum e of 400-450 m L properly flushed diffused salts (Fig 4)

Filter b lanksFig 5 show s th e differences in filter w eigh t before an d after

filtra tion W D = w a - w b for dry M illiQ an d SSW blanks A bout 46 of th e b lan k w eight differences w ere fo u n d w ith in th e u n ce rta in ty o n W D due to th e de tec tion lim it of th e balance Aw hal = 0 14 m g (see Fig 3) The m ed ian absolute value of W Ds for all b lanks is 02 m g w ith 90 of th e values below 06 mg

W Ds w ere n o t significantly d ifferen t betw een b lan k types (P = 021 F = 155 df = 2 ANOVA) in d ica tin g th a t salt is p roperly w ashed out

Even th o u g h n o t statistically significant negative W D are fo u n d m ore frequen tly for M illiQ an d SSW blanks th a n for dry b lanks suggesting th a t friable fractions of glass fiber filters m ay have d islodged du rin g filtra tion w hile these shou ld have been w ashed o u t before filtra tion (step 2 in Fig 1) This process m ay be m itigated by repeating th e pre-ashing w ashshying an d d ry ing of th e filters in th e p rep ara tio n phase (steps 1- 4 in Fig 1) several tim es u n til a co n s tan t w eigh t is achieved S tavn et al (2009) recom m end 3-4 repeat cycles to b e tte r c o n shytro l loss o f filter mass b u t th is m ay n o t en tire ly e lim inate th is p rob lem (Feely et al 1991)

1016

Neukermans et al Optimizing [SPM] Measurement

milliQ

dry

S S W

1 O 1 2 3 4WD (g) x IO

Fig 5 D ifference in filter w e ig h t b efo re an d after filtration W D = wa - wb for d ifferen t blanks co llected a t th e s ta rt an d th e en d of each c a m shypaign b e tw een 2 0 0 7 an d 2 010 G ray d ash ed lines re p re se n t u n certa in ties on W D d u e to th e d e tec tio n limit of th e b a lance (w lxil = 0 1 4 m g)

N o significant differences in W Ds of SSW blanks were found betw een cam paigns in 2007-2010 (P = 011 F = 141 df = 27 ANOVA) ind icating stability of h u m id ity an d tem peratu re co n shyd itions in th e laboratory an d of sam ple trea tm en t

SSW b lan k W Ds are th o u g h t to best reflect p rocedural uncerta in ties associated w ith filtra tion of saline w aters T hereshyfore estim ates o f Awp a t th e 50 an d 90 confidence level are o b ta in ed from th e 5 0 th an d 9 0 th percentiles of absolute W Ds for SSW equal to 02 m g an d 09 m g respectively These are fu rth e r used in th e ca lcu lation of th e op tim al filtra tion v o lshyum e from Eq 4

Sam ple m ixingFig 6a show s th e com parison betw een T recorded before

a n d after filtra tion These m easurem ents m ay be separated by abou t 30 m in an d m ay be affected by nu m ero u s subsam pling opera tions by d iffe ren t p ersonne l tak ing w ater for m eashysu rem en t of SPM ch lo rophy ll an d o r o th e r param eters The m ean bias (= (T^T^-T ^ is close to zero (-2 ) an d sym m etrishycally d istribu ted w ith 90 of th e values betw een -28 an d 23 P rediction error PE = ITa-ThTh is generally betw een 1 an d 39 w ith a m ed ian of 6 In clear w aters (Tb lt 5 FNU) b o th bias an d p red ic tion error d en o ted w ith c subscript show h igher variability due to h igher m easu rem en t u n ce rshyta in ties Also show n in Fig 6a are observations recorded before Ju n e 2008 w h en seaw ater sam ples w ere stirred up w ith a m easuring cy linder an d th e n subsam pled using a 1-L con-

10

10

10

10ldquo

10

n=345 (n=184)

PE=[1639] PEc=[21245] bias=[-28-223] biasc=[-35-640]

n=146 (n = 7 2 )PE=[0676] PEc=[ 112144]

b ias=[-12376] bias =[-129144]

hand mix tumble mix 11

10 10 10T (FNU)

10

10

10

10

ct3

10

10

log10[SPM]=097(plusmn001 )log1()T+-001 (plusmn001)

r=0997(+0001) n=357 nx=33

RMSE=60 FNU M PE=11

log10T=088(plusmn001)log10[SPM ]+014(plusmn002) r=0993(plusmn0003) n=96 n = 5

RM SE=4 0 F N U M PE=8

bull hand mixbull tumble mix x outlier 90 PB

10 10 10

T (FNU)10

Fig 6 (a) C om parison of T befo re an d after filtration w ith statistics g iven using h an d m ixing an d tu m b le m ixing for all o b se rvations an d in clear w ate rs (Tb lt 5 FNU) an d (b) relationsh ip b e tw een T an d [SPM] w ith ty p e II regression an d statistics using h an d m ixing an d tu m b le m ixing The 9 0 p red ic tion b o u n d s of th e regression are also show n Error bars in (a) an d (b) are show n for 5 of th e o b se rvations an d rep re sen t th e s ta n d ard dev iation from rep licate m easu rem en ts of T an d [SPM]

1017

Neukermans et al Optimizing [SPM] M easurement

ta iner te rm ed h a n d m ix ing C om parison of Ta an d Tb for th is datase t is especially poor in clear w ater (Tb lt 5 FNU) w here th e d is trib u tio n of th e bias is strongly positive (90 of th e obsershyvations betw een -12 an d 144 w ith a m ed ian of 9) This suggests co n tam in a tio n of th e w ater sam ple du rin g th e m ix shying procedure possibly by co n tac t w ith th e glove w orn by th e person filtering From Ju n e 2008 onw ards seaw ater sam ples w ere m ixed by g en tly tu m b lin g a closed 10 L co n ta in e r a round several tim es before subsam pling te rm ed tu m b le m ix ing This illustrates th e use of T m easurem ents to detec t p roblem s w ith sam ple m ixingUncertainties in [SPM] measurement from filtration volume

Determ ining optim al filtration volumeA to ta l of 366 m easurem ents of T (= m ean of T m eashy

su rem ents before an d after filtration) an d [SPM] were done O bservations w here on ly on e [SPM] replicate rem ained were rejected (n = 9) Least squares cubic regression gives

log10 [SPM] = 097(plusmn001)log10 T - 001(plusmn001) (5)

The regression statistics an d its 90 pred ic tion b o u n d s are show n in Fig 6b The offset of th e regression line is n o t sigshyn ifican tly d ifferen t from zero for th e tum ble m ix ing dataset w hereas a sign ifican tly positive offset (014 plusmn 002) was fo u n d for th e h an d -m ix in g dataset suggesting sam ple c o n ta m in a shytio n by h a n d m ixing The m odel for [SPM] in Eq 5 perform s well w ith a m ed ian p red ic tion error (MPE) of 11 an d w ith p red ic tion errors below 40 in 95 of th e cases The 90 p re shyd ic tion b o u n d s of th e regression line show n Fig 6b can be used to quality co n tro l [SPM] by flagging data ou tside these boundaries as suspect

For our purposes a m ax im u m u n ce rta in ty of us = 15 on [SPM] is desired The filtra tion vo lum e is o p tim ally set by m easuring T before filtra tion an d using th e regression m odel in Eq 5 to p red ic t [SPM] From Eq 4 it follow s th a t A[SPM] is expected to be below 15 in 50 (90) of th e cases for a filshytra tio n vo lum e V50 (V90) of

50 =Awp 50

015[SPM]and V90 =

Awp 90

015[SPM] (6)

w here Awp50 an d Awp90 are th e 5 0 th an d 9 0 th percentiles of w eigh t differences for SSW blanks ie 02 m g an d 09 mg respectively Table 3 lists V50 an d V90 for T betw een 05 FNU a n d 140 FNU For practical use vo lum es are ro u n d ed to give R(U50) an d R(V90) respectively

M e asu rem en ts of b eam a t te n u a tio n h av e b ee n used recen tly in a sim ilar w ay to estim ate filtra tion vo lum e so th a t particle m ass re ta in ed by po lycarbonate filters was op tim al for scann ing e lectron m icroscopy im age analysis (G roundw ater et al 2012) We no te how ever th a t side scatter largely o u tp e rshyform s beam a tten u a tio n as a proxy for [SPM] (N eukerm ans et al 2012) because of low er sensitiv ity to particle ap p aren t d e n shysity As a consequence [SPM] an d hence op tim al V can be estishym a ted w ith h igher precision from side scatter

Effect o f filtration volume on precision o f [SPM] m eashysurem ent

The filtra tion vo lum e was o p tim ally set based o n T m e ashysurem ents before each filtra tion experim en t u sing R(V90) in Table 3 An overview of experim en tal results is given in Table 4 w h ich also show s th e tim e requ ired to pass a given vo lum e of sam ple th ro u g h five replicate filters N o significant changes in T were fo u n d before an d after each filtra tion expershyim e n t (P gt 005 ANOVA) in d ica tin g good sam ple m ix ing th ro u g h o u t th e experim ents

The coefficient of varia tion cv (= s tandard deviation m ean from five [SPM] replicates) is p lo tted as fu n c tio n of filshytra tio n vo lum e norm alized by V t in Fig 7 Results suggest th a t filtering m ore or less th a n th e op tim al vo lum e gives a low er precision in th e [SPM] m easurem ent except for the m ost tu rb id w ater sam ple MH5 w here cv is low est at tw ice Vopt It can be seen from filtra tion tim es in Table 4 th a t passing tw ice V t was n o t p rob lem atic for th e m ost tu rb id sam ples MH5 an d T w hereas for o th e r sam ples filtra tion tim e at least trip led to exceeding 1 h It is th o u g h t th a t filter clogging m ay be m ore likely in th e presence of o rganic particles

Differences betw een cvs for d ifferen t filtra tion volum es were tested for significance by co m p u tin g cvs for a ran d o m selection of th ree o u t of five replicates w ith o u t rep lacem ent an d repeating th is procedure 100 tim es The m ed ian 10th an d 90th percentiles of each cv datase t are also show n in Fig 7 ANOVA tests show th a t th e cv is significantly higher an d often h igher th a n th e desired precision of 15 w h en on e fifth of th e op tim al vo lum e is filtered th a n w h en larger vo lum es are filtered Cv decreases significantly w h en filtra tion vo lum e is increased to half V t except for sam ple CL Further decrease of cv w h en filtra tion vo lum e is increased to V t is significant a t s ta tions CL WGAB 0924A an d T A sign ifican t increase in cv is observed w h en filtering m ore th a n V t for sam ples WGAB 0924A MOD an d T These sligh t increases in in ter- replicate variab ility m ay be caused by th e h igher like lihood of spraying off particles du rin g rim rin sing (step 13 in Fig 1) w h en filters are sa tu ra ted w ith particles (see Figure 28 in N eukerm ans 2012)

[SPM] m eans w ere in d e p en d e n t of filtra tion volum e as show n in Fig 8 w ith th e excep tion of significantly lower [SPM] for th e sm allest filtra tion vo lum e for sam ples 0924A an d MH5 This could be an effect o f th e reduc tion of th e effecshytive pore size w ith increasing vo lum e This p h e n o m e n o n is know n to be som ew hat unp red ic tab le an d to d ep e n d o n the particle size d is trib u tio n an d th e shape of th e particles in susshyp en sio n (Sheldon an d Sutcliffe 1969 S heldon 1972) as well as p o ten tia lly particle com position (stickiness)

Least-squares regressions of W D versus filtered vo lum e of seaw ater are show n in Fig 9 The offsets of th e regression lines for all sam ples are n o t significantly d ifferen t from zero again ind ica ting th a t salts are p roperly w ashed from th e filters It has been n o te d by Trees 1978 th a t th e re la tionsh ip betw een filtrashytio n vo lum e an d re ta in ed m ass is linear on ly w h en salts are

1018

Neukermans et al Optimizing [SPM] Measurement

Table 3 Example of a lookup tab le for reco m m en d ed filtration vo lum e as function of tu rb id ity so th a t relative uncerta in ty on [SPM] replicates Is w ithin 15 In 50 of th e cases [R(150)] and In 90 of th e cases [R(Vpo)]

T (FNU) [SPM]50 (m gL ) V50 (mL) V90 (mL) R(V50) (mL) R(V90) (mL)

05 050 2673 12027 3000 120001 098 1364 6140 1000 60002 191 697 3134 500 30003 284 470 2115 500 20004 375 356 1600 350 15005 466 286 1289 250 12506 556 240 1080 250 10007 645 207 930 200 10008 735 182 817 200 8009 823 162 729 150 75010 912 146 658 150 60011 1000 133 600 150 60013 1176 113 510 100 50014 1264 105 475 100 50015 1351 99 444 100 40016 1439 93 417 100 40018 1613 83 372 100 40019 1700 78 353 75 37521 1873 71 320 75 30022 1960 68 306 75 30026 2304 58 260 50 25027 2390 56 251 50 25032 2818 47 213 50 20033 2904 46 207 50 20037 3245 41 185 50 20038 3330 40 180 50 20040 3499 38 171 50 17545 3923 34 153 25 15050 4345 31 138 25 15055 4766 28 126 25 12565 5604 24 107 20 11070 6022 22 100 20 10075 6439 21 93 20 9080 6855 19 88 20 9085 7270 18 83 20 8095 8098 16 74 20 70100 8511 16 70 20 70110 9336 14 64 10 60115 9747 14 62 10 60140 11796 11 51 10 50

Table 4 O verview of turbidity T w ith standard deviation AT optim al filtration volum e ob ta ined from R(V ) In Table 3 and tim erequired to pass seaw ater th ro u g h five replicate filters

Filtration tim e (m in)

sam ple T (FNU) AT (FNU) Vopt (mL) 0 2 V ntopt 0 5 Vnntopt Vopt 2 Vopt

Cl 298 032 1500 17 20 29 94WGAB 683 014 1000 13 10 24 640924A 1093 018 500 19 12 15 78Mod 1218 042 500 10 11 16 48T 2553 031 250 20 12 30 25MH5 5330 159 150 6 8 21 18

1019

Neukermans et al Optimizing [SPM] Measurement

sample CL

S 20

05

sample WGAB sample 0924A

sample MOD

S 20

05VV

Opt

35

30

25

20

15

10

5

00 05 1 15 2

sample T

VV

35

30

25

20

15

10

5

00 05 15 21

35

30

25

20

15

10

5

00 05 1 15 2

sample MH535

bull median n=310th-90th percentiles n=3

30

25

20

15

10

5

00 05 15 21

VV

Fig 7 Coefficient o f variation cv (in ) of [SPM] o b ta in ed from five rep licates versus filtration vo lum e norm alized to th e op tim al filtration volum e V Show n in g ray are th e m ed ian 10 th an d 9 0 th percen tiles o f cv o b ta in e d from 100 resam plings w ith o u t re p lacem en t of 3 [SPM] rep licates o u t of 5

w ashed out

ConclusionThis s tudy show s th a t sim ple fast an d low -cost m eashy

surem ents of turbid ity T can be used to op tim ize [SPM] m eashysurem ents M ore specifically tu rb id ity m easurem ents can be used to o p tim ally set th e filtra tion volum e to detec t p roblem s w ith th e m ix ing of th e sam ple du rin g subsam pling for filtrashytio n an d for th e quality co n tro l of [SPM] The re la tionsh ip b etw een T an d op tim al f iltra tion vo lum e is set up using estishym ates of [SPM] m easu rem en t procedural uncerta in ties from b la n k m easurem ents an d a value for m ax im u m allow able u n ce rta in ty o n [SPM] Procedural uncerta in ties w ere assessed from filter b lanks w here syn the tic seaw ater of a typical sa lin shyity is passed th ro u g h rep resen ting uncerta in ties due to filter p repara tion han d lin g an d rin sing of sea salt The use of varishyous types of filter b lanks subjected to d iffe ren t steps in the m easu rem en t procedure m ay help reveal sources of u n ce rshyta in ty In th is study for exam ple differences in w eights of d ry

an d w et filter b lanks suggest th a t friable fractions of glass fiber filters m ay have d islodged d u ring filtra tion This fiber loss m ay be m itigated in th e fu tu re by repeating th e pre-ashing w ashing an d d ry ing steps of filters in th e p rep ara tio n phase u n til co n s tan t w eigh t is achieved B lank filters an d regressions of residual w eight versus filtra tion vo lum e suggest th a t salts are p roperly flushed using a w ash vo lum e of 400-450 mL of M illiQ for w ater sam ples w ith salinities of 33-35 PSU w hile a w ash vo lum e of 300 m L has been show n to be insufficien t (Stavn e t al 2009)

We fu rthe r investigated th e role of filtra tion vo lum e o n th e precision of [SPM] m easu rem en t by filtering vo lum es of seashyw ater rang ing betw een one-fifth an d tw ice th e op tim al filtrashytio n volum e It is show n th a t if th e op tim al vo lum e is filtered [SPM] m easurem ents are m ost precise an d cost effective In m ost cases filtering tw ice th e op tim al vo lum e caused clogging an d trip led filtra tion tim es to over 1 h w h ich is im practical an d p rob lem atic in lim ited sh ip tim e

It is recom m ended th a t each research group establishes

1020

Neukermans et al Optimizing [SPM] M easurement

sample CL sample WGAB sample 0924A

95115

10535

7595

25

5575

020 0 5 0 100

sample MOD200 020 0 5 0 100

sample T150 020 0 5 0 100

sample MH5200

125

^ 115

^ 105

95

0 26 0 50 100 200 020VV

opt

0 60 100VV

opt

200

60

55

50

45

40020 0 53 100 167

VVopt

Fig 8 Boxplot of [SPM] o b ta in e d th ro u g h filtration o f d ifferen t vo lum es of sam p led seaw ate r a t six d ifferen t sta tions

th e ir ow n re la tionsh ip betw een tu rb id ity an d op tim al filtrashytio n vo lum e w h ich is specific to th e type of tu rb id ity in s tru shym e n t (w avelength an d angular response) th e uncerta in ties of th e [SPM] m easu rem en t p rocedure w h ich can be assessed from procedural co n tro l filters th e desired m ax im u m relative variab ility betw een replicates an d th e com position of th e p arshyticles (organic inorganic)

The idea of estim ating op tim al filtra tion vo lum e from tu r shyb id ity (or an o th er su itab ly chosen optical proxy) an d of checkshyin g tu rb id ity before an d after all filtra tion opera tions has been illu stra ted specifically for th e m ass co n c en tra tio n of [SPM] in th is article However th is idea cou ld have m ore general app lishyca tion to im prov ing th e q uality an d th e quality co n tro l for o th e r physical or chem ical properties of [SPM] (eg G ro u n d shyw ater e t al 2012)

ReferencesB ooth B C 1987 Cell breakage in n a n o p h y to p la n k to n d u rshy

ing filtra tion of liv ing organism s Eos 68(50)1723Boss E an d others 2009 C om parison of in h e re n t op tical

properties as a surrogate for particu la te m atte r co n c en tra shy

tio n in coastal w aters L im nol Oceanogr M ethods 7803- 810 [doi104319lom 20097803]

Chavez F P an d o thers 1995 O n th e ch lo rophy ll-a re te n tio n properties of glass-fiber GFF filters F im nol Oceanogr 40428-433 [doi104319lo 19954020428]

Feely R A J H Trefry an d B M onger 1991 Particle sam shyp ling an d preservation p 5 -22 In D C H eard an d D W Spencer [eds] M arine particles analysis an d characterizashytion A m erican G eophysical U n ion

G oldm an J C an d M R D enne tt 1985 Susceptibility of som e m arine p h y to p la n k to n species to cell breakage du rin g filtra tion an d post-filtra tion rinsing J Exp Mar Biol Ecol 8647-58 [doi1010160022-0981 (85)90041-3]

G roundw ater H M S Twardowski H Dierssen A Sciendra an d S Freem an 2012 D eterm in ing size d istribu tions an d com position of particles suspended in w ater a new SEM- EDS p ro toco l w ith va lida tion an d com parison to o the r m e th o d s J A tm os O cean T echno l 29433-449 [doi101175JTECH-D-l 1-000261]

ICES 2004 C hem ical m easurem ents in th e Baltic Sea G uideshylines o n q uality assurance In te rn a tio n a l C ouncil for the

1021

Neukermans et al Optimizing [SPM] Measurement

sample CL sample WGAB sample 0924A12 7 88+050

10WD=800(plusmn076)V+-03 K Iacute0 71 )

87 50+028

6

47 36+052

26 90plusmn 152

00 05 1 15

9

2 71+0398

7

6 W D=266(plusmn065)V+005itll3)

OD rP 5

42 47+033

3107+075

2

1 2 73+064

00 1 2 3

12

1048+07810

WD=1065(plusmn198)V+-001(+gtfU4)

8

6 136+043

4

1056+0672

60plusmn089

00 02 04 06 08 1 12

Qamp

W D=26171+056) V+0

47+099

WD=6048(plusmn595)VWD= 10461+157)V+012(plusmnCK91)

1080+049

131+ 177

5856+092

sample MOD sample T sample MH5

Fig 9 S catterp lo ts o f particu la te d ry m ass (WD = w a - w]j versus filtrate vo lum e V The erro r bars d e n o te th e s ta n d a rd erro r on W D o b ta in ed from 5 replicates The m ean an d s ta n d a rd erro r of [SPM] are also show n for each filtration vo lum e Show n in red are th e regression line an d its eq u a tio n w ith 95 confid en ce intervals of th e coeffic ient estim ates

E xploration of th e Sea ICES T echniques in M arine Envishyro n m en ta l Sciences 35 E Lysiak-Pastuszak an d M Krysell [Eds] lth ttp w w w ic e s d k p u b s t im e s tim e s3 5 T IM E S 35 pdfgt

ISO 1995 G uide to th e expression of u n ce rta in ty in m eashysu rem e n t In te rn a tio n a l S tan d a rd O rg a n isa tio n ISO 1995101

1997 W ater qualitymdashd ete rm in a tio n of suspendedsolids by filtra tion th ro u g h glass-fibre filters In te rn a tio n a l S tandard O rganisation ISO 11923

1999 W ater qualifymdashd ete rm in a tio n of turbid ity In te rshyn a tio n a l S tandard O rganisation ISO 70271999(E)

Kiene R P an d L J L inn 1999 F ilter-type an d sam ple h a n shyd ling affect d e te rm in a tio n of o rganic substrate up take by b a c te r io p la n k to n A quat M icrob Ecol 17311-321 [doi103354am e017311]

Kirst G O 1990 Salinity to lerance of eukaryotic m arine algae A nnu Rev P lan t Physiol P lan t M ol Biol 4121-53

[doi10 1146 annurev pp 41060190000321]Logan B E 1993 Theoretical analysis o f size d istribu tions

de term in ed w ith screens an d filters L im nol Oceanogr 38372-381 [doi104319lo 19933820372]

Lovegrove T 1966 The d e te rm in a tio n of th e d ry w eigh t of p lan k to n an d th e effect of various factors o n th e values ob ta ined p 429-467 In Som e con tem p o rary studies in m arine science H afner Publ C om p

M ueller J L an d others 2003 O cean optics p ro toco ls for satellite ocean color sensor validation In J L M ueller G S Fargion an d C R M cClain [Eds] Technical M em orandum TM -2003-21621R evision 5 Vol 5 N ational A eronautical an d Space ad m in istra tio n (NASA)

N eukerm ans G 2012 O ptical in situ an d geosta tionary satelshylite-borne observations of suspended particles in coastal w aters PhD d issertation U niversiteacute d u Littoral - Cocircte d O pale W im ereux France A cadem ic an d Scientific Pubshylishers Ravensteingalerij 28 1000 Brussels Belgium ISBN

1022

Neukermans et al Optimizing [SPM] Measurement

978 90 7028 949 2 Perm a-links lth ttp w w w 2m um m ac b e d o w n lo a d s p u b lic a tio n s neukerm an s_ p h d _ co v erp d f gt lth t tp w w w 2 m u m m a c b e d o w n lo a d s p u b l i c a t io n s n eu kerm ans_phd_m anuscrip t_ l 7x24pdfgt

G H Loisel X M eriaux R Astoreca an d D McKee2012 In situ variab ility of mass-specific beam a tten u a tio n an d backscattering of m arine particles w ith respect to p a rshyticle size density an d com position Lim nol Oceanogr 57124-144 [doi104319lo 20125710124]

Pearlm an S R H S Costa R A Jung J J M cKeown an d H E Pearson 1995 Solids (sec 2540) p 2-53-52-64 In A D Eaton L S Clesceri an d A E G reenberg [eds] S tandard m e th o d s for th e ex am in a tio n of w ater an d w astew ater A m erican Public H ealth Association

PML an d ICES 2004 ECASA (Ecosystem A pproach for Susshyta inab le A quaculture) bo o k of protocols Particulate m atte r in seawater P lym outh M arine Laboratory an d In te rn a tio n a l C ouncil for th e E xploration of th e Sea lth ttp w w w ecasa to o lb o x o rg u k th e - to o lb o x e ia -c o u n try b o o k -o f -p ro to - co lsparticu la te-m atter-in -seaw atergt

Sheldon R W 1972 Size separation of m arine seston by m e m b ra n e a n d glass-fiber filte rs L im nol O ceanogr 17494-498 [doi10 4319lo l972 17 3 0494]

an d W H J Sutcliffe 1969 R eten tion of m arine p a rtishycles by screens an d filters L im nol Oceanogr 14441-444 [doi10 4319lo 19691430441]

Stavn R H H J Rick an d A V Falster 2009 C orrecting th e

errors from variable sea salt re te n tio n an d w ater of h y d ra shytio n in loss o n ig n itio n analysis Im plications for studies of estuarine an d coastal w aters Estuar Coast Shelf Sei 81575-582 [doi101016jecss200812017]

Stram ski D E Boss D Bogucki an d K J Voss 2004 The role o f seaw ater co n s titu en ts in ligh t backscattering in the ocean Prog Oceanogr 61 27-56

Strickland J D H an d T R Parsons 1968 A practical h a n d shybook of seaw ater analysis B ulletin 167 Fisheries Research Board of C anada

Tilstone G an d others 2002 REVAMP Regional V alidation of MERIS C h lo rophy ll p roducts in N o rth Sea coastal waters Protocols d ocum en t REVAMP m ethodo log ies - EVG1 - CT - 2001 - 00049 lth ttp en v isa te sa in tw o rk sh o p sm av t_ 2003M AVT-2003_802_REVAM Pprotocols3pdfgt

Trees C C 1978 A nalytical analysis o f effect of dissolved solids o n suspended solids d e term in a tio n J W ater Poll C on tro l Fed 502370-2373

van der Linde D W 1998 P rotocol for th e d e te rm in a tio n of to ta l suspended m a tte r in oceans an d coastal zones Jo in t Research C entre Ispra Technical n o te 198182

York D 1966 Least-squares f ittin g of a straigh t line Can J Phys 441079-1086 [doi101139p66-090]

Submitted 26 May 2012 Revised 5 October 2012

Accepted 18 November 2012

1023

Page 2: LIMNOLOGY and OCEANOGRAPHY: METHODS - vliz.be · Neukermans et al. Optimizing [SPM] Measurement Table 1 . Overview of types of [SPM] procedural control filters and treatments. Filter

Neukermans et al Optimizing [SPM] Measurement

eral particles (Stramski e t al 2004) The te rm to ta l m ay be m isleading how ever since very sm all particles pass th ro u g h th e filter an d th e ir d ry w eigh t is n o t inc luded We therefore adop ted th e sym bol SPM

The dry w eight co n cen tra tio n of SPM [SPM] in u n its of m g L_1 or g n r 3 is de term in ed gravim etrically b y passing a know n vo lum e of seaw ater th ro u g h a prew eighed filter The filter is th e n rew eighed after d ry ing an d [SPM] is calcu lated from th e ratio of th e d ifference in filter w eigh t by th e vo lum e of th e filshytrate Protocols for [SPM] m easu rem en t vary w idely in p roceshydures for filter p repara tion an d trea tm en t in c lu d in g w ashing drying an d ashing an d w ash ing of sea salt after filtration Also w hile th e m easu rem en t of [SPM] is ap paren tly a sim ple procedure accuracy an d precision of th e m easurem ents vary w idely d ep en d in g o n th e m easu rem en t p ro toco l (m aterials used filter p rep ara tio n an d trea tm en t labo ra to ry cond itions etc) an d th e experience an d skills of th e person filtering

Because [SPM] is defined operationally m a n y m easu rem en t p ro toco l specifications have been eva lua ted previously The re te n tio n of salts by glass fiber filters lead ing to overestim ashytio n of [SPM] has gained considerab le a tten tio n an d w ashing of filters an d filter edges w ith deion ized w ater (or M illiQ w ater) after f iltra tion have been p roposed to rem ove sea salt (Strickland an d Parsons 1968 van der L inde 1998) D ifferent w ash volum es have been recom m ended vary ing betw een 30 m L (Pearlm an e t al 1995) an d 250 m L (Sheldon 1972) Despite a M illiQ w ash of 300 mL S tavn e t al (2009) fo u n d salt re te n tio n by 47 m m diam eter GFF filters to vary betw een 06 m g an d 11 m g w ith increasing sa lin ity from 15 to 34 PSU (Practical Salinity U nits see th e ir Fig 1) an d irrespective of filshytra tio n vo lum e O rganic m ateria l m ay be lost from liv ing cells th ro u g h cell-wall ru p tu re by osm otic g rad ien t after rinsing w ith M illiQ (G oldm an an d D en n e tt 1985) an d o r by air sucshytio n (G oldm an an d D en n e tt 1985 Kiene an d L inn 1999) Such m ateria l losses are d ep e n d en t o n species (Booth 1987 Kirst 1990) an d filter type (Kiene an d L inn 1999) an d are considered to be less im p o rta n t o n GFF filters (van der Linde 1998) w h ich w ork b y adsorp tion Some pro tocols state th a t th e r in sshyin g shou ld be d o n e w ith 10-20 mL of iso ton ic am m o n iu m fo rshym ate so lu tion to m in im ize osm otic shock (ICES 2004 PML a n d ICES 2004) D rying tim e an d tem pera tu re affect final d ry w eigh t (Lovegrove 1966) The vacuum pressure u n d er w hich filtra tion takes place was n o t fo u n d to affect th e m ass re te n shytio n by th e filters (Sheldon 1972) even th o u g h delicate p a rtishycles m ig h t break w h en th e pressure is to o h igh A pressure of 300-400 m m H g is recom m ended (Stavn et al 2009) The effecshytive pore d iam eter of glass fiber or po lycarbonate filters is kn o w n to decrease from th e n o m in a l value w ith increasing filshytra tio n vo lum e u n til th e filter is clogged (Sheldon 1972 Shelshyd o n an d Sutcliffe 1969)

The filtra tion vo lum e should be such th a t th e m ass reta ined by th e filter is sufficient to be precisely m easured b u t n o t so m u ch th a t th e filter clogs Despite its im portance th e estim ashytio n of filtration vo lum e is som ew hat arbitrary an d depends on

th e experience of th e person carry ing o u t th e filtration Typishycally th e person carrying o u t th e filtration determ ines th e filshytra tio n vo lum e from visual in spection of th e seawater sample In th is study we investigate how low cost sim ple an d fast m easurem ents of turbidity w hich is a good proxy for [SPM] (Boss et al 2009 N eukerm ans et al 2012) can be used to estishym ate filtra tion vo lum e objectively an d hence im prove rep ro shyducibility of m easurem ents We fu rther investigate [SPM] m eashysu rem ent uncertain ties associated w ith filter p repara tion and trea tm en t salt reten tion an d filtration volum e

W hereas th e approach described in th is paper is specific to th e m easu rem en t of m ass co n cen tra tio n of SPM th e concep t of pre- an d post-filtration tu rb id ity m easurem ents m ay be applicable to th e im p ro v em en t of th e quality an d th e quality con tro l of th e m easu rem en t of m a n y o th e r physical or ch e m shyical properties of SPM (eg G roundw ater e t al 2012)

Materials and methodsMeasurement o f [SPM]

M easurem ent pro tocol[SPM] is de term in ed gravim etrically follow ing th e pro toco l

of T ilstone et al (2002) based o n van der Linde (1998) by filshytra tio n of a know n vo lum e of sea w ater o n to 47 m m W h a tshym an GFF glass fiber filters w ith a n o m in a l pore size of 07 pm The filters w ere pre-ashed at 450degC for 1 h (see step 1 in the flow chart in Fig 1) gen tly w ashed in 05 L of M illiQ w ater (2) to rem ove friable fractions th a t can be d islodged du rin g filtrashytion dried at 75degC for 1 h (3) pre-w eighed o n a Sartorius LE 2445 analytical balance w ith an accuracy of 01 m g d en o ted wb (4) sto red in a desiccator for use w ith in 2 weeks (5) an d transferred to clean 50 m m d iam eter Petri p lates for transport

Seaw ater sam ples w ere filte red im m ed ia te ly after co llecshytio n o n trip lica te ashed an d p rew eighed filters u sin g a 250 mL M illipore ap p ara tu s w ith an app lied v acu u m of 300-400 m m H g Filter su p p o rts w ere w ashed before filtra tio n w ith M illiQ to rem ove an y partic les th a t h a d ad h e red to th e glass After p la ce m en t o n th e fritted glass filter suppo rts (6) filters

Laboratory

1 Pre-ash (450degC lh )2 Wash in 05L milliQ (5 )3 Dry (75degC lh )4 Weigh (wb plusmn01 mg)5 Store in dessicator

1 r

15 Dry (75degC 24h)16 Weigh (wa plusmn01 mg)

F ig 1 P rocedural flow for th e m e a su re m e n t of [SPM] of seaw ater

At sea

6 Place on filter holder7 Wet with milliQ8 Filter volume V o f seawater9 Rinse m easuring cylinder

with m illiQ (3x30mL)10 Wash with 250 mL o f milliQ11 Rinse funnel with milliQ

(3x30mL)12 Rem ove funnel13 Wash filter edge with milliQ14 Store in freezer (-20degC)

1012

Neukermans et al Optimizing [SPM] M easurement

Table 1 Overview of types of [SPM] procedural control filters and trea tm ents

Filter Filter op era tion s (nrs as in Fiq 1) V olum e filtered n Sam pled

Dry blank 1-5 14 15-16 0 mL 87 2 0 0 8 -2 0 1 0

MilliQ blank 1 -16 rep lacing sam ples w ith MilliQ w a te r in s tep 8 250 mL 96 2 0 0 8 -2 0 1 0

SSW blank 1 -16 rep lacing sam ples w ith SSW w a te r in s te p 8 5 0 0 mL 126 2 0 0 7 -2 0 1 0

Sam ple 1-16 variable 366 2 0 0 7 -2 0 1 0

w ere w etted w ith M illiQ (7) a n d a k n o w n vo lu m e of seaw ashyter V w as passed th ro u g h th e filter (8) T he m easu rin g cy lin shyder w as rin sed w ith 3 x 30 m L a liquo ts of M illiQ w ater to flu sh an y rem a in in g particles (9) To rem ove salt filters w ere w ash ed w ith 250 m L of M illiQ w ater after f iltra tio n (10) The filter fu n n e l was also rin sed w ith 3 x 30 m L a liquo ts of M illiQ w ater (11) After rem oval of th e fu n n e l th e filter edge w as carefu lly w ash ed w ith M illiQ to flu sh possib le d iffused salt (13 S trick land a n d Parsons 1968) The to ta l M illiQ w ash v o lu m e per filter is th u s 400-450 mL m u c h larger th a n recshyo m m e n d e d by S heldon 1972 300 mL Trees 1978 50 mL an d P earlm an e t al 1995 30 mL T he sam ples w ere sto red at -20degC u n til fu rth e r analysis in M UM M s M arine C h em istry L aboratory (14) u sua lly w ith in a few m o n th s after sam pling Filters w ere d ried for 24 h a t 75degC (15) a n d rew eighed o n th e sam e ba lance (16) g iv ing w eig h t w a from w h ich [SPM] is o b ta in e d as (wa - wb) V

Filter blanksAt th e start an d th e en d of each sam pling cam paign a

series of filter b lanks also te rm ed procedural con tro l filters w ere inc luded to assess uncerta in ties associated w ith filter opera tions in th e labo ra to ry an d du rin g filtrations Three d ifshyferen t types of b la n k m easurem ents have been m ade w ith filshytra tio n of a) n o w ater (dry b lank) b) syn the tic seawater (SSW) p repared by dissolving 34 g of NaCl in 10 L of M illiQ w ater an d c) M illiQ water An overview of these filter b lanks a n d th e ir opera tions is given in Table 1

The M illiQ an d SSW filter b lanks w ere trea ted exactly as th e sam ple filters (steps 1-16 in Fig 1) except th a t 250 m L of M illiQ or 500 m L of SSW was passed th ro u g h th e filter in stead of a vo lum e V of sam pled seaw ater (step 8) N o liqu id was passed th ro u g h th e d ry filter b lanks w h ich were subjected o n ly to freezing (step 14) before fu rthe r analysis in th e lab A one-w ay analysis of variance (ANOVA) was carried o u t to test for differences betw een b lanks (details o f statistical tests are described fu rthe r in th e text)

Salt retention testsA labora to ry experim en t was carried o u t to test w h eth er

salts diffused o n to th e rim of th e filter w ere p roperly flushed by th e rim rinsing procedure (step 13 in Fig 1) First all steps of th e procedure as described in Fig 1 w ere carried o u t filtershyin g a vo lum e of 250 mL SSW o n to 10 replicate filters N ext all steps except th e rim -rinsing (step 13) w ere carried o u t filtering a vo lum e of 250 m L SSW o n to an o th er set of 10 filters Differshyences betw een groups w ere th e n tested u sing an ANOVA test

To test th e d ependence of salt re te n tio n o n sam pling v o lshyum e d iffe ren t vo lum es of SSW rang ing betw een 150 an d 2000 m L were filtered accord ing to th e procedure in Fig 1 Differshyences in wa - wb betw een SSW vo lum e groups were te sted w ith an ANOVA

To check w h e th e r salts w ere p roperly flushed w ith the M illiQ w ash of 400-450 mL on e u n rin sed an d on e rinsed filshyter th ro u g h w h ich 500 mL of SSW was passed were analyzed using scann ing e lectron m icroscopy (SEM LEO 438VP tu n g shysten filam en t SEM) w ith e lec tron dispersive spectral analysis (EDS) Sam ples w ere spu tter-coated w ith A uPd (Polaron SC 7620)Turbidity measurements

Turbidity T defined by ISO 1999 as th e reduc tion of tran sshyparency of a liqu id caused b y th e presence of und isso lved m a tshyte r can be qu an tified in various ways (eg Secchi disk ligh t a tten u a tio n side scatter) The H ach 21 OOP portab le tu rb id ity in s tru m e n t m easures th e ratio of Light E m itting D iode (LED) ligh t scattered at an angle of 90deg plusmn 25deg at a w aveleng th of 860 n m plusmn 60 n m to forw ard tran sm itte d light as com pared w ith th e sam e ratio for a s tandard suspension of Form azine This op tical tech n iq u e for m easu rem en t of T from th e side-scattershying coefficient is in accordance w ith ISO 1999 an d has signifshyican t advantages over alternative m easurem ents of tu rb id ity Secchi d ep th m easurem ents are obviously h ig h ly subjective an d th e use of in s tru m e n ts w ith a b ro ad b an d ligh t source such as th e tu n g sten lam p suggested by EPA 1993 m ay be m uch m ore sensitive to spectral varia tions of lam p o u tp u t an d p artishycle absorp tion properties th a n for th e m o n o ch ro m atic near in frared source used here T is expressed in Form azine N ephshyelom etric U nits (FNU) an d in stru m en ts are calib rated using a set of Form azine T urbidity S tandards At th e start o f each sea cam paign in s tru m e n t stability is ensured by record ing tu rb id shyity of H ach STABLCAL Form azine standards of 01 20 100 an d 800 FNU an d an in s tru m e n t recalibra tion is m ade if n ec shyessary Side scattering signals are averaged over 10 m eashysurem ents a t 12 s in tervals Glass sam ple cells of 10 mL are used to record seaw ater T The glass cell is rinsed w ith sam pled seaw ater before filling The ex terior of th e sam ple cell is rinsed w ith M illiQ w ater dried w ith paper tissue sw iped w ith a soft m icrofiber lint-free c lo th trea ted w ith silicon oil an d sw iped again w ith a d ry clo th Prior to tu rb id ity m easurem ent the sam ple cell is visually inspected for du st particles co n d en sashytio n d roplets or air bubbles T was recorded in trip licate gen shytly tu m b lin g th e sam ple cell betw een each m easurem ent

1013

Neukermans et al Optimizing [SPM] Measurement

T is recorded before an d after [SPM] filtra tions to check adeshyq uate m ix ing of th e w ater sam ple du rin g subsam pling for filshytra tio n T m easu rem en t typ ically takes abou t 4 m in u tes to com plete an d portab le tu rb id ity m eters can be purchased for less th a n 1500 US dollars The 2100P m odel is n o longer m a n shyufac tu red an d has been superseded by th e H ach 2100Q portab le tu rb id im ete r w ith im proved m easurem ents for rap shyid ly se ttling sam ples C alib ration standards are available in sealed con ta ine rs an d are stable for at least 1 year facilita ting use of th e m e th o d for scientists w orldw ide w ith m in im al resources an d o r in rem ote areasOptimal filtration volum e

T as proxy for [SPM]T an d [SPM] m easurem ents w ere carried o u t in surface

w aters in coastal an d offshore w aters a ro u n d Europe an d F rench G uyana betw een 2007 an d 2010 Sam pling sites are described an d m ap p ed in N eukerm ans e t al 2012 A least squares cubic type II regression (York 1966) is app lied to th e log transfo rm ed T an d [SPM] data The least squares cubic regression w h ich takes in to accoun t m easu rem en t u n ce rta in shyties is app lied after rem oval of outliers iden tified by th e MATshyLAB robustfitm rou tine C orrela tion coefficients are given w ith th e ir 95 confidence intervals o b ta in ed from b o o ts tra p shyping Details of these statistical p rocedures are described in th e w eb ap p en d ix of N eukerm ans e t al 2012

Based o n th e [SPM]-T regression an estim ate of [SPM] can be derived from m easurem ents of T prio r to filtra tion From th is estim ate of [SPM] th e vo lum e of seaw ater to be filtered can th e n be estim ated so th a t an op tim al m ass is re ta in ed by th e filter as described below

Determ ining optim al filtration volume T he filtra tion vo lum e V shou ld be h ig h en o u g h so th a t

th e dry m ass of th e particles re ta ined by th e filter wa - wb is sufficient to be precisely m easured b u t n o t so m u c h th a t th e filter clogs Its es tim ation requires a q u an tifica tio n of m in ishym u m m easu rem en t u n ce rta in ty o n wa - wb assessed from p ro shycedural co n tro l filters an d a m ax im u m value for th e relative u n ce rta in ty o n [SPM]

For m easurem ents of w eight th e de tec tion lim it (DL) of th e balance gives th e m in im u m m easu rem en t uncerta in ty The

m in im u m u n c e r ta in ty o n th e d iffe rence b e tw e en filter w eights before an d after filtra tion w a - wb is th e n given by (ISO 1995)

Awm = V 2 D L (1)

In th is study DL = 01 m g so th a t AwM = 014 m g Let Aw d en o te th e co m b in ed u n ce rta in ties o n th e d ry m ass of re ta in ed particles resu lting from filter p repara tion an d h a n shyd ling (including w eighing) in th e labora to ry an d at sea th e n Aw gt Aw m This estim ate of com b in ed uncerta in ties Aw is p ro toco l d ep e n d en t an d can be assessed from procedural c o n shytro l filters It follow s th a t th e u n ce rta in ty o n [SPM] from rep lishycate m easurem ents A[SPM] is a t best equal to Aw V (in m g L_1) Further uncerta in ties o n [SPM] inc lude uncerta in ties due to sam ple m ix ing an d uncerta in ties in m easu rem en t of sam ple vo lum e For th e relative u n ce rta in ty o n [SPM] A[SPM] [SPM] we can w rite

Aw A[SPM]V [SPM] [SPM]

Let us be th e m ax im u m allow able relative u n ce rta in ty on [SPM] from replicate m easurem ents T hen

AwV a r n (3)

us [SPM]

The op tim al filtra tion vo lum e V t is th e sm allest vo lum e th a t satisfies Eq 3 w ith a certa in level of confidence w here [SPM] is es tim ated from T before filtration

AwV = ------ -mdash (4)

opt u [SPM] 1 rsquo

Effect o f filtration volum e on precision o f [SPM] m eashysurements

To investiga te th e effect of f iltra tio n vo lu m e o n th e p recishysion of [SPM] m easurem ents six experim en ts w ere carried o u t in th e so u th e rn N o rth Sea in Sep 2009 an d 2011 for clear (T lt 5 FNU) m o d era te ly tu rb id (5 FNU lt T lt 20 FNU) an d tu r shyb id w aters (T gt 20 FNU) For each w ater sam ple lis ted in Table 2 [SPM] m easu rem en ts w ere perfo rm ed w ith filtra tion

Table 2 Overview of w a te r samples collected in th e sou thern North Sea for filtration experim ents with salinity tem pera tu re Chi a concentra tion and turbidity T with s tandard deviation AT

Sam ple D ateTime

(h UTC) Latitude L ongitudeSalinity(PSU)

cE u

D epth(m )

Chi a

(m g m 3)T

(FNU)A T

(FNU)

Cl 14 -S e p -1 1 1212 51deg 2 9 2 5 9 N 2deg 5 0 4 9 0 E 34 6 7 1715 2881 2 98 0 32

WGAB 1 7-Sep-09 1948 51deg 5 7 6 3 0 N 2deg 0 5 5 1 0 E 34 89 17 63 09 6 83 0 1 4

0 9 2 4 A 16-Sep-09 1359 51deg 2 6 0 1 2 N 3o 28 474 E 32 70 17 39 16 12 45 10 93 0 18

M od 15 -S e p -1 1 1125 51deg 2 0 7 8 1 N 2o 5 7 2 5 4 E 34 63 16 86 1 2 64 12 18 0 42

T 14 -S e p -1 1 705 51deg 2 2 6 6 3 N 3o 0 2 1 9 4 E 34 69 1695 1 0 77 2 5 53 031

MH5 1 7-Sep-09 1416 51deg 5 0 9 5 4 N 1deg 3 8 9 6 5 E 34 73 17 30 2 2 65 lt 0 06 5 3 3 0 159

N o t available

1014

Neukermans et al Optimizing [SPM] Measurement

no rim rine

rim rinse

x io

tgtD

-6 -4 -2 0 2 WD (g) x 10

-4

150 200 250 500 1000 2000Vssw (mL)

Fig 2 D ifference in filter w e ig h t before an d after filtration of 250 mL of SSW of 34 PSU w ith an d w ith o u t rinsing of th e filter rim (step 1 3 in p ro shytocol in Fig 1) G ray d ash ed lines rep re sen t u n certa in ty on W D = wa - wb d u e to th e d e tec tio n limit of th e b alance S w bd = 0 1 4 m g

Fig 3 D ifference in filter w e ig h t before an d after filtration versus filtered vo lum e of SSW of 34 PSU N u m b er of o b se rvations for each v o lu m e are 2 6 15 95 5 an d 3 respectively

vo lum es of 02 05 1 an d 2 tim es V t an d every filtra tion was d o n e o n five rep licate filters T was c o n tin u o u sly m o n ishyto red d u rin g th e course of each filtra tio n experim en t to ensure good m ix in g of th e sam pled seawater Table 2 lists th e sam pling tim e an d location salinity tem pera tu re d ep th [C hlo rophy ll a] an d th e m ean an d s tan d ard d ev ia tion of T for each sam pleStatistical analysis

B etw een g ro u p d iffe rences are in v e s tig a ted b y o ne-w ay analysis o f v a rian ce (ANOVA) c o m p a rin g th e m e an s of sevshyeral g roups to te s t th e h y p o th e s is th a t th e y are all th e sam e ag a in s t th e a l te rn a tiv e th a t th e y are n o t all th e sam e To te s t w h ich pairs o f m e an s are s ig n ific an tly d iffe ren t paired - sam p le t te s ts w ere d o n e a t th e 5 sign ificance level A naly shyses w ere ca rried o u t u s in g th e s ta tis tics to o lb o x of MATLAB v R2011b

The d is trib u tio n of observations is illu stra ted graphically w ith boxplo ts The edges of th e box ind icate th e 25 th an d 75 th percentiles w hereas th e m idd le line represen ts th e sam shyple m ed ian The le n g th of th e box is called th e in te rquartile range (IQR) O bservations fu rthe r th a n 15 IQR from th e 25 th an d 75 th percentiles are m arked as ou tliers an d ind ica ted by crosses This range corresponds to plusmn 27 s tandard dev iations an d 993 d ata coverage if n o rm ally d istribu ted The w hiskers ex ten d to m in im u m an d m ax im u m observations th a t are n o t m arked as outliers

Results and discussion

Uncertainties in [SPM] m easurem entS a lt re ten tion testsResults from lab experim en ts w ith SSW show significantly

h igher residual w eigh t (P = 0003 F = 1176 df = 17 ANOVA) w h en th e rim is n o t rinsed (see Fig 2) com pared w ith w hen th e filter rim is rinsed This is in accordance w ith previous w orks th a t stressed th e im portance of rin sing of th e filter rim to flush o u t diffused salts (Strickland an d Parsons 1968 van der Linde 1998)

The vo lum e of SSW filtered was n o t fo u n d to affect SSW b lan k residual w eights (P = 072 F = 057 ANOVA see Fig 3) w h ich were n o t significantly d iffe ren t from zero This suggests th a t salts are w ashed o u t u sing a w ash vo lum e of 400-450 mL of M illiQ in d e p en d e n t o f th e vo lum e of SSW filtered The ind ep en d en ce of residual w eigh t to SSW vo lum e is in accorshydance w ith Stavn et al 2009 w h o fo u n d salt re te n tio n of 11 mg in d e p e n d e n t of vo lum e of seaw ater filtered for a sa lin ity of 34 PSU an d a w ash vo lum e of 300 m L (see the ir Table 1)

The rinsed an d u n rin sed filter for SEMEDS analysis h a d a W D of 0 an d 18 m g respectively SEM p h o to g rap h s of a recshytangu lar area of 172 x 229 m m 2 near th e cen te r of th e rinsed an d u n rin sed filters are show n in Fig 4ad Patches w ith h ig h c o n c en tra tio n s of sea salt are clearly visible in th e u n rin sed filter (Fig 4a) an d absen t in th e rin sed filter (Fig 4d) An

1015

Neukermans et al Optimizing [SPM] Measurement

Detector = CENT Detector = CENTUniversiteacute du Littoral Cocircte dOpale

Miireg

Fig 4 SEM im ages of d ried GFF filters after filtration o f 5 0 0 mL of SSW w ith o u t MilliQ w ash (a b c) an d w ith a MilliQ w ash of 4 5 0 mL (d e f) G rayscale levels d e p ic t a to m ic w eig h t Patches w ith h igh c o n cen tra tio n s of sea salt (exam ple show n in im ag e b) are clearly visible in im ag e a an d a b se n t in im age d A few sea salt particles (w hite circles) w ere identified in ran d o m ly se lec ted zo n es (e f)

exam ple of such a sea salt p a tch (123 x 164 p m 2) is show n in Fig 4b A ran d o m zone of th e sam e size (123 x 164 p m 2) is show n in Fig 4c Fig 4e f show ran d o m 123 x 164 p m 2 zones o n th e rin sed filter o n w h ich 1 an d 2 m icrocrystals of sea salt w ere iden tified respectively This analysis show s th a t a M illiQ w ash vo lum e of 400-450 m L properly flushed diffused salts (Fig 4)

Filter b lanksFig 5 show s th e differences in filter w eigh t before an d after

filtra tion W D = w a - w b for dry M illiQ an d SSW blanks A bout 46 of th e b lan k w eight differences w ere fo u n d w ith in th e u n ce rta in ty o n W D due to th e de tec tion lim it of th e balance Aw hal = 0 14 m g (see Fig 3) The m ed ian absolute value of W Ds for all b lanks is 02 m g w ith 90 of th e values below 06 mg

W Ds w ere n o t significantly d ifferen t betw een b lan k types (P = 021 F = 155 df = 2 ANOVA) in d ica tin g th a t salt is p roperly w ashed out

Even th o u g h n o t statistically significant negative W D are fo u n d m ore frequen tly for M illiQ an d SSW blanks th a n for dry b lanks suggesting th a t friable fractions of glass fiber filters m ay have d islodged du rin g filtra tion w hile these shou ld have been w ashed o u t before filtra tion (step 2 in Fig 1) This process m ay be m itigated by repeating th e pre-ashing w ashshying an d d ry ing of th e filters in th e p rep ara tio n phase (steps 1- 4 in Fig 1) several tim es u n til a co n s tan t w eigh t is achieved S tavn et al (2009) recom m end 3-4 repeat cycles to b e tte r c o n shytro l loss o f filter mass b u t th is m ay n o t en tire ly e lim inate th is p rob lem (Feely et al 1991)

1016

Neukermans et al Optimizing [SPM] Measurement

milliQ

dry

S S W

1 O 1 2 3 4WD (g) x IO

Fig 5 D ifference in filter w e ig h t b efo re an d after filtration W D = wa - wb for d ifferen t blanks co llected a t th e s ta rt an d th e en d of each c a m shypaign b e tw een 2 0 0 7 an d 2 010 G ray d ash ed lines re p re se n t u n certa in ties on W D d u e to th e d e tec tio n limit of th e b a lance (w lxil = 0 1 4 m g)

N o significant differences in W Ds of SSW blanks were found betw een cam paigns in 2007-2010 (P = 011 F = 141 df = 27 ANOVA) ind icating stability of h u m id ity an d tem peratu re co n shyd itions in th e laboratory an d of sam ple trea tm en t

SSW b lan k W Ds are th o u g h t to best reflect p rocedural uncerta in ties associated w ith filtra tion of saline w aters T hereshyfore estim ates o f Awp a t th e 50 an d 90 confidence level are o b ta in ed from th e 5 0 th an d 9 0 th percentiles of absolute W Ds for SSW equal to 02 m g an d 09 m g respectively These are fu rth e r used in th e ca lcu lation of th e op tim al filtra tion v o lshyum e from Eq 4

Sam ple m ixingFig 6a show s th e com parison betw een T recorded before

a n d after filtra tion These m easurem ents m ay be separated by abou t 30 m in an d m ay be affected by nu m ero u s subsam pling opera tions by d iffe ren t p ersonne l tak ing w ater for m eashysu rem en t of SPM ch lo rophy ll an d o r o th e r param eters The m ean bias (= (T^T^-T ^ is close to zero (-2 ) an d sym m etrishycally d istribu ted w ith 90 of th e values betw een -28 an d 23 P rediction error PE = ITa-ThTh is generally betw een 1 an d 39 w ith a m ed ian of 6 In clear w aters (Tb lt 5 FNU) b o th bias an d p red ic tion error d en o ted w ith c subscript show h igher variability due to h igher m easu rem en t u n ce rshyta in ties Also show n in Fig 6a are observations recorded before Ju n e 2008 w h en seaw ater sam ples w ere stirred up w ith a m easuring cy linder an d th e n subsam pled using a 1-L con-

10

10

10

10ldquo

10

n=345 (n=184)

PE=[1639] PEc=[21245] bias=[-28-223] biasc=[-35-640]

n=146 (n = 7 2 )PE=[0676] PEc=[ 112144]

b ias=[-12376] bias =[-129144]

hand mix tumble mix 11

10 10 10T (FNU)

10

10

10

10

ct3

10

10

log10[SPM]=097(plusmn001 )log1()T+-001 (plusmn001)

r=0997(+0001) n=357 nx=33

RMSE=60 FNU M PE=11

log10T=088(plusmn001)log10[SPM ]+014(plusmn002) r=0993(plusmn0003) n=96 n = 5

RM SE=4 0 F N U M PE=8

bull hand mixbull tumble mix x outlier 90 PB

10 10 10

T (FNU)10

Fig 6 (a) C om parison of T befo re an d after filtration w ith statistics g iven using h an d m ixing an d tu m b le m ixing for all o b se rvations an d in clear w ate rs (Tb lt 5 FNU) an d (b) relationsh ip b e tw een T an d [SPM] w ith ty p e II regression an d statistics using h an d m ixing an d tu m b le m ixing The 9 0 p red ic tion b o u n d s of th e regression are also show n Error bars in (a) an d (b) are show n for 5 of th e o b se rvations an d rep re sen t th e s ta n d ard dev iation from rep licate m easu rem en ts of T an d [SPM]

1017

Neukermans et al Optimizing [SPM] M easurement

ta iner te rm ed h a n d m ix ing C om parison of Ta an d Tb for th is datase t is especially poor in clear w ater (Tb lt 5 FNU) w here th e d is trib u tio n of th e bias is strongly positive (90 of th e obsershyvations betw een -12 an d 144 w ith a m ed ian of 9) This suggests co n tam in a tio n of th e w ater sam ple du rin g th e m ix shying procedure possibly by co n tac t w ith th e glove w orn by th e person filtering From Ju n e 2008 onw ards seaw ater sam ples w ere m ixed by g en tly tu m b lin g a closed 10 L co n ta in e r a round several tim es before subsam pling te rm ed tu m b le m ix ing This illustrates th e use of T m easurem ents to detec t p roblem s w ith sam ple m ixingUncertainties in [SPM] measurement from filtration volume

Determ ining optim al filtration volumeA to ta l of 366 m easurem ents of T (= m ean of T m eashy

su rem ents before an d after filtration) an d [SPM] were done O bservations w here on ly on e [SPM] replicate rem ained were rejected (n = 9) Least squares cubic regression gives

log10 [SPM] = 097(plusmn001)log10 T - 001(plusmn001) (5)

The regression statistics an d its 90 pred ic tion b o u n d s are show n in Fig 6b The offset of th e regression line is n o t sigshyn ifican tly d ifferen t from zero for th e tum ble m ix ing dataset w hereas a sign ifican tly positive offset (014 plusmn 002) was fo u n d for th e h an d -m ix in g dataset suggesting sam ple c o n ta m in a shytio n by h a n d m ixing The m odel for [SPM] in Eq 5 perform s well w ith a m ed ian p red ic tion error (MPE) of 11 an d w ith p red ic tion errors below 40 in 95 of th e cases The 90 p re shyd ic tion b o u n d s of th e regression line show n Fig 6b can be used to quality co n tro l [SPM] by flagging data ou tside these boundaries as suspect

For our purposes a m ax im u m u n ce rta in ty of us = 15 on [SPM] is desired The filtra tion vo lum e is o p tim ally set by m easuring T before filtra tion an d using th e regression m odel in Eq 5 to p red ic t [SPM] From Eq 4 it follow s th a t A[SPM] is expected to be below 15 in 50 (90) of th e cases for a filshytra tio n vo lum e V50 (V90) of

50 =Awp 50

015[SPM]and V90 =

Awp 90

015[SPM] (6)

w here Awp50 an d Awp90 are th e 5 0 th an d 9 0 th percentiles of w eigh t differences for SSW blanks ie 02 m g an d 09 mg respectively Table 3 lists V50 an d V90 for T betw een 05 FNU a n d 140 FNU For practical use vo lum es are ro u n d ed to give R(U50) an d R(V90) respectively

M e asu rem en ts of b eam a t te n u a tio n h av e b ee n used recen tly in a sim ilar w ay to estim ate filtra tion vo lum e so th a t particle m ass re ta in ed by po lycarbonate filters was op tim al for scann ing e lectron m icroscopy im age analysis (G roundw ater et al 2012) We no te how ever th a t side scatter largely o u tp e rshyform s beam a tten u a tio n as a proxy for [SPM] (N eukerm ans et al 2012) because of low er sensitiv ity to particle ap p aren t d e n shysity As a consequence [SPM] an d hence op tim al V can be estishym a ted w ith h igher precision from side scatter

Effect o f filtration volume on precision o f [SPM] m eashysurem ent

The filtra tion vo lum e was o p tim ally set based o n T m e ashysurem ents before each filtra tion experim en t u sing R(V90) in Table 3 An overview of experim en tal results is given in Table 4 w h ich also show s th e tim e requ ired to pass a given vo lum e of sam ple th ro u g h five replicate filters N o significant changes in T were fo u n d before an d after each filtra tion expershyim e n t (P gt 005 ANOVA) in d ica tin g good sam ple m ix ing th ro u g h o u t th e experim ents

The coefficient of varia tion cv (= s tandard deviation m ean from five [SPM] replicates) is p lo tted as fu n c tio n of filshytra tio n vo lum e norm alized by V t in Fig 7 Results suggest th a t filtering m ore or less th a n th e op tim al vo lum e gives a low er precision in th e [SPM] m easurem ent except for the m ost tu rb id w ater sam ple MH5 w here cv is low est at tw ice Vopt It can be seen from filtra tion tim es in Table 4 th a t passing tw ice V t was n o t p rob lem atic for th e m ost tu rb id sam ples MH5 an d T w hereas for o th e r sam ples filtra tion tim e at least trip led to exceeding 1 h It is th o u g h t th a t filter clogging m ay be m ore likely in th e presence of o rganic particles

Differences betw een cvs for d ifferen t filtra tion volum es were tested for significance by co m p u tin g cvs for a ran d o m selection of th ree o u t of five replicates w ith o u t rep lacem ent an d repeating th is procedure 100 tim es The m ed ian 10th an d 90th percentiles of each cv datase t are also show n in Fig 7 ANOVA tests show th a t th e cv is significantly higher an d often h igher th a n th e desired precision of 15 w h en on e fifth of th e op tim al vo lum e is filtered th a n w h en larger vo lum es are filtered Cv decreases significantly w h en filtra tion vo lum e is increased to half V t except for sam ple CL Further decrease of cv w h en filtra tion vo lum e is increased to V t is significant a t s ta tions CL WGAB 0924A an d T A sign ifican t increase in cv is observed w h en filtering m ore th a n V t for sam ples WGAB 0924A MOD an d T These sligh t increases in in ter- replicate variab ility m ay be caused by th e h igher like lihood of spraying off particles du rin g rim rin sing (step 13 in Fig 1) w h en filters are sa tu ra ted w ith particles (see Figure 28 in N eukerm ans 2012)

[SPM] m eans w ere in d e p en d e n t of filtra tion volum e as show n in Fig 8 w ith th e excep tion of significantly lower [SPM] for th e sm allest filtra tion vo lum e for sam ples 0924A an d MH5 This could be an effect o f th e reduc tion of th e effecshytive pore size w ith increasing vo lum e This p h e n o m e n o n is know n to be som ew hat unp red ic tab le an d to d ep e n d o n the particle size d is trib u tio n an d th e shape of th e particles in susshyp en sio n (Sheldon an d Sutcliffe 1969 S heldon 1972) as well as p o ten tia lly particle com position (stickiness)

Least-squares regressions of W D versus filtered vo lum e of seaw ater are show n in Fig 9 The offsets of th e regression lines for all sam ples are n o t significantly d ifferen t from zero again ind ica ting th a t salts are p roperly w ashed from th e filters It has been n o te d by Trees 1978 th a t th e re la tionsh ip betw een filtrashytio n vo lum e an d re ta in ed m ass is linear on ly w h en salts are

1018

Neukermans et al Optimizing [SPM] Measurement

Table 3 Example of a lookup tab le for reco m m en d ed filtration vo lum e as function of tu rb id ity so th a t relative uncerta in ty on [SPM] replicates Is w ithin 15 In 50 of th e cases [R(150)] and In 90 of th e cases [R(Vpo)]

T (FNU) [SPM]50 (m gL ) V50 (mL) V90 (mL) R(V50) (mL) R(V90) (mL)

05 050 2673 12027 3000 120001 098 1364 6140 1000 60002 191 697 3134 500 30003 284 470 2115 500 20004 375 356 1600 350 15005 466 286 1289 250 12506 556 240 1080 250 10007 645 207 930 200 10008 735 182 817 200 8009 823 162 729 150 75010 912 146 658 150 60011 1000 133 600 150 60013 1176 113 510 100 50014 1264 105 475 100 50015 1351 99 444 100 40016 1439 93 417 100 40018 1613 83 372 100 40019 1700 78 353 75 37521 1873 71 320 75 30022 1960 68 306 75 30026 2304 58 260 50 25027 2390 56 251 50 25032 2818 47 213 50 20033 2904 46 207 50 20037 3245 41 185 50 20038 3330 40 180 50 20040 3499 38 171 50 17545 3923 34 153 25 15050 4345 31 138 25 15055 4766 28 126 25 12565 5604 24 107 20 11070 6022 22 100 20 10075 6439 21 93 20 9080 6855 19 88 20 9085 7270 18 83 20 8095 8098 16 74 20 70100 8511 16 70 20 70110 9336 14 64 10 60115 9747 14 62 10 60140 11796 11 51 10 50

Table 4 O verview of turbidity T w ith standard deviation AT optim al filtration volum e ob ta ined from R(V ) In Table 3 and tim erequired to pass seaw ater th ro u g h five replicate filters

Filtration tim e (m in)

sam ple T (FNU) AT (FNU) Vopt (mL) 0 2 V ntopt 0 5 Vnntopt Vopt 2 Vopt

Cl 298 032 1500 17 20 29 94WGAB 683 014 1000 13 10 24 640924A 1093 018 500 19 12 15 78Mod 1218 042 500 10 11 16 48T 2553 031 250 20 12 30 25MH5 5330 159 150 6 8 21 18

1019

Neukermans et al Optimizing [SPM] Measurement

sample CL

S 20

05

sample WGAB sample 0924A

sample MOD

S 20

05VV

Opt

35

30

25

20

15

10

5

00 05 1 15 2

sample T

VV

35

30

25

20

15

10

5

00 05 15 21

35

30

25

20

15

10

5

00 05 1 15 2

sample MH535

bull median n=310th-90th percentiles n=3

30

25

20

15

10

5

00 05 15 21

VV

Fig 7 Coefficient o f variation cv (in ) of [SPM] o b ta in ed from five rep licates versus filtration vo lum e norm alized to th e op tim al filtration volum e V Show n in g ray are th e m ed ian 10 th an d 9 0 th percen tiles o f cv o b ta in e d from 100 resam plings w ith o u t re p lacem en t of 3 [SPM] rep licates o u t of 5

w ashed out

ConclusionThis s tudy show s th a t sim ple fast an d low -cost m eashy

surem ents of turbid ity T can be used to op tim ize [SPM] m eashysurem ents M ore specifically tu rb id ity m easurem ents can be used to o p tim ally set th e filtra tion volum e to detec t p roblem s w ith th e m ix ing of th e sam ple du rin g subsam pling for filtrashytio n an d for th e quality co n tro l of [SPM] The re la tionsh ip b etw een T an d op tim al f iltra tion vo lum e is set up using estishym ates of [SPM] m easu rem en t procedural uncerta in ties from b la n k m easurem ents an d a value for m ax im u m allow able u n ce rta in ty o n [SPM] Procedural uncerta in ties w ere assessed from filter b lanks w here syn the tic seaw ater of a typical sa lin shyity is passed th ro u g h rep resen ting uncerta in ties due to filter p repara tion han d lin g an d rin sing of sea salt The use of varishyous types of filter b lanks subjected to d iffe ren t steps in the m easu rem en t procedure m ay help reveal sources of u n ce rshyta in ty In th is study for exam ple differences in w eights of d ry

an d w et filter b lanks suggest th a t friable fractions of glass fiber filters m ay have d islodged d u ring filtra tion This fiber loss m ay be m itigated in th e fu tu re by repeating th e pre-ashing w ashing an d d ry ing steps of filters in th e p rep ara tio n phase u n til co n s tan t w eigh t is achieved B lank filters an d regressions of residual w eight versus filtra tion vo lum e suggest th a t salts are p roperly flushed using a w ash vo lum e of 400-450 mL of M illiQ for w ater sam ples w ith salinities of 33-35 PSU w hile a w ash vo lum e of 300 m L has been show n to be insufficien t (Stavn e t al 2009)

We fu rthe r investigated th e role of filtra tion vo lum e o n th e precision of [SPM] m easu rem en t by filtering vo lum es of seashyw ater rang ing betw een one-fifth an d tw ice th e op tim al filtrashytio n volum e It is show n th a t if th e op tim al vo lum e is filtered [SPM] m easurem ents are m ost precise an d cost effective In m ost cases filtering tw ice th e op tim al vo lum e caused clogging an d trip led filtra tion tim es to over 1 h w h ich is im practical an d p rob lem atic in lim ited sh ip tim e

It is recom m ended th a t each research group establishes

1020

Neukermans et al Optimizing [SPM] M easurement

sample CL sample WGAB sample 0924A

95115

10535

7595

25

5575

020 0 5 0 100

sample MOD200 020 0 5 0 100

sample T150 020 0 5 0 100

sample MH5200

125

^ 115

^ 105

95

0 26 0 50 100 200 020VV

opt

0 60 100VV

opt

200

60

55

50

45

40020 0 53 100 167

VVopt

Fig 8 Boxplot of [SPM] o b ta in e d th ro u g h filtration o f d ifferen t vo lum es of sam p led seaw ate r a t six d ifferen t sta tions

th e ir ow n re la tionsh ip betw een tu rb id ity an d op tim al filtrashytio n vo lum e w h ich is specific to th e type of tu rb id ity in s tru shym e n t (w avelength an d angular response) th e uncerta in ties of th e [SPM] m easu rem en t p rocedure w h ich can be assessed from procedural co n tro l filters th e desired m ax im u m relative variab ility betw een replicates an d th e com position of th e p arshyticles (organic inorganic)

The idea of estim ating op tim al filtra tion vo lum e from tu r shyb id ity (or an o th er su itab ly chosen optical proxy) an d of checkshyin g tu rb id ity before an d after all filtra tion opera tions has been illu stra ted specifically for th e m ass co n c en tra tio n of [SPM] in th is article However th is idea cou ld have m ore general app lishyca tion to im prov ing th e q uality an d th e quality co n tro l for o th e r physical or chem ical properties of [SPM] (eg G ro u n d shyw ater e t al 2012)

ReferencesB ooth B C 1987 Cell breakage in n a n o p h y to p la n k to n d u rshy

ing filtra tion of liv ing organism s Eos 68(50)1723Boss E an d others 2009 C om parison of in h e re n t op tical

properties as a surrogate for particu la te m atte r co n c en tra shy

tio n in coastal w aters L im nol Oceanogr M ethods 7803- 810 [doi104319lom 20097803]

Chavez F P an d o thers 1995 O n th e ch lo rophy ll-a re te n tio n properties of glass-fiber GFF filters F im nol Oceanogr 40428-433 [doi104319lo 19954020428]

Feely R A J H Trefry an d B M onger 1991 Particle sam shyp ling an d preservation p 5 -22 In D C H eard an d D W Spencer [eds] M arine particles analysis an d characterizashytion A m erican G eophysical U n ion

G oldm an J C an d M R D enne tt 1985 Susceptibility of som e m arine p h y to p la n k to n species to cell breakage du rin g filtra tion an d post-filtra tion rinsing J Exp Mar Biol Ecol 8647-58 [doi1010160022-0981 (85)90041-3]

G roundw ater H M S Twardowski H Dierssen A Sciendra an d S Freem an 2012 D eterm in ing size d istribu tions an d com position of particles suspended in w ater a new SEM- EDS p ro toco l w ith va lida tion an d com parison to o the r m e th o d s J A tm os O cean T echno l 29433-449 [doi101175JTECH-D-l 1-000261]

ICES 2004 C hem ical m easurem ents in th e Baltic Sea G uideshylines o n q uality assurance In te rn a tio n a l C ouncil for the

1021

Neukermans et al Optimizing [SPM] Measurement

sample CL sample WGAB sample 0924A12 7 88+050

10WD=800(plusmn076)V+-03 K Iacute0 71 )

87 50+028

6

47 36+052

26 90plusmn 152

00 05 1 15

9

2 71+0398

7

6 W D=266(plusmn065)V+005itll3)

OD rP 5

42 47+033

3107+075

2

1 2 73+064

00 1 2 3

12

1048+07810

WD=1065(plusmn198)V+-001(+gtfU4)

8

6 136+043

4

1056+0672

60plusmn089

00 02 04 06 08 1 12

Qamp

W D=26171+056) V+0

47+099

WD=6048(plusmn595)VWD= 10461+157)V+012(plusmnCK91)

1080+049

131+ 177

5856+092

sample MOD sample T sample MH5

Fig 9 S catterp lo ts o f particu la te d ry m ass (WD = w a - w]j versus filtrate vo lum e V The erro r bars d e n o te th e s ta n d a rd erro r on W D o b ta in ed from 5 replicates The m ean an d s ta n d a rd erro r of [SPM] are also show n for each filtration vo lum e Show n in red are th e regression line an d its eq u a tio n w ith 95 confid en ce intervals of th e coeffic ient estim ates

E xploration of th e Sea ICES T echniques in M arine Envishyro n m en ta l Sciences 35 E Lysiak-Pastuszak an d M Krysell [Eds] lth ttp w w w ic e s d k p u b s t im e s tim e s3 5 T IM E S 35 pdfgt

ISO 1995 G uide to th e expression of u n ce rta in ty in m eashysu rem e n t In te rn a tio n a l S tan d a rd O rg a n isa tio n ISO 1995101

1997 W ater qualitymdashd ete rm in a tio n of suspendedsolids by filtra tion th ro u g h glass-fibre filters In te rn a tio n a l S tandard O rganisation ISO 11923

1999 W ater qualifymdashd ete rm in a tio n of turbid ity In te rshyn a tio n a l S tandard O rganisation ISO 70271999(E)

Kiene R P an d L J L inn 1999 F ilter-type an d sam ple h a n shyd ling affect d e te rm in a tio n of o rganic substrate up take by b a c te r io p la n k to n A quat M icrob Ecol 17311-321 [doi103354am e017311]

Kirst G O 1990 Salinity to lerance of eukaryotic m arine algae A nnu Rev P lan t Physiol P lan t M ol Biol 4121-53

[doi10 1146 annurev pp 41060190000321]Logan B E 1993 Theoretical analysis o f size d istribu tions

de term in ed w ith screens an d filters L im nol Oceanogr 38372-381 [doi104319lo 19933820372]

Lovegrove T 1966 The d e te rm in a tio n of th e d ry w eigh t of p lan k to n an d th e effect of various factors o n th e values ob ta ined p 429-467 In Som e con tem p o rary studies in m arine science H afner Publ C om p

M ueller J L an d others 2003 O cean optics p ro toco ls for satellite ocean color sensor validation In J L M ueller G S Fargion an d C R M cClain [Eds] Technical M em orandum TM -2003-21621R evision 5 Vol 5 N ational A eronautical an d Space ad m in istra tio n (NASA)

N eukerm ans G 2012 O ptical in situ an d geosta tionary satelshylite-borne observations of suspended particles in coastal w aters PhD d issertation U niversiteacute d u Littoral - Cocircte d O pale W im ereux France A cadem ic an d Scientific Pubshylishers Ravensteingalerij 28 1000 Brussels Belgium ISBN

1022

Neukermans et al Optimizing [SPM] Measurement

978 90 7028 949 2 Perm a-links lth ttp w w w 2m um m ac b e d o w n lo a d s p u b lic a tio n s neukerm an s_ p h d _ co v erp d f gt lth t tp w w w 2 m u m m a c b e d o w n lo a d s p u b l i c a t io n s n eu kerm ans_phd_m anuscrip t_ l 7x24pdfgt

G H Loisel X M eriaux R Astoreca an d D McKee2012 In situ variab ility of mass-specific beam a tten u a tio n an d backscattering of m arine particles w ith respect to p a rshyticle size density an d com position Lim nol Oceanogr 57124-144 [doi104319lo 20125710124]

Pearlm an S R H S Costa R A Jung J J M cKeown an d H E Pearson 1995 Solids (sec 2540) p 2-53-52-64 In A D Eaton L S Clesceri an d A E G reenberg [eds] S tandard m e th o d s for th e ex am in a tio n of w ater an d w astew ater A m erican Public H ealth Association

PML an d ICES 2004 ECASA (Ecosystem A pproach for Susshyta inab le A quaculture) bo o k of protocols Particulate m atte r in seawater P lym outh M arine Laboratory an d In te rn a tio n a l C ouncil for th e E xploration of th e Sea lth ttp w w w ecasa to o lb o x o rg u k th e - to o lb o x e ia -c o u n try b o o k -o f -p ro to - co lsparticu la te-m atter-in -seaw atergt

Sheldon R W 1972 Size separation of m arine seston by m e m b ra n e a n d glass-fiber filte rs L im nol O ceanogr 17494-498 [doi10 4319lo l972 17 3 0494]

an d W H J Sutcliffe 1969 R eten tion of m arine p a rtishycles by screens an d filters L im nol Oceanogr 14441-444 [doi10 4319lo 19691430441]

Stavn R H H J Rick an d A V Falster 2009 C orrecting th e

errors from variable sea salt re te n tio n an d w ater of h y d ra shytio n in loss o n ig n itio n analysis Im plications for studies of estuarine an d coastal w aters Estuar Coast Shelf Sei 81575-582 [doi101016jecss200812017]

Stram ski D E Boss D Bogucki an d K J Voss 2004 The role o f seaw ater co n s titu en ts in ligh t backscattering in the ocean Prog Oceanogr 61 27-56

Strickland J D H an d T R Parsons 1968 A practical h a n d shybook of seaw ater analysis B ulletin 167 Fisheries Research Board of C anada

Tilstone G an d others 2002 REVAMP Regional V alidation of MERIS C h lo rophy ll p roducts in N o rth Sea coastal waters Protocols d ocum en t REVAMP m ethodo log ies - EVG1 - CT - 2001 - 00049 lth ttp en v isa te sa in tw o rk sh o p sm av t_ 2003M AVT-2003_802_REVAM Pprotocols3pdfgt

Trees C C 1978 A nalytical analysis o f effect of dissolved solids o n suspended solids d e term in a tio n J W ater Poll C on tro l Fed 502370-2373

van der Linde D W 1998 P rotocol for th e d e te rm in a tio n of to ta l suspended m a tte r in oceans an d coastal zones Jo in t Research C entre Ispra Technical n o te 198182

York D 1966 Least-squares f ittin g of a straigh t line Can J Phys 441079-1086 [doi101139p66-090]

Submitted 26 May 2012 Revised 5 October 2012

Accepted 18 November 2012

1023

Page 3: LIMNOLOGY and OCEANOGRAPHY: METHODS - vliz.be · Neukermans et al. Optimizing [SPM] Measurement Table 1 . Overview of types of [SPM] procedural control filters and treatments. Filter

Neukermans et al Optimizing [SPM] M easurement

Table 1 Overview of types of [SPM] procedural control filters and trea tm ents

Filter Filter op era tion s (nrs as in Fiq 1) V olum e filtered n Sam pled

Dry blank 1-5 14 15-16 0 mL 87 2 0 0 8 -2 0 1 0

MilliQ blank 1 -16 rep lacing sam ples w ith MilliQ w a te r in s tep 8 250 mL 96 2 0 0 8 -2 0 1 0

SSW blank 1 -16 rep lacing sam ples w ith SSW w a te r in s te p 8 5 0 0 mL 126 2 0 0 7 -2 0 1 0

Sam ple 1-16 variable 366 2 0 0 7 -2 0 1 0

w ere w etted w ith M illiQ (7) a n d a k n o w n vo lu m e of seaw ashyter V w as passed th ro u g h th e filter (8) T he m easu rin g cy lin shyder w as rin sed w ith 3 x 30 m L a liquo ts of M illiQ w ater to flu sh an y rem a in in g particles (9) To rem ove salt filters w ere w ash ed w ith 250 m L of M illiQ w ater after f iltra tio n (10) The filter fu n n e l was also rin sed w ith 3 x 30 m L a liquo ts of M illiQ w ater (11) After rem oval of th e fu n n e l th e filter edge w as carefu lly w ash ed w ith M illiQ to flu sh possib le d iffused salt (13 S trick land a n d Parsons 1968) The to ta l M illiQ w ash v o lu m e per filter is th u s 400-450 mL m u c h larger th a n recshyo m m e n d e d by S heldon 1972 300 mL Trees 1978 50 mL an d P earlm an e t al 1995 30 mL T he sam ples w ere sto red at -20degC u n til fu rth e r analysis in M UM M s M arine C h em istry L aboratory (14) u sua lly w ith in a few m o n th s after sam pling Filters w ere d ried for 24 h a t 75degC (15) a n d rew eighed o n th e sam e ba lance (16) g iv ing w eig h t w a from w h ich [SPM] is o b ta in e d as (wa - wb) V

Filter blanksAt th e start an d th e en d of each sam pling cam paign a

series of filter b lanks also te rm ed procedural con tro l filters w ere inc luded to assess uncerta in ties associated w ith filter opera tions in th e labo ra to ry an d du rin g filtrations Three d ifshyferen t types of b la n k m easurem ents have been m ade w ith filshytra tio n of a) n o w ater (dry b lank) b) syn the tic seawater (SSW) p repared by dissolving 34 g of NaCl in 10 L of M illiQ w ater an d c) M illiQ water An overview of these filter b lanks a n d th e ir opera tions is given in Table 1

The M illiQ an d SSW filter b lanks w ere trea ted exactly as th e sam ple filters (steps 1-16 in Fig 1) except th a t 250 m L of M illiQ or 500 m L of SSW was passed th ro u g h th e filter in stead of a vo lum e V of sam pled seaw ater (step 8) N o liqu id was passed th ro u g h th e d ry filter b lanks w h ich were subjected o n ly to freezing (step 14) before fu rthe r analysis in th e lab A one-w ay analysis of variance (ANOVA) was carried o u t to test for differences betw een b lanks (details o f statistical tests are described fu rthe r in th e text)

Salt retention testsA labora to ry experim en t was carried o u t to test w h eth er

salts diffused o n to th e rim of th e filter w ere p roperly flushed by th e rim rinsing procedure (step 13 in Fig 1) First all steps of th e procedure as described in Fig 1 w ere carried o u t filtershyin g a vo lum e of 250 mL SSW o n to 10 replicate filters N ext all steps except th e rim -rinsing (step 13) w ere carried o u t filtering a vo lum e of 250 m L SSW o n to an o th er set of 10 filters Differshyences betw een groups w ere th e n tested u sing an ANOVA test

To test th e d ependence of salt re te n tio n o n sam pling v o lshyum e d iffe ren t vo lum es of SSW rang ing betw een 150 an d 2000 m L were filtered accord ing to th e procedure in Fig 1 Differshyences in wa - wb betw een SSW vo lum e groups were te sted w ith an ANOVA

To check w h e th e r salts w ere p roperly flushed w ith the M illiQ w ash of 400-450 mL on e u n rin sed an d on e rinsed filshyter th ro u g h w h ich 500 mL of SSW was passed were analyzed using scann ing e lectron m icroscopy (SEM LEO 438VP tu n g shysten filam en t SEM) w ith e lec tron dispersive spectral analysis (EDS) Sam ples w ere spu tter-coated w ith A uPd (Polaron SC 7620)Turbidity measurements

Turbidity T defined by ISO 1999 as th e reduc tion of tran sshyparency of a liqu id caused b y th e presence of und isso lved m a tshyte r can be qu an tified in various ways (eg Secchi disk ligh t a tten u a tio n side scatter) The H ach 21 OOP portab le tu rb id ity in s tru m e n t m easures th e ratio of Light E m itting D iode (LED) ligh t scattered at an angle of 90deg plusmn 25deg at a w aveleng th of 860 n m plusmn 60 n m to forw ard tran sm itte d light as com pared w ith th e sam e ratio for a s tandard suspension of Form azine This op tical tech n iq u e for m easu rem en t of T from th e side-scattershying coefficient is in accordance w ith ISO 1999 an d has signifshyican t advantages over alternative m easurem ents of tu rb id ity Secchi d ep th m easurem ents are obviously h ig h ly subjective an d th e use of in s tru m e n ts w ith a b ro ad b an d ligh t source such as th e tu n g sten lam p suggested by EPA 1993 m ay be m uch m ore sensitive to spectral varia tions of lam p o u tp u t an d p artishycle absorp tion properties th a n for th e m o n o ch ro m atic near in frared source used here T is expressed in Form azine N ephshyelom etric U nits (FNU) an d in stru m en ts are calib rated using a set of Form azine T urbidity S tandards At th e start o f each sea cam paign in s tru m e n t stability is ensured by record ing tu rb id shyity of H ach STABLCAL Form azine standards of 01 20 100 an d 800 FNU an d an in s tru m e n t recalibra tion is m ade if n ec shyessary Side scattering signals are averaged over 10 m eashysurem ents a t 12 s in tervals Glass sam ple cells of 10 mL are used to record seaw ater T The glass cell is rinsed w ith sam pled seaw ater before filling The ex terior of th e sam ple cell is rinsed w ith M illiQ w ater dried w ith paper tissue sw iped w ith a soft m icrofiber lint-free c lo th trea ted w ith silicon oil an d sw iped again w ith a d ry clo th Prior to tu rb id ity m easurem ent the sam ple cell is visually inspected for du st particles co n d en sashytio n d roplets or air bubbles T was recorded in trip licate gen shytly tu m b lin g th e sam ple cell betw een each m easurem ent

1013

Neukermans et al Optimizing [SPM] Measurement

T is recorded before an d after [SPM] filtra tions to check adeshyq uate m ix ing of th e w ater sam ple du rin g subsam pling for filshytra tio n T m easu rem en t typ ically takes abou t 4 m in u tes to com plete an d portab le tu rb id ity m eters can be purchased for less th a n 1500 US dollars The 2100P m odel is n o longer m a n shyufac tu red an d has been superseded by th e H ach 2100Q portab le tu rb id im ete r w ith im proved m easurem ents for rap shyid ly se ttling sam ples C alib ration standards are available in sealed con ta ine rs an d are stable for at least 1 year facilita ting use of th e m e th o d for scientists w orldw ide w ith m in im al resources an d o r in rem ote areasOptimal filtration volum e

T as proxy for [SPM]T an d [SPM] m easurem ents w ere carried o u t in surface

w aters in coastal an d offshore w aters a ro u n d Europe an d F rench G uyana betw een 2007 an d 2010 Sam pling sites are described an d m ap p ed in N eukerm ans e t al 2012 A least squares cubic type II regression (York 1966) is app lied to th e log transfo rm ed T an d [SPM] data The least squares cubic regression w h ich takes in to accoun t m easu rem en t u n ce rta in shyties is app lied after rem oval of outliers iden tified by th e MATshyLAB robustfitm rou tine C orrela tion coefficients are given w ith th e ir 95 confidence intervals o b ta in ed from b o o ts tra p shyping Details of these statistical p rocedures are described in th e w eb ap p en d ix of N eukerm ans e t al 2012

Based o n th e [SPM]-T regression an estim ate of [SPM] can be derived from m easurem ents of T prio r to filtra tion From th is estim ate of [SPM] th e vo lum e of seaw ater to be filtered can th e n be estim ated so th a t an op tim al m ass is re ta in ed by th e filter as described below

Determ ining optim al filtration volume T he filtra tion vo lum e V shou ld be h ig h en o u g h so th a t

th e dry m ass of th e particles re ta ined by th e filter wa - wb is sufficient to be precisely m easured b u t n o t so m u c h th a t th e filter clogs Its es tim ation requires a q u an tifica tio n of m in ishym u m m easu rem en t u n ce rta in ty o n wa - wb assessed from p ro shycedural co n tro l filters an d a m ax im u m value for th e relative u n ce rta in ty o n [SPM]

For m easurem ents of w eight th e de tec tion lim it (DL) of th e balance gives th e m in im u m m easu rem en t uncerta in ty The

m in im u m u n c e r ta in ty o n th e d iffe rence b e tw e en filter w eights before an d after filtra tion w a - wb is th e n given by (ISO 1995)

Awm = V 2 D L (1)

In th is study DL = 01 m g so th a t AwM = 014 m g Let Aw d en o te th e co m b in ed u n ce rta in ties o n th e d ry m ass of re ta in ed particles resu lting from filter p repara tion an d h a n shyd ling (including w eighing) in th e labora to ry an d at sea th e n Aw gt Aw m This estim ate of com b in ed uncerta in ties Aw is p ro toco l d ep e n d en t an d can be assessed from procedural c o n shytro l filters It follow s th a t th e u n ce rta in ty o n [SPM] from rep lishycate m easurem ents A[SPM] is a t best equal to Aw V (in m g L_1) Further uncerta in ties o n [SPM] inc lude uncerta in ties due to sam ple m ix ing an d uncerta in ties in m easu rem en t of sam ple vo lum e For th e relative u n ce rta in ty o n [SPM] A[SPM] [SPM] we can w rite

Aw A[SPM]V [SPM] [SPM]

Let us be th e m ax im u m allow able relative u n ce rta in ty on [SPM] from replicate m easurem ents T hen

AwV a r n (3)

us [SPM]

The op tim al filtra tion vo lum e V t is th e sm allest vo lum e th a t satisfies Eq 3 w ith a certa in level of confidence w here [SPM] is es tim ated from T before filtration

AwV = ------ -mdash (4)

opt u [SPM] 1 rsquo

Effect o f filtration volum e on precision o f [SPM] m eashysurements

To investiga te th e effect of f iltra tio n vo lu m e o n th e p recishysion of [SPM] m easurem ents six experim en ts w ere carried o u t in th e so u th e rn N o rth Sea in Sep 2009 an d 2011 for clear (T lt 5 FNU) m o d era te ly tu rb id (5 FNU lt T lt 20 FNU) an d tu r shyb id w aters (T gt 20 FNU) For each w ater sam ple lis ted in Table 2 [SPM] m easu rem en ts w ere perfo rm ed w ith filtra tion

Table 2 Overview of w a te r samples collected in th e sou thern North Sea for filtration experim ents with salinity tem pera tu re Chi a concentra tion and turbidity T with s tandard deviation AT

Sam ple D ateTime

(h UTC) Latitude L ongitudeSalinity(PSU)

cE u

D epth(m )

Chi a

(m g m 3)T

(FNU)A T

(FNU)

Cl 14 -S e p -1 1 1212 51deg 2 9 2 5 9 N 2deg 5 0 4 9 0 E 34 6 7 1715 2881 2 98 0 32

WGAB 1 7-Sep-09 1948 51deg 5 7 6 3 0 N 2deg 0 5 5 1 0 E 34 89 17 63 09 6 83 0 1 4

0 9 2 4 A 16-Sep-09 1359 51deg 2 6 0 1 2 N 3o 28 474 E 32 70 17 39 16 12 45 10 93 0 18

M od 15 -S e p -1 1 1125 51deg 2 0 7 8 1 N 2o 5 7 2 5 4 E 34 63 16 86 1 2 64 12 18 0 42

T 14 -S e p -1 1 705 51deg 2 2 6 6 3 N 3o 0 2 1 9 4 E 34 69 1695 1 0 77 2 5 53 031

MH5 1 7-Sep-09 1416 51deg 5 0 9 5 4 N 1deg 3 8 9 6 5 E 34 73 17 30 2 2 65 lt 0 06 5 3 3 0 159

N o t available

1014

Neukermans et al Optimizing [SPM] Measurement

no rim rine

rim rinse

x io

tgtD

-6 -4 -2 0 2 WD (g) x 10

-4

150 200 250 500 1000 2000Vssw (mL)

Fig 2 D ifference in filter w e ig h t before an d after filtration of 250 mL of SSW of 34 PSU w ith an d w ith o u t rinsing of th e filter rim (step 1 3 in p ro shytocol in Fig 1) G ray d ash ed lines rep re sen t u n certa in ty on W D = wa - wb d u e to th e d e tec tio n limit of th e b alance S w bd = 0 1 4 m g

Fig 3 D ifference in filter w e ig h t before an d after filtration versus filtered vo lum e of SSW of 34 PSU N u m b er of o b se rvations for each v o lu m e are 2 6 15 95 5 an d 3 respectively

vo lum es of 02 05 1 an d 2 tim es V t an d every filtra tion was d o n e o n five rep licate filters T was c o n tin u o u sly m o n ishyto red d u rin g th e course of each filtra tio n experim en t to ensure good m ix in g of th e sam pled seawater Table 2 lists th e sam pling tim e an d location salinity tem pera tu re d ep th [C hlo rophy ll a] an d th e m ean an d s tan d ard d ev ia tion of T for each sam pleStatistical analysis

B etw een g ro u p d iffe rences are in v e s tig a ted b y o ne-w ay analysis o f v a rian ce (ANOVA) c o m p a rin g th e m e an s of sevshyeral g roups to te s t th e h y p o th e s is th a t th e y are all th e sam e ag a in s t th e a l te rn a tiv e th a t th e y are n o t all th e sam e To te s t w h ich pairs o f m e an s are s ig n ific an tly d iffe ren t paired - sam p le t te s ts w ere d o n e a t th e 5 sign ificance level A naly shyses w ere ca rried o u t u s in g th e s ta tis tics to o lb o x of MATLAB v R2011b

The d is trib u tio n of observations is illu stra ted graphically w ith boxplo ts The edges of th e box ind icate th e 25 th an d 75 th percentiles w hereas th e m idd le line represen ts th e sam shyple m ed ian The le n g th of th e box is called th e in te rquartile range (IQR) O bservations fu rthe r th a n 15 IQR from th e 25 th an d 75 th percentiles are m arked as ou tliers an d ind ica ted by crosses This range corresponds to plusmn 27 s tandard dev iations an d 993 d ata coverage if n o rm ally d istribu ted The w hiskers ex ten d to m in im u m an d m ax im u m observations th a t are n o t m arked as outliers

Results and discussion

Uncertainties in [SPM] m easurem entS a lt re ten tion testsResults from lab experim en ts w ith SSW show significantly

h igher residual w eigh t (P = 0003 F = 1176 df = 17 ANOVA) w h en th e rim is n o t rinsed (see Fig 2) com pared w ith w hen th e filter rim is rinsed This is in accordance w ith previous w orks th a t stressed th e im portance of rin sing of th e filter rim to flush o u t diffused salts (Strickland an d Parsons 1968 van der Linde 1998)

The vo lum e of SSW filtered was n o t fo u n d to affect SSW b lan k residual w eights (P = 072 F = 057 ANOVA see Fig 3) w h ich were n o t significantly d iffe ren t from zero This suggests th a t salts are w ashed o u t u sing a w ash vo lum e of 400-450 mL of M illiQ in d e p en d e n t o f th e vo lum e of SSW filtered The ind ep en d en ce of residual w eigh t to SSW vo lum e is in accorshydance w ith Stavn et al 2009 w h o fo u n d salt re te n tio n of 11 mg in d e p e n d e n t of vo lum e of seaw ater filtered for a sa lin ity of 34 PSU an d a w ash vo lum e of 300 m L (see the ir Table 1)

The rinsed an d u n rin sed filter for SEMEDS analysis h a d a W D of 0 an d 18 m g respectively SEM p h o to g rap h s of a recshytangu lar area of 172 x 229 m m 2 near th e cen te r of th e rinsed an d u n rin sed filters are show n in Fig 4ad Patches w ith h ig h c o n c en tra tio n s of sea salt are clearly visible in th e u n rin sed filter (Fig 4a) an d absen t in th e rin sed filter (Fig 4d) An

1015

Neukermans et al Optimizing [SPM] Measurement

Detector = CENT Detector = CENTUniversiteacute du Littoral Cocircte dOpale

Miireg

Fig 4 SEM im ages of d ried GFF filters after filtration o f 5 0 0 mL of SSW w ith o u t MilliQ w ash (a b c) an d w ith a MilliQ w ash of 4 5 0 mL (d e f) G rayscale levels d e p ic t a to m ic w eig h t Patches w ith h igh c o n cen tra tio n s of sea salt (exam ple show n in im ag e b) are clearly visible in im ag e a an d a b se n t in im age d A few sea salt particles (w hite circles) w ere identified in ran d o m ly se lec ted zo n es (e f)

exam ple of such a sea salt p a tch (123 x 164 p m 2) is show n in Fig 4b A ran d o m zone of th e sam e size (123 x 164 p m 2) is show n in Fig 4c Fig 4e f show ran d o m 123 x 164 p m 2 zones o n th e rin sed filter o n w h ich 1 an d 2 m icrocrystals of sea salt w ere iden tified respectively This analysis show s th a t a M illiQ w ash vo lum e of 400-450 m L properly flushed diffused salts (Fig 4)

Filter b lanksFig 5 show s th e differences in filter w eigh t before an d after

filtra tion W D = w a - w b for dry M illiQ an d SSW blanks A bout 46 of th e b lan k w eight differences w ere fo u n d w ith in th e u n ce rta in ty o n W D due to th e de tec tion lim it of th e balance Aw hal = 0 14 m g (see Fig 3) The m ed ian absolute value of W Ds for all b lanks is 02 m g w ith 90 of th e values below 06 mg

W Ds w ere n o t significantly d ifferen t betw een b lan k types (P = 021 F = 155 df = 2 ANOVA) in d ica tin g th a t salt is p roperly w ashed out

Even th o u g h n o t statistically significant negative W D are fo u n d m ore frequen tly for M illiQ an d SSW blanks th a n for dry b lanks suggesting th a t friable fractions of glass fiber filters m ay have d islodged du rin g filtra tion w hile these shou ld have been w ashed o u t before filtra tion (step 2 in Fig 1) This process m ay be m itigated by repeating th e pre-ashing w ashshying an d d ry ing of th e filters in th e p rep ara tio n phase (steps 1- 4 in Fig 1) several tim es u n til a co n s tan t w eigh t is achieved S tavn et al (2009) recom m end 3-4 repeat cycles to b e tte r c o n shytro l loss o f filter mass b u t th is m ay n o t en tire ly e lim inate th is p rob lem (Feely et al 1991)

1016

Neukermans et al Optimizing [SPM] Measurement

milliQ

dry

S S W

1 O 1 2 3 4WD (g) x IO

Fig 5 D ifference in filter w e ig h t b efo re an d after filtration W D = wa - wb for d ifferen t blanks co llected a t th e s ta rt an d th e en d of each c a m shypaign b e tw een 2 0 0 7 an d 2 010 G ray d ash ed lines re p re se n t u n certa in ties on W D d u e to th e d e tec tio n limit of th e b a lance (w lxil = 0 1 4 m g)

N o significant differences in W Ds of SSW blanks were found betw een cam paigns in 2007-2010 (P = 011 F = 141 df = 27 ANOVA) ind icating stability of h u m id ity an d tem peratu re co n shyd itions in th e laboratory an d of sam ple trea tm en t

SSW b lan k W Ds are th o u g h t to best reflect p rocedural uncerta in ties associated w ith filtra tion of saline w aters T hereshyfore estim ates o f Awp a t th e 50 an d 90 confidence level are o b ta in ed from th e 5 0 th an d 9 0 th percentiles of absolute W Ds for SSW equal to 02 m g an d 09 m g respectively These are fu rth e r used in th e ca lcu lation of th e op tim al filtra tion v o lshyum e from Eq 4

Sam ple m ixingFig 6a show s th e com parison betw een T recorded before

a n d after filtra tion These m easurem ents m ay be separated by abou t 30 m in an d m ay be affected by nu m ero u s subsam pling opera tions by d iffe ren t p ersonne l tak ing w ater for m eashysu rem en t of SPM ch lo rophy ll an d o r o th e r param eters The m ean bias (= (T^T^-T ^ is close to zero (-2 ) an d sym m etrishycally d istribu ted w ith 90 of th e values betw een -28 an d 23 P rediction error PE = ITa-ThTh is generally betw een 1 an d 39 w ith a m ed ian of 6 In clear w aters (Tb lt 5 FNU) b o th bias an d p red ic tion error d en o ted w ith c subscript show h igher variability due to h igher m easu rem en t u n ce rshyta in ties Also show n in Fig 6a are observations recorded before Ju n e 2008 w h en seaw ater sam ples w ere stirred up w ith a m easuring cy linder an d th e n subsam pled using a 1-L con-

10

10

10

10ldquo

10

n=345 (n=184)

PE=[1639] PEc=[21245] bias=[-28-223] biasc=[-35-640]

n=146 (n = 7 2 )PE=[0676] PEc=[ 112144]

b ias=[-12376] bias =[-129144]

hand mix tumble mix 11

10 10 10T (FNU)

10

10

10

10

ct3

10

10

log10[SPM]=097(plusmn001 )log1()T+-001 (plusmn001)

r=0997(+0001) n=357 nx=33

RMSE=60 FNU M PE=11

log10T=088(plusmn001)log10[SPM ]+014(plusmn002) r=0993(plusmn0003) n=96 n = 5

RM SE=4 0 F N U M PE=8

bull hand mixbull tumble mix x outlier 90 PB

10 10 10

T (FNU)10

Fig 6 (a) C om parison of T befo re an d after filtration w ith statistics g iven using h an d m ixing an d tu m b le m ixing for all o b se rvations an d in clear w ate rs (Tb lt 5 FNU) an d (b) relationsh ip b e tw een T an d [SPM] w ith ty p e II regression an d statistics using h an d m ixing an d tu m b le m ixing The 9 0 p red ic tion b o u n d s of th e regression are also show n Error bars in (a) an d (b) are show n for 5 of th e o b se rvations an d rep re sen t th e s ta n d ard dev iation from rep licate m easu rem en ts of T an d [SPM]

1017

Neukermans et al Optimizing [SPM] M easurement

ta iner te rm ed h a n d m ix ing C om parison of Ta an d Tb for th is datase t is especially poor in clear w ater (Tb lt 5 FNU) w here th e d is trib u tio n of th e bias is strongly positive (90 of th e obsershyvations betw een -12 an d 144 w ith a m ed ian of 9) This suggests co n tam in a tio n of th e w ater sam ple du rin g th e m ix shying procedure possibly by co n tac t w ith th e glove w orn by th e person filtering From Ju n e 2008 onw ards seaw ater sam ples w ere m ixed by g en tly tu m b lin g a closed 10 L co n ta in e r a round several tim es before subsam pling te rm ed tu m b le m ix ing This illustrates th e use of T m easurem ents to detec t p roblem s w ith sam ple m ixingUncertainties in [SPM] measurement from filtration volume

Determ ining optim al filtration volumeA to ta l of 366 m easurem ents of T (= m ean of T m eashy

su rem ents before an d after filtration) an d [SPM] were done O bservations w here on ly on e [SPM] replicate rem ained were rejected (n = 9) Least squares cubic regression gives

log10 [SPM] = 097(plusmn001)log10 T - 001(plusmn001) (5)

The regression statistics an d its 90 pred ic tion b o u n d s are show n in Fig 6b The offset of th e regression line is n o t sigshyn ifican tly d ifferen t from zero for th e tum ble m ix ing dataset w hereas a sign ifican tly positive offset (014 plusmn 002) was fo u n d for th e h an d -m ix in g dataset suggesting sam ple c o n ta m in a shytio n by h a n d m ixing The m odel for [SPM] in Eq 5 perform s well w ith a m ed ian p red ic tion error (MPE) of 11 an d w ith p red ic tion errors below 40 in 95 of th e cases The 90 p re shyd ic tion b o u n d s of th e regression line show n Fig 6b can be used to quality co n tro l [SPM] by flagging data ou tside these boundaries as suspect

For our purposes a m ax im u m u n ce rta in ty of us = 15 on [SPM] is desired The filtra tion vo lum e is o p tim ally set by m easuring T before filtra tion an d using th e regression m odel in Eq 5 to p red ic t [SPM] From Eq 4 it follow s th a t A[SPM] is expected to be below 15 in 50 (90) of th e cases for a filshytra tio n vo lum e V50 (V90) of

50 =Awp 50

015[SPM]and V90 =

Awp 90

015[SPM] (6)

w here Awp50 an d Awp90 are th e 5 0 th an d 9 0 th percentiles of w eigh t differences for SSW blanks ie 02 m g an d 09 mg respectively Table 3 lists V50 an d V90 for T betw een 05 FNU a n d 140 FNU For practical use vo lum es are ro u n d ed to give R(U50) an d R(V90) respectively

M e asu rem en ts of b eam a t te n u a tio n h av e b ee n used recen tly in a sim ilar w ay to estim ate filtra tion vo lum e so th a t particle m ass re ta in ed by po lycarbonate filters was op tim al for scann ing e lectron m icroscopy im age analysis (G roundw ater et al 2012) We no te how ever th a t side scatter largely o u tp e rshyform s beam a tten u a tio n as a proxy for [SPM] (N eukerm ans et al 2012) because of low er sensitiv ity to particle ap p aren t d e n shysity As a consequence [SPM] an d hence op tim al V can be estishym a ted w ith h igher precision from side scatter

Effect o f filtration volume on precision o f [SPM] m eashysurem ent

The filtra tion vo lum e was o p tim ally set based o n T m e ashysurem ents before each filtra tion experim en t u sing R(V90) in Table 3 An overview of experim en tal results is given in Table 4 w h ich also show s th e tim e requ ired to pass a given vo lum e of sam ple th ro u g h five replicate filters N o significant changes in T were fo u n d before an d after each filtra tion expershyim e n t (P gt 005 ANOVA) in d ica tin g good sam ple m ix ing th ro u g h o u t th e experim ents

The coefficient of varia tion cv (= s tandard deviation m ean from five [SPM] replicates) is p lo tted as fu n c tio n of filshytra tio n vo lum e norm alized by V t in Fig 7 Results suggest th a t filtering m ore or less th a n th e op tim al vo lum e gives a low er precision in th e [SPM] m easurem ent except for the m ost tu rb id w ater sam ple MH5 w here cv is low est at tw ice Vopt It can be seen from filtra tion tim es in Table 4 th a t passing tw ice V t was n o t p rob lem atic for th e m ost tu rb id sam ples MH5 an d T w hereas for o th e r sam ples filtra tion tim e at least trip led to exceeding 1 h It is th o u g h t th a t filter clogging m ay be m ore likely in th e presence of o rganic particles

Differences betw een cvs for d ifferen t filtra tion volum es were tested for significance by co m p u tin g cvs for a ran d o m selection of th ree o u t of five replicates w ith o u t rep lacem ent an d repeating th is procedure 100 tim es The m ed ian 10th an d 90th percentiles of each cv datase t are also show n in Fig 7 ANOVA tests show th a t th e cv is significantly higher an d often h igher th a n th e desired precision of 15 w h en on e fifth of th e op tim al vo lum e is filtered th a n w h en larger vo lum es are filtered Cv decreases significantly w h en filtra tion vo lum e is increased to half V t except for sam ple CL Further decrease of cv w h en filtra tion vo lum e is increased to V t is significant a t s ta tions CL WGAB 0924A an d T A sign ifican t increase in cv is observed w h en filtering m ore th a n V t for sam ples WGAB 0924A MOD an d T These sligh t increases in in ter- replicate variab ility m ay be caused by th e h igher like lihood of spraying off particles du rin g rim rin sing (step 13 in Fig 1) w h en filters are sa tu ra ted w ith particles (see Figure 28 in N eukerm ans 2012)

[SPM] m eans w ere in d e p en d e n t of filtra tion volum e as show n in Fig 8 w ith th e excep tion of significantly lower [SPM] for th e sm allest filtra tion vo lum e for sam ples 0924A an d MH5 This could be an effect o f th e reduc tion of th e effecshytive pore size w ith increasing vo lum e This p h e n o m e n o n is know n to be som ew hat unp red ic tab le an d to d ep e n d o n the particle size d is trib u tio n an d th e shape of th e particles in susshyp en sio n (Sheldon an d Sutcliffe 1969 S heldon 1972) as well as p o ten tia lly particle com position (stickiness)

Least-squares regressions of W D versus filtered vo lum e of seaw ater are show n in Fig 9 The offsets of th e regression lines for all sam ples are n o t significantly d ifferen t from zero again ind ica ting th a t salts are p roperly w ashed from th e filters It has been n o te d by Trees 1978 th a t th e re la tionsh ip betw een filtrashytio n vo lum e an d re ta in ed m ass is linear on ly w h en salts are

1018

Neukermans et al Optimizing [SPM] Measurement

Table 3 Example of a lookup tab le for reco m m en d ed filtration vo lum e as function of tu rb id ity so th a t relative uncerta in ty on [SPM] replicates Is w ithin 15 In 50 of th e cases [R(150)] and In 90 of th e cases [R(Vpo)]

T (FNU) [SPM]50 (m gL ) V50 (mL) V90 (mL) R(V50) (mL) R(V90) (mL)

05 050 2673 12027 3000 120001 098 1364 6140 1000 60002 191 697 3134 500 30003 284 470 2115 500 20004 375 356 1600 350 15005 466 286 1289 250 12506 556 240 1080 250 10007 645 207 930 200 10008 735 182 817 200 8009 823 162 729 150 75010 912 146 658 150 60011 1000 133 600 150 60013 1176 113 510 100 50014 1264 105 475 100 50015 1351 99 444 100 40016 1439 93 417 100 40018 1613 83 372 100 40019 1700 78 353 75 37521 1873 71 320 75 30022 1960 68 306 75 30026 2304 58 260 50 25027 2390 56 251 50 25032 2818 47 213 50 20033 2904 46 207 50 20037 3245 41 185 50 20038 3330 40 180 50 20040 3499 38 171 50 17545 3923 34 153 25 15050 4345 31 138 25 15055 4766 28 126 25 12565 5604 24 107 20 11070 6022 22 100 20 10075 6439 21 93 20 9080 6855 19 88 20 9085 7270 18 83 20 8095 8098 16 74 20 70100 8511 16 70 20 70110 9336 14 64 10 60115 9747 14 62 10 60140 11796 11 51 10 50

Table 4 O verview of turbidity T w ith standard deviation AT optim al filtration volum e ob ta ined from R(V ) In Table 3 and tim erequired to pass seaw ater th ro u g h five replicate filters

Filtration tim e (m in)

sam ple T (FNU) AT (FNU) Vopt (mL) 0 2 V ntopt 0 5 Vnntopt Vopt 2 Vopt

Cl 298 032 1500 17 20 29 94WGAB 683 014 1000 13 10 24 640924A 1093 018 500 19 12 15 78Mod 1218 042 500 10 11 16 48T 2553 031 250 20 12 30 25MH5 5330 159 150 6 8 21 18

1019

Neukermans et al Optimizing [SPM] Measurement

sample CL

S 20

05

sample WGAB sample 0924A

sample MOD

S 20

05VV

Opt

35

30

25

20

15

10

5

00 05 1 15 2

sample T

VV

35

30

25

20

15

10

5

00 05 15 21

35

30

25

20

15

10

5

00 05 1 15 2

sample MH535

bull median n=310th-90th percentiles n=3

30

25

20

15

10

5

00 05 15 21

VV

Fig 7 Coefficient o f variation cv (in ) of [SPM] o b ta in ed from five rep licates versus filtration vo lum e norm alized to th e op tim al filtration volum e V Show n in g ray are th e m ed ian 10 th an d 9 0 th percen tiles o f cv o b ta in e d from 100 resam plings w ith o u t re p lacem en t of 3 [SPM] rep licates o u t of 5

w ashed out

ConclusionThis s tudy show s th a t sim ple fast an d low -cost m eashy

surem ents of turbid ity T can be used to op tim ize [SPM] m eashysurem ents M ore specifically tu rb id ity m easurem ents can be used to o p tim ally set th e filtra tion volum e to detec t p roblem s w ith th e m ix ing of th e sam ple du rin g subsam pling for filtrashytio n an d for th e quality co n tro l of [SPM] The re la tionsh ip b etw een T an d op tim al f iltra tion vo lum e is set up using estishym ates of [SPM] m easu rem en t procedural uncerta in ties from b la n k m easurem ents an d a value for m ax im u m allow able u n ce rta in ty o n [SPM] Procedural uncerta in ties w ere assessed from filter b lanks w here syn the tic seaw ater of a typical sa lin shyity is passed th ro u g h rep resen ting uncerta in ties due to filter p repara tion han d lin g an d rin sing of sea salt The use of varishyous types of filter b lanks subjected to d iffe ren t steps in the m easu rem en t procedure m ay help reveal sources of u n ce rshyta in ty In th is study for exam ple differences in w eights of d ry

an d w et filter b lanks suggest th a t friable fractions of glass fiber filters m ay have d islodged d u ring filtra tion This fiber loss m ay be m itigated in th e fu tu re by repeating th e pre-ashing w ashing an d d ry ing steps of filters in th e p rep ara tio n phase u n til co n s tan t w eigh t is achieved B lank filters an d regressions of residual w eight versus filtra tion vo lum e suggest th a t salts are p roperly flushed using a w ash vo lum e of 400-450 mL of M illiQ for w ater sam ples w ith salinities of 33-35 PSU w hile a w ash vo lum e of 300 m L has been show n to be insufficien t (Stavn e t al 2009)

We fu rthe r investigated th e role of filtra tion vo lum e o n th e precision of [SPM] m easu rem en t by filtering vo lum es of seashyw ater rang ing betw een one-fifth an d tw ice th e op tim al filtrashytio n volum e It is show n th a t if th e op tim al vo lum e is filtered [SPM] m easurem ents are m ost precise an d cost effective In m ost cases filtering tw ice th e op tim al vo lum e caused clogging an d trip led filtra tion tim es to over 1 h w h ich is im practical an d p rob lem atic in lim ited sh ip tim e

It is recom m ended th a t each research group establishes

1020

Neukermans et al Optimizing [SPM] M easurement

sample CL sample WGAB sample 0924A

95115

10535

7595

25

5575

020 0 5 0 100

sample MOD200 020 0 5 0 100

sample T150 020 0 5 0 100

sample MH5200

125

^ 115

^ 105

95

0 26 0 50 100 200 020VV

opt

0 60 100VV

opt

200

60

55

50

45

40020 0 53 100 167

VVopt

Fig 8 Boxplot of [SPM] o b ta in e d th ro u g h filtration o f d ifferen t vo lum es of sam p led seaw ate r a t six d ifferen t sta tions

th e ir ow n re la tionsh ip betw een tu rb id ity an d op tim al filtrashytio n vo lum e w h ich is specific to th e type of tu rb id ity in s tru shym e n t (w avelength an d angular response) th e uncerta in ties of th e [SPM] m easu rem en t p rocedure w h ich can be assessed from procedural co n tro l filters th e desired m ax im u m relative variab ility betw een replicates an d th e com position of th e p arshyticles (organic inorganic)

The idea of estim ating op tim al filtra tion vo lum e from tu r shyb id ity (or an o th er su itab ly chosen optical proxy) an d of checkshyin g tu rb id ity before an d after all filtra tion opera tions has been illu stra ted specifically for th e m ass co n c en tra tio n of [SPM] in th is article However th is idea cou ld have m ore general app lishyca tion to im prov ing th e q uality an d th e quality co n tro l for o th e r physical or chem ical properties of [SPM] (eg G ro u n d shyw ater e t al 2012)

ReferencesB ooth B C 1987 Cell breakage in n a n o p h y to p la n k to n d u rshy

ing filtra tion of liv ing organism s Eos 68(50)1723Boss E an d others 2009 C om parison of in h e re n t op tical

properties as a surrogate for particu la te m atte r co n c en tra shy

tio n in coastal w aters L im nol Oceanogr M ethods 7803- 810 [doi104319lom 20097803]

Chavez F P an d o thers 1995 O n th e ch lo rophy ll-a re te n tio n properties of glass-fiber GFF filters F im nol Oceanogr 40428-433 [doi104319lo 19954020428]

Feely R A J H Trefry an d B M onger 1991 Particle sam shyp ling an d preservation p 5 -22 In D C H eard an d D W Spencer [eds] M arine particles analysis an d characterizashytion A m erican G eophysical U n ion

G oldm an J C an d M R D enne tt 1985 Susceptibility of som e m arine p h y to p la n k to n species to cell breakage du rin g filtra tion an d post-filtra tion rinsing J Exp Mar Biol Ecol 8647-58 [doi1010160022-0981 (85)90041-3]

G roundw ater H M S Twardowski H Dierssen A Sciendra an d S Freem an 2012 D eterm in ing size d istribu tions an d com position of particles suspended in w ater a new SEM- EDS p ro toco l w ith va lida tion an d com parison to o the r m e th o d s J A tm os O cean T echno l 29433-449 [doi101175JTECH-D-l 1-000261]

ICES 2004 C hem ical m easurem ents in th e Baltic Sea G uideshylines o n q uality assurance In te rn a tio n a l C ouncil for the

1021

Neukermans et al Optimizing [SPM] Measurement

sample CL sample WGAB sample 0924A12 7 88+050

10WD=800(plusmn076)V+-03 K Iacute0 71 )

87 50+028

6

47 36+052

26 90plusmn 152

00 05 1 15

9

2 71+0398

7

6 W D=266(plusmn065)V+005itll3)

OD rP 5

42 47+033

3107+075

2

1 2 73+064

00 1 2 3

12

1048+07810

WD=1065(plusmn198)V+-001(+gtfU4)

8

6 136+043

4

1056+0672

60plusmn089

00 02 04 06 08 1 12

Qamp

W D=26171+056) V+0

47+099

WD=6048(plusmn595)VWD= 10461+157)V+012(plusmnCK91)

1080+049

131+ 177

5856+092

sample MOD sample T sample MH5

Fig 9 S catterp lo ts o f particu la te d ry m ass (WD = w a - w]j versus filtrate vo lum e V The erro r bars d e n o te th e s ta n d a rd erro r on W D o b ta in ed from 5 replicates The m ean an d s ta n d a rd erro r of [SPM] are also show n for each filtration vo lum e Show n in red are th e regression line an d its eq u a tio n w ith 95 confid en ce intervals of th e coeffic ient estim ates

E xploration of th e Sea ICES T echniques in M arine Envishyro n m en ta l Sciences 35 E Lysiak-Pastuszak an d M Krysell [Eds] lth ttp w w w ic e s d k p u b s t im e s tim e s3 5 T IM E S 35 pdfgt

ISO 1995 G uide to th e expression of u n ce rta in ty in m eashysu rem e n t In te rn a tio n a l S tan d a rd O rg a n isa tio n ISO 1995101

1997 W ater qualitymdashd ete rm in a tio n of suspendedsolids by filtra tion th ro u g h glass-fibre filters In te rn a tio n a l S tandard O rganisation ISO 11923

1999 W ater qualifymdashd ete rm in a tio n of turbid ity In te rshyn a tio n a l S tandard O rganisation ISO 70271999(E)

Kiene R P an d L J L inn 1999 F ilter-type an d sam ple h a n shyd ling affect d e te rm in a tio n of o rganic substrate up take by b a c te r io p la n k to n A quat M icrob Ecol 17311-321 [doi103354am e017311]

Kirst G O 1990 Salinity to lerance of eukaryotic m arine algae A nnu Rev P lan t Physiol P lan t M ol Biol 4121-53

[doi10 1146 annurev pp 41060190000321]Logan B E 1993 Theoretical analysis o f size d istribu tions

de term in ed w ith screens an d filters L im nol Oceanogr 38372-381 [doi104319lo 19933820372]

Lovegrove T 1966 The d e te rm in a tio n of th e d ry w eigh t of p lan k to n an d th e effect of various factors o n th e values ob ta ined p 429-467 In Som e con tem p o rary studies in m arine science H afner Publ C om p

M ueller J L an d others 2003 O cean optics p ro toco ls for satellite ocean color sensor validation In J L M ueller G S Fargion an d C R M cClain [Eds] Technical M em orandum TM -2003-21621R evision 5 Vol 5 N ational A eronautical an d Space ad m in istra tio n (NASA)

N eukerm ans G 2012 O ptical in situ an d geosta tionary satelshylite-borne observations of suspended particles in coastal w aters PhD d issertation U niversiteacute d u Littoral - Cocircte d O pale W im ereux France A cadem ic an d Scientific Pubshylishers Ravensteingalerij 28 1000 Brussels Belgium ISBN

1022

Neukermans et al Optimizing [SPM] Measurement

978 90 7028 949 2 Perm a-links lth ttp w w w 2m um m ac b e d o w n lo a d s p u b lic a tio n s neukerm an s_ p h d _ co v erp d f gt lth t tp w w w 2 m u m m a c b e d o w n lo a d s p u b l i c a t io n s n eu kerm ans_phd_m anuscrip t_ l 7x24pdfgt

G H Loisel X M eriaux R Astoreca an d D McKee2012 In situ variab ility of mass-specific beam a tten u a tio n an d backscattering of m arine particles w ith respect to p a rshyticle size density an d com position Lim nol Oceanogr 57124-144 [doi104319lo 20125710124]

Pearlm an S R H S Costa R A Jung J J M cKeown an d H E Pearson 1995 Solids (sec 2540) p 2-53-52-64 In A D Eaton L S Clesceri an d A E G reenberg [eds] S tandard m e th o d s for th e ex am in a tio n of w ater an d w astew ater A m erican Public H ealth Association

PML an d ICES 2004 ECASA (Ecosystem A pproach for Susshyta inab le A quaculture) bo o k of protocols Particulate m atte r in seawater P lym outh M arine Laboratory an d In te rn a tio n a l C ouncil for th e E xploration of th e Sea lth ttp w w w ecasa to o lb o x o rg u k th e - to o lb o x e ia -c o u n try b o o k -o f -p ro to - co lsparticu la te-m atter-in -seaw atergt

Sheldon R W 1972 Size separation of m arine seston by m e m b ra n e a n d glass-fiber filte rs L im nol O ceanogr 17494-498 [doi10 4319lo l972 17 3 0494]

an d W H J Sutcliffe 1969 R eten tion of m arine p a rtishycles by screens an d filters L im nol Oceanogr 14441-444 [doi10 4319lo 19691430441]

Stavn R H H J Rick an d A V Falster 2009 C orrecting th e

errors from variable sea salt re te n tio n an d w ater of h y d ra shytio n in loss o n ig n itio n analysis Im plications for studies of estuarine an d coastal w aters Estuar Coast Shelf Sei 81575-582 [doi101016jecss200812017]

Stram ski D E Boss D Bogucki an d K J Voss 2004 The role o f seaw ater co n s titu en ts in ligh t backscattering in the ocean Prog Oceanogr 61 27-56

Strickland J D H an d T R Parsons 1968 A practical h a n d shybook of seaw ater analysis B ulletin 167 Fisheries Research Board of C anada

Tilstone G an d others 2002 REVAMP Regional V alidation of MERIS C h lo rophy ll p roducts in N o rth Sea coastal waters Protocols d ocum en t REVAMP m ethodo log ies - EVG1 - CT - 2001 - 00049 lth ttp en v isa te sa in tw o rk sh o p sm av t_ 2003M AVT-2003_802_REVAM Pprotocols3pdfgt

Trees C C 1978 A nalytical analysis o f effect of dissolved solids o n suspended solids d e term in a tio n J W ater Poll C on tro l Fed 502370-2373

van der Linde D W 1998 P rotocol for th e d e te rm in a tio n of to ta l suspended m a tte r in oceans an d coastal zones Jo in t Research C entre Ispra Technical n o te 198182

York D 1966 Least-squares f ittin g of a straigh t line Can J Phys 441079-1086 [doi101139p66-090]

Submitted 26 May 2012 Revised 5 October 2012

Accepted 18 November 2012

1023

Page 4: LIMNOLOGY and OCEANOGRAPHY: METHODS - vliz.be · Neukermans et al. Optimizing [SPM] Measurement Table 1 . Overview of types of [SPM] procedural control filters and treatments. Filter

Neukermans et al Optimizing [SPM] Measurement

T is recorded before an d after [SPM] filtra tions to check adeshyq uate m ix ing of th e w ater sam ple du rin g subsam pling for filshytra tio n T m easu rem en t typ ically takes abou t 4 m in u tes to com plete an d portab le tu rb id ity m eters can be purchased for less th a n 1500 US dollars The 2100P m odel is n o longer m a n shyufac tu red an d has been superseded by th e H ach 2100Q portab le tu rb id im ete r w ith im proved m easurem ents for rap shyid ly se ttling sam ples C alib ration standards are available in sealed con ta ine rs an d are stable for at least 1 year facilita ting use of th e m e th o d for scientists w orldw ide w ith m in im al resources an d o r in rem ote areasOptimal filtration volum e

T as proxy for [SPM]T an d [SPM] m easurem ents w ere carried o u t in surface

w aters in coastal an d offshore w aters a ro u n d Europe an d F rench G uyana betw een 2007 an d 2010 Sam pling sites are described an d m ap p ed in N eukerm ans e t al 2012 A least squares cubic type II regression (York 1966) is app lied to th e log transfo rm ed T an d [SPM] data The least squares cubic regression w h ich takes in to accoun t m easu rem en t u n ce rta in shyties is app lied after rem oval of outliers iden tified by th e MATshyLAB robustfitm rou tine C orrela tion coefficients are given w ith th e ir 95 confidence intervals o b ta in ed from b o o ts tra p shyping Details of these statistical p rocedures are described in th e w eb ap p en d ix of N eukerm ans e t al 2012

Based o n th e [SPM]-T regression an estim ate of [SPM] can be derived from m easurem ents of T prio r to filtra tion From th is estim ate of [SPM] th e vo lum e of seaw ater to be filtered can th e n be estim ated so th a t an op tim al m ass is re ta in ed by th e filter as described below

Determ ining optim al filtration volume T he filtra tion vo lum e V shou ld be h ig h en o u g h so th a t

th e dry m ass of th e particles re ta ined by th e filter wa - wb is sufficient to be precisely m easured b u t n o t so m u c h th a t th e filter clogs Its es tim ation requires a q u an tifica tio n of m in ishym u m m easu rem en t u n ce rta in ty o n wa - wb assessed from p ro shycedural co n tro l filters an d a m ax im u m value for th e relative u n ce rta in ty o n [SPM]

For m easurem ents of w eight th e de tec tion lim it (DL) of th e balance gives th e m in im u m m easu rem en t uncerta in ty The

m in im u m u n c e r ta in ty o n th e d iffe rence b e tw e en filter w eights before an d after filtra tion w a - wb is th e n given by (ISO 1995)

Awm = V 2 D L (1)

In th is study DL = 01 m g so th a t AwM = 014 m g Let Aw d en o te th e co m b in ed u n ce rta in ties o n th e d ry m ass of re ta in ed particles resu lting from filter p repara tion an d h a n shyd ling (including w eighing) in th e labora to ry an d at sea th e n Aw gt Aw m This estim ate of com b in ed uncerta in ties Aw is p ro toco l d ep e n d en t an d can be assessed from procedural c o n shytro l filters It follow s th a t th e u n ce rta in ty o n [SPM] from rep lishycate m easurem ents A[SPM] is a t best equal to Aw V (in m g L_1) Further uncerta in ties o n [SPM] inc lude uncerta in ties due to sam ple m ix ing an d uncerta in ties in m easu rem en t of sam ple vo lum e For th e relative u n ce rta in ty o n [SPM] A[SPM] [SPM] we can w rite

Aw A[SPM]V [SPM] [SPM]

Let us be th e m ax im u m allow able relative u n ce rta in ty on [SPM] from replicate m easurem ents T hen

AwV a r n (3)

us [SPM]

The op tim al filtra tion vo lum e V t is th e sm allest vo lum e th a t satisfies Eq 3 w ith a certa in level of confidence w here [SPM] is es tim ated from T before filtration

AwV = ------ -mdash (4)

opt u [SPM] 1 rsquo

Effect o f filtration volum e on precision o f [SPM] m eashysurements

To investiga te th e effect of f iltra tio n vo lu m e o n th e p recishysion of [SPM] m easurem ents six experim en ts w ere carried o u t in th e so u th e rn N o rth Sea in Sep 2009 an d 2011 for clear (T lt 5 FNU) m o d era te ly tu rb id (5 FNU lt T lt 20 FNU) an d tu r shyb id w aters (T gt 20 FNU) For each w ater sam ple lis ted in Table 2 [SPM] m easu rem en ts w ere perfo rm ed w ith filtra tion

Table 2 Overview of w a te r samples collected in th e sou thern North Sea for filtration experim ents with salinity tem pera tu re Chi a concentra tion and turbidity T with s tandard deviation AT

Sam ple D ateTime

(h UTC) Latitude L ongitudeSalinity(PSU)

cE u

D epth(m )

Chi a

(m g m 3)T

(FNU)A T

(FNU)

Cl 14 -S e p -1 1 1212 51deg 2 9 2 5 9 N 2deg 5 0 4 9 0 E 34 6 7 1715 2881 2 98 0 32

WGAB 1 7-Sep-09 1948 51deg 5 7 6 3 0 N 2deg 0 5 5 1 0 E 34 89 17 63 09 6 83 0 1 4

0 9 2 4 A 16-Sep-09 1359 51deg 2 6 0 1 2 N 3o 28 474 E 32 70 17 39 16 12 45 10 93 0 18

M od 15 -S e p -1 1 1125 51deg 2 0 7 8 1 N 2o 5 7 2 5 4 E 34 63 16 86 1 2 64 12 18 0 42

T 14 -S e p -1 1 705 51deg 2 2 6 6 3 N 3o 0 2 1 9 4 E 34 69 1695 1 0 77 2 5 53 031

MH5 1 7-Sep-09 1416 51deg 5 0 9 5 4 N 1deg 3 8 9 6 5 E 34 73 17 30 2 2 65 lt 0 06 5 3 3 0 159

N o t available

1014

Neukermans et al Optimizing [SPM] Measurement

no rim rine

rim rinse

x io

tgtD

-6 -4 -2 0 2 WD (g) x 10

-4

150 200 250 500 1000 2000Vssw (mL)

Fig 2 D ifference in filter w e ig h t before an d after filtration of 250 mL of SSW of 34 PSU w ith an d w ith o u t rinsing of th e filter rim (step 1 3 in p ro shytocol in Fig 1) G ray d ash ed lines rep re sen t u n certa in ty on W D = wa - wb d u e to th e d e tec tio n limit of th e b alance S w bd = 0 1 4 m g

Fig 3 D ifference in filter w e ig h t before an d after filtration versus filtered vo lum e of SSW of 34 PSU N u m b er of o b se rvations for each v o lu m e are 2 6 15 95 5 an d 3 respectively

vo lum es of 02 05 1 an d 2 tim es V t an d every filtra tion was d o n e o n five rep licate filters T was c o n tin u o u sly m o n ishyto red d u rin g th e course of each filtra tio n experim en t to ensure good m ix in g of th e sam pled seawater Table 2 lists th e sam pling tim e an d location salinity tem pera tu re d ep th [C hlo rophy ll a] an d th e m ean an d s tan d ard d ev ia tion of T for each sam pleStatistical analysis

B etw een g ro u p d iffe rences are in v e s tig a ted b y o ne-w ay analysis o f v a rian ce (ANOVA) c o m p a rin g th e m e an s of sevshyeral g roups to te s t th e h y p o th e s is th a t th e y are all th e sam e ag a in s t th e a l te rn a tiv e th a t th e y are n o t all th e sam e To te s t w h ich pairs o f m e an s are s ig n ific an tly d iffe ren t paired - sam p le t te s ts w ere d o n e a t th e 5 sign ificance level A naly shyses w ere ca rried o u t u s in g th e s ta tis tics to o lb o x of MATLAB v R2011b

The d is trib u tio n of observations is illu stra ted graphically w ith boxplo ts The edges of th e box ind icate th e 25 th an d 75 th percentiles w hereas th e m idd le line represen ts th e sam shyple m ed ian The le n g th of th e box is called th e in te rquartile range (IQR) O bservations fu rthe r th a n 15 IQR from th e 25 th an d 75 th percentiles are m arked as ou tliers an d ind ica ted by crosses This range corresponds to plusmn 27 s tandard dev iations an d 993 d ata coverage if n o rm ally d istribu ted The w hiskers ex ten d to m in im u m an d m ax im u m observations th a t are n o t m arked as outliers

Results and discussion

Uncertainties in [SPM] m easurem entS a lt re ten tion testsResults from lab experim en ts w ith SSW show significantly

h igher residual w eigh t (P = 0003 F = 1176 df = 17 ANOVA) w h en th e rim is n o t rinsed (see Fig 2) com pared w ith w hen th e filter rim is rinsed This is in accordance w ith previous w orks th a t stressed th e im portance of rin sing of th e filter rim to flush o u t diffused salts (Strickland an d Parsons 1968 van der Linde 1998)

The vo lum e of SSW filtered was n o t fo u n d to affect SSW b lan k residual w eights (P = 072 F = 057 ANOVA see Fig 3) w h ich were n o t significantly d iffe ren t from zero This suggests th a t salts are w ashed o u t u sing a w ash vo lum e of 400-450 mL of M illiQ in d e p en d e n t o f th e vo lum e of SSW filtered The ind ep en d en ce of residual w eigh t to SSW vo lum e is in accorshydance w ith Stavn et al 2009 w h o fo u n d salt re te n tio n of 11 mg in d e p e n d e n t of vo lum e of seaw ater filtered for a sa lin ity of 34 PSU an d a w ash vo lum e of 300 m L (see the ir Table 1)

The rinsed an d u n rin sed filter for SEMEDS analysis h a d a W D of 0 an d 18 m g respectively SEM p h o to g rap h s of a recshytangu lar area of 172 x 229 m m 2 near th e cen te r of th e rinsed an d u n rin sed filters are show n in Fig 4ad Patches w ith h ig h c o n c en tra tio n s of sea salt are clearly visible in th e u n rin sed filter (Fig 4a) an d absen t in th e rin sed filter (Fig 4d) An

1015

Neukermans et al Optimizing [SPM] Measurement

Detector = CENT Detector = CENTUniversiteacute du Littoral Cocircte dOpale

Miireg

Fig 4 SEM im ages of d ried GFF filters after filtration o f 5 0 0 mL of SSW w ith o u t MilliQ w ash (a b c) an d w ith a MilliQ w ash of 4 5 0 mL (d e f) G rayscale levels d e p ic t a to m ic w eig h t Patches w ith h igh c o n cen tra tio n s of sea salt (exam ple show n in im ag e b) are clearly visible in im ag e a an d a b se n t in im age d A few sea salt particles (w hite circles) w ere identified in ran d o m ly se lec ted zo n es (e f)

exam ple of such a sea salt p a tch (123 x 164 p m 2) is show n in Fig 4b A ran d o m zone of th e sam e size (123 x 164 p m 2) is show n in Fig 4c Fig 4e f show ran d o m 123 x 164 p m 2 zones o n th e rin sed filter o n w h ich 1 an d 2 m icrocrystals of sea salt w ere iden tified respectively This analysis show s th a t a M illiQ w ash vo lum e of 400-450 m L properly flushed diffused salts (Fig 4)

Filter b lanksFig 5 show s th e differences in filter w eigh t before an d after

filtra tion W D = w a - w b for dry M illiQ an d SSW blanks A bout 46 of th e b lan k w eight differences w ere fo u n d w ith in th e u n ce rta in ty o n W D due to th e de tec tion lim it of th e balance Aw hal = 0 14 m g (see Fig 3) The m ed ian absolute value of W Ds for all b lanks is 02 m g w ith 90 of th e values below 06 mg

W Ds w ere n o t significantly d ifferen t betw een b lan k types (P = 021 F = 155 df = 2 ANOVA) in d ica tin g th a t salt is p roperly w ashed out

Even th o u g h n o t statistically significant negative W D are fo u n d m ore frequen tly for M illiQ an d SSW blanks th a n for dry b lanks suggesting th a t friable fractions of glass fiber filters m ay have d islodged du rin g filtra tion w hile these shou ld have been w ashed o u t before filtra tion (step 2 in Fig 1) This process m ay be m itigated by repeating th e pre-ashing w ashshying an d d ry ing of th e filters in th e p rep ara tio n phase (steps 1- 4 in Fig 1) several tim es u n til a co n s tan t w eigh t is achieved S tavn et al (2009) recom m end 3-4 repeat cycles to b e tte r c o n shytro l loss o f filter mass b u t th is m ay n o t en tire ly e lim inate th is p rob lem (Feely et al 1991)

1016

Neukermans et al Optimizing [SPM] Measurement

milliQ

dry

S S W

1 O 1 2 3 4WD (g) x IO

Fig 5 D ifference in filter w e ig h t b efo re an d after filtration W D = wa - wb for d ifferen t blanks co llected a t th e s ta rt an d th e en d of each c a m shypaign b e tw een 2 0 0 7 an d 2 010 G ray d ash ed lines re p re se n t u n certa in ties on W D d u e to th e d e tec tio n limit of th e b a lance (w lxil = 0 1 4 m g)

N o significant differences in W Ds of SSW blanks were found betw een cam paigns in 2007-2010 (P = 011 F = 141 df = 27 ANOVA) ind icating stability of h u m id ity an d tem peratu re co n shyd itions in th e laboratory an d of sam ple trea tm en t

SSW b lan k W Ds are th o u g h t to best reflect p rocedural uncerta in ties associated w ith filtra tion of saline w aters T hereshyfore estim ates o f Awp a t th e 50 an d 90 confidence level are o b ta in ed from th e 5 0 th an d 9 0 th percentiles of absolute W Ds for SSW equal to 02 m g an d 09 m g respectively These are fu rth e r used in th e ca lcu lation of th e op tim al filtra tion v o lshyum e from Eq 4

Sam ple m ixingFig 6a show s th e com parison betw een T recorded before

a n d after filtra tion These m easurem ents m ay be separated by abou t 30 m in an d m ay be affected by nu m ero u s subsam pling opera tions by d iffe ren t p ersonne l tak ing w ater for m eashysu rem en t of SPM ch lo rophy ll an d o r o th e r param eters The m ean bias (= (T^T^-T ^ is close to zero (-2 ) an d sym m etrishycally d istribu ted w ith 90 of th e values betw een -28 an d 23 P rediction error PE = ITa-ThTh is generally betw een 1 an d 39 w ith a m ed ian of 6 In clear w aters (Tb lt 5 FNU) b o th bias an d p red ic tion error d en o ted w ith c subscript show h igher variability due to h igher m easu rem en t u n ce rshyta in ties Also show n in Fig 6a are observations recorded before Ju n e 2008 w h en seaw ater sam ples w ere stirred up w ith a m easuring cy linder an d th e n subsam pled using a 1-L con-

10

10

10

10ldquo

10

n=345 (n=184)

PE=[1639] PEc=[21245] bias=[-28-223] biasc=[-35-640]

n=146 (n = 7 2 )PE=[0676] PEc=[ 112144]

b ias=[-12376] bias =[-129144]

hand mix tumble mix 11

10 10 10T (FNU)

10

10

10

10

ct3

10

10

log10[SPM]=097(plusmn001 )log1()T+-001 (plusmn001)

r=0997(+0001) n=357 nx=33

RMSE=60 FNU M PE=11

log10T=088(plusmn001)log10[SPM ]+014(plusmn002) r=0993(plusmn0003) n=96 n = 5

RM SE=4 0 F N U M PE=8

bull hand mixbull tumble mix x outlier 90 PB

10 10 10

T (FNU)10

Fig 6 (a) C om parison of T befo re an d after filtration w ith statistics g iven using h an d m ixing an d tu m b le m ixing for all o b se rvations an d in clear w ate rs (Tb lt 5 FNU) an d (b) relationsh ip b e tw een T an d [SPM] w ith ty p e II regression an d statistics using h an d m ixing an d tu m b le m ixing The 9 0 p red ic tion b o u n d s of th e regression are also show n Error bars in (a) an d (b) are show n for 5 of th e o b se rvations an d rep re sen t th e s ta n d ard dev iation from rep licate m easu rem en ts of T an d [SPM]

1017

Neukermans et al Optimizing [SPM] M easurement

ta iner te rm ed h a n d m ix ing C om parison of Ta an d Tb for th is datase t is especially poor in clear w ater (Tb lt 5 FNU) w here th e d is trib u tio n of th e bias is strongly positive (90 of th e obsershyvations betw een -12 an d 144 w ith a m ed ian of 9) This suggests co n tam in a tio n of th e w ater sam ple du rin g th e m ix shying procedure possibly by co n tac t w ith th e glove w orn by th e person filtering From Ju n e 2008 onw ards seaw ater sam ples w ere m ixed by g en tly tu m b lin g a closed 10 L co n ta in e r a round several tim es before subsam pling te rm ed tu m b le m ix ing This illustrates th e use of T m easurem ents to detec t p roblem s w ith sam ple m ixingUncertainties in [SPM] measurement from filtration volume

Determ ining optim al filtration volumeA to ta l of 366 m easurem ents of T (= m ean of T m eashy

su rem ents before an d after filtration) an d [SPM] were done O bservations w here on ly on e [SPM] replicate rem ained were rejected (n = 9) Least squares cubic regression gives

log10 [SPM] = 097(plusmn001)log10 T - 001(plusmn001) (5)

The regression statistics an d its 90 pred ic tion b o u n d s are show n in Fig 6b The offset of th e regression line is n o t sigshyn ifican tly d ifferen t from zero for th e tum ble m ix ing dataset w hereas a sign ifican tly positive offset (014 plusmn 002) was fo u n d for th e h an d -m ix in g dataset suggesting sam ple c o n ta m in a shytio n by h a n d m ixing The m odel for [SPM] in Eq 5 perform s well w ith a m ed ian p red ic tion error (MPE) of 11 an d w ith p red ic tion errors below 40 in 95 of th e cases The 90 p re shyd ic tion b o u n d s of th e regression line show n Fig 6b can be used to quality co n tro l [SPM] by flagging data ou tside these boundaries as suspect

For our purposes a m ax im u m u n ce rta in ty of us = 15 on [SPM] is desired The filtra tion vo lum e is o p tim ally set by m easuring T before filtra tion an d using th e regression m odel in Eq 5 to p red ic t [SPM] From Eq 4 it follow s th a t A[SPM] is expected to be below 15 in 50 (90) of th e cases for a filshytra tio n vo lum e V50 (V90) of

50 =Awp 50

015[SPM]and V90 =

Awp 90

015[SPM] (6)

w here Awp50 an d Awp90 are th e 5 0 th an d 9 0 th percentiles of w eigh t differences for SSW blanks ie 02 m g an d 09 mg respectively Table 3 lists V50 an d V90 for T betw een 05 FNU a n d 140 FNU For practical use vo lum es are ro u n d ed to give R(U50) an d R(V90) respectively

M e asu rem en ts of b eam a t te n u a tio n h av e b ee n used recen tly in a sim ilar w ay to estim ate filtra tion vo lum e so th a t particle m ass re ta in ed by po lycarbonate filters was op tim al for scann ing e lectron m icroscopy im age analysis (G roundw ater et al 2012) We no te how ever th a t side scatter largely o u tp e rshyform s beam a tten u a tio n as a proxy for [SPM] (N eukerm ans et al 2012) because of low er sensitiv ity to particle ap p aren t d e n shysity As a consequence [SPM] an d hence op tim al V can be estishym a ted w ith h igher precision from side scatter

Effect o f filtration volume on precision o f [SPM] m eashysurem ent

The filtra tion vo lum e was o p tim ally set based o n T m e ashysurem ents before each filtra tion experim en t u sing R(V90) in Table 3 An overview of experim en tal results is given in Table 4 w h ich also show s th e tim e requ ired to pass a given vo lum e of sam ple th ro u g h five replicate filters N o significant changes in T were fo u n d before an d after each filtra tion expershyim e n t (P gt 005 ANOVA) in d ica tin g good sam ple m ix ing th ro u g h o u t th e experim ents

The coefficient of varia tion cv (= s tandard deviation m ean from five [SPM] replicates) is p lo tted as fu n c tio n of filshytra tio n vo lum e norm alized by V t in Fig 7 Results suggest th a t filtering m ore or less th a n th e op tim al vo lum e gives a low er precision in th e [SPM] m easurem ent except for the m ost tu rb id w ater sam ple MH5 w here cv is low est at tw ice Vopt It can be seen from filtra tion tim es in Table 4 th a t passing tw ice V t was n o t p rob lem atic for th e m ost tu rb id sam ples MH5 an d T w hereas for o th e r sam ples filtra tion tim e at least trip led to exceeding 1 h It is th o u g h t th a t filter clogging m ay be m ore likely in th e presence of o rganic particles

Differences betw een cvs for d ifferen t filtra tion volum es were tested for significance by co m p u tin g cvs for a ran d o m selection of th ree o u t of five replicates w ith o u t rep lacem ent an d repeating th is procedure 100 tim es The m ed ian 10th an d 90th percentiles of each cv datase t are also show n in Fig 7 ANOVA tests show th a t th e cv is significantly higher an d often h igher th a n th e desired precision of 15 w h en on e fifth of th e op tim al vo lum e is filtered th a n w h en larger vo lum es are filtered Cv decreases significantly w h en filtra tion vo lum e is increased to half V t except for sam ple CL Further decrease of cv w h en filtra tion vo lum e is increased to V t is significant a t s ta tions CL WGAB 0924A an d T A sign ifican t increase in cv is observed w h en filtering m ore th a n V t for sam ples WGAB 0924A MOD an d T These sligh t increases in in ter- replicate variab ility m ay be caused by th e h igher like lihood of spraying off particles du rin g rim rin sing (step 13 in Fig 1) w h en filters are sa tu ra ted w ith particles (see Figure 28 in N eukerm ans 2012)

[SPM] m eans w ere in d e p en d e n t of filtra tion volum e as show n in Fig 8 w ith th e excep tion of significantly lower [SPM] for th e sm allest filtra tion vo lum e for sam ples 0924A an d MH5 This could be an effect o f th e reduc tion of th e effecshytive pore size w ith increasing vo lum e This p h e n o m e n o n is know n to be som ew hat unp red ic tab le an d to d ep e n d o n the particle size d is trib u tio n an d th e shape of th e particles in susshyp en sio n (Sheldon an d Sutcliffe 1969 S heldon 1972) as well as p o ten tia lly particle com position (stickiness)

Least-squares regressions of W D versus filtered vo lum e of seaw ater are show n in Fig 9 The offsets of th e regression lines for all sam ples are n o t significantly d ifferen t from zero again ind ica ting th a t salts are p roperly w ashed from th e filters It has been n o te d by Trees 1978 th a t th e re la tionsh ip betw een filtrashytio n vo lum e an d re ta in ed m ass is linear on ly w h en salts are

1018

Neukermans et al Optimizing [SPM] Measurement

Table 3 Example of a lookup tab le for reco m m en d ed filtration vo lum e as function of tu rb id ity so th a t relative uncerta in ty on [SPM] replicates Is w ithin 15 In 50 of th e cases [R(150)] and In 90 of th e cases [R(Vpo)]

T (FNU) [SPM]50 (m gL ) V50 (mL) V90 (mL) R(V50) (mL) R(V90) (mL)

05 050 2673 12027 3000 120001 098 1364 6140 1000 60002 191 697 3134 500 30003 284 470 2115 500 20004 375 356 1600 350 15005 466 286 1289 250 12506 556 240 1080 250 10007 645 207 930 200 10008 735 182 817 200 8009 823 162 729 150 75010 912 146 658 150 60011 1000 133 600 150 60013 1176 113 510 100 50014 1264 105 475 100 50015 1351 99 444 100 40016 1439 93 417 100 40018 1613 83 372 100 40019 1700 78 353 75 37521 1873 71 320 75 30022 1960 68 306 75 30026 2304 58 260 50 25027 2390 56 251 50 25032 2818 47 213 50 20033 2904 46 207 50 20037 3245 41 185 50 20038 3330 40 180 50 20040 3499 38 171 50 17545 3923 34 153 25 15050 4345 31 138 25 15055 4766 28 126 25 12565 5604 24 107 20 11070 6022 22 100 20 10075 6439 21 93 20 9080 6855 19 88 20 9085 7270 18 83 20 8095 8098 16 74 20 70100 8511 16 70 20 70110 9336 14 64 10 60115 9747 14 62 10 60140 11796 11 51 10 50

Table 4 O verview of turbidity T w ith standard deviation AT optim al filtration volum e ob ta ined from R(V ) In Table 3 and tim erequired to pass seaw ater th ro u g h five replicate filters

Filtration tim e (m in)

sam ple T (FNU) AT (FNU) Vopt (mL) 0 2 V ntopt 0 5 Vnntopt Vopt 2 Vopt

Cl 298 032 1500 17 20 29 94WGAB 683 014 1000 13 10 24 640924A 1093 018 500 19 12 15 78Mod 1218 042 500 10 11 16 48T 2553 031 250 20 12 30 25MH5 5330 159 150 6 8 21 18

1019

Neukermans et al Optimizing [SPM] Measurement

sample CL

S 20

05

sample WGAB sample 0924A

sample MOD

S 20

05VV

Opt

35

30

25

20

15

10

5

00 05 1 15 2

sample T

VV

35

30

25

20

15

10

5

00 05 15 21

35

30

25

20

15

10

5

00 05 1 15 2

sample MH535

bull median n=310th-90th percentiles n=3

30

25

20

15

10

5

00 05 15 21

VV

Fig 7 Coefficient o f variation cv (in ) of [SPM] o b ta in ed from five rep licates versus filtration vo lum e norm alized to th e op tim al filtration volum e V Show n in g ray are th e m ed ian 10 th an d 9 0 th percen tiles o f cv o b ta in e d from 100 resam plings w ith o u t re p lacem en t of 3 [SPM] rep licates o u t of 5

w ashed out

ConclusionThis s tudy show s th a t sim ple fast an d low -cost m eashy

surem ents of turbid ity T can be used to op tim ize [SPM] m eashysurem ents M ore specifically tu rb id ity m easurem ents can be used to o p tim ally set th e filtra tion volum e to detec t p roblem s w ith th e m ix ing of th e sam ple du rin g subsam pling for filtrashytio n an d for th e quality co n tro l of [SPM] The re la tionsh ip b etw een T an d op tim al f iltra tion vo lum e is set up using estishym ates of [SPM] m easu rem en t procedural uncerta in ties from b la n k m easurem ents an d a value for m ax im u m allow able u n ce rta in ty o n [SPM] Procedural uncerta in ties w ere assessed from filter b lanks w here syn the tic seaw ater of a typical sa lin shyity is passed th ro u g h rep resen ting uncerta in ties due to filter p repara tion han d lin g an d rin sing of sea salt The use of varishyous types of filter b lanks subjected to d iffe ren t steps in the m easu rem en t procedure m ay help reveal sources of u n ce rshyta in ty In th is study for exam ple differences in w eights of d ry

an d w et filter b lanks suggest th a t friable fractions of glass fiber filters m ay have d islodged d u ring filtra tion This fiber loss m ay be m itigated in th e fu tu re by repeating th e pre-ashing w ashing an d d ry ing steps of filters in th e p rep ara tio n phase u n til co n s tan t w eigh t is achieved B lank filters an d regressions of residual w eight versus filtra tion vo lum e suggest th a t salts are p roperly flushed using a w ash vo lum e of 400-450 mL of M illiQ for w ater sam ples w ith salinities of 33-35 PSU w hile a w ash vo lum e of 300 m L has been show n to be insufficien t (Stavn e t al 2009)

We fu rthe r investigated th e role of filtra tion vo lum e o n th e precision of [SPM] m easu rem en t by filtering vo lum es of seashyw ater rang ing betw een one-fifth an d tw ice th e op tim al filtrashytio n volum e It is show n th a t if th e op tim al vo lum e is filtered [SPM] m easurem ents are m ost precise an d cost effective In m ost cases filtering tw ice th e op tim al vo lum e caused clogging an d trip led filtra tion tim es to over 1 h w h ich is im practical an d p rob lem atic in lim ited sh ip tim e

It is recom m ended th a t each research group establishes

1020

Neukermans et al Optimizing [SPM] M easurement

sample CL sample WGAB sample 0924A

95115

10535

7595

25

5575

020 0 5 0 100

sample MOD200 020 0 5 0 100

sample T150 020 0 5 0 100

sample MH5200

125

^ 115

^ 105

95

0 26 0 50 100 200 020VV

opt

0 60 100VV

opt

200

60

55

50

45

40020 0 53 100 167

VVopt

Fig 8 Boxplot of [SPM] o b ta in e d th ro u g h filtration o f d ifferen t vo lum es of sam p led seaw ate r a t six d ifferen t sta tions

th e ir ow n re la tionsh ip betw een tu rb id ity an d op tim al filtrashytio n vo lum e w h ich is specific to th e type of tu rb id ity in s tru shym e n t (w avelength an d angular response) th e uncerta in ties of th e [SPM] m easu rem en t p rocedure w h ich can be assessed from procedural co n tro l filters th e desired m ax im u m relative variab ility betw een replicates an d th e com position of th e p arshyticles (organic inorganic)

The idea of estim ating op tim al filtra tion vo lum e from tu r shyb id ity (or an o th er su itab ly chosen optical proxy) an d of checkshyin g tu rb id ity before an d after all filtra tion opera tions has been illu stra ted specifically for th e m ass co n c en tra tio n of [SPM] in th is article However th is idea cou ld have m ore general app lishyca tion to im prov ing th e q uality an d th e quality co n tro l for o th e r physical or chem ical properties of [SPM] (eg G ro u n d shyw ater e t al 2012)

ReferencesB ooth B C 1987 Cell breakage in n a n o p h y to p la n k to n d u rshy

ing filtra tion of liv ing organism s Eos 68(50)1723Boss E an d others 2009 C om parison of in h e re n t op tical

properties as a surrogate for particu la te m atte r co n c en tra shy

tio n in coastal w aters L im nol Oceanogr M ethods 7803- 810 [doi104319lom 20097803]

Chavez F P an d o thers 1995 O n th e ch lo rophy ll-a re te n tio n properties of glass-fiber GFF filters F im nol Oceanogr 40428-433 [doi104319lo 19954020428]

Feely R A J H Trefry an d B M onger 1991 Particle sam shyp ling an d preservation p 5 -22 In D C H eard an d D W Spencer [eds] M arine particles analysis an d characterizashytion A m erican G eophysical U n ion

G oldm an J C an d M R D enne tt 1985 Susceptibility of som e m arine p h y to p la n k to n species to cell breakage du rin g filtra tion an d post-filtra tion rinsing J Exp Mar Biol Ecol 8647-58 [doi1010160022-0981 (85)90041-3]

G roundw ater H M S Twardowski H Dierssen A Sciendra an d S Freem an 2012 D eterm in ing size d istribu tions an d com position of particles suspended in w ater a new SEM- EDS p ro toco l w ith va lida tion an d com parison to o the r m e th o d s J A tm os O cean T echno l 29433-449 [doi101175JTECH-D-l 1-000261]

ICES 2004 C hem ical m easurem ents in th e Baltic Sea G uideshylines o n q uality assurance In te rn a tio n a l C ouncil for the

1021

Neukermans et al Optimizing [SPM] Measurement

sample CL sample WGAB sample 0924A12 7 88+050

10WD=800(plusmn076)V+-03 K Iacute0 71 )

87 50+028

6

47 36+052

26 90plusmn 152

00 05 1 15

9

2 71+0398

7

6 W D=266(plusmn065)V+005itll3)

OD rP 5

42 47+033

3107+075

2

1 2 73+064

00 1 2 3

12

1048+07810

WD=1065(plusmn198)V+-001(+gtfU4)

8

6 136+043

4

1056+0672

60plusmn089

00 02 04 06 08 1 12

Qamp

W D=26171+056) V+0

47+099

WD=6048(plusmn595)VWD= 10461+157)V+012(plusmnCK91)

1080+049

131+ 177

5856+092

sample MOD sample T sample MH5

Fig 9 S catterp lo ts o f particu la te d ry m ass (WD = w a - w]j versus filtrate vo lum e V The erro r bars d e n o te th e s ta n d a rd erro r on W D o b ta in ed from 5 replicates The m ean an d s ta n d a rd erro r of [SPM] are also show n for each filtration vo lum e Show n in red are th e regression line an d its eq u a tio n w ith 95 confid en ce intervals of th e coeffic ient estim ates

E xploration of th e Sea ICES T echniques in M arine Envishyro n m en ta l Sciences 35 E Lysiak-Pastuszak an d M Krysell [Eds] lth ttp w w w ic e s d k p u b s t im e s tim e s3 5 T IM E S 35 pdfgt

ISO 1995 G uide to th e expression of u n ce rta in ty in m eashysu rem e n t In te rn a tio n a l S tan d a rd O rg a n isa tio n ISO 1995101

1997 W ater qualitymdashd ete rm in a tio n of suspendedsolids by filtra tion th ro u g h glass-fibre filters In te rn a tio n a l S tandard O rganisation ISO 11923

1999 W ater qualifymdashd ete rm in a tio n of turbid ity In te rshyn a tio n a l S tandard O rganisation ISO 70271999(E)

Kiene R P an d L J L inn 1999 F ilter-type an d sam ple h a n shyd ling affect d e te rm in a tio n of o rganic substrate up take by b a c te r io p la n k to n A quat M icrob Ecol 17311-321 [doi103354am e017311]

Kirst G O 1990 Salinity to lerance of eukaryotic m arine algae A nnu Rev P lan t Physiol P lan t M ol Biol 4121-53

[doi10 1146 annurev pp 41060190000321]Logan B E 1993 Theoretical analysis o f size d istribu tions

de term in ed w ith screens an d filters L im nol Oceanogr 38372-381 [doi104319lo 19933820372]

Lovegrove T 1966 The d e te rm in a tio n of th e d ry w eigh t of p lan k to n an d th e effect of various factors o n th e values ob ta ined p 429-467 In Som e con tem p o rary studies in m arine science H afner Publ C om p

M ueller J L an d others 2003 O cean optics p ro toco ls for satellite ocean color sensor validation In J L M ueller G S Fargion an d C R M cClain [Eds] Technical M em orandum TM -2003-21621R evision 5 Vol 5 N ational A eronautical an d Space ad m in istra tio n (NASA)

N eukerm ans G 2012 O ptical in situ an d geosta tionary satelshylite-borne observations of suspended particles in coastal w aters PhD d issertation U niversiteacute d u Littoral - Cocircte d O pale W im ereux France A cadem ic an d Scientific Pubshylishers Ravensteingalerij 28 1000 Brussels Belgium ISBN

1022

Neukermans et al Optimizing [SPM] Measurement

978 90 7028 949 2 Perm a-links lth ttp w w w 2m um m ac b e d o w n lo a d s p u b lic a tio n s neukerm an s_ p h d _ co v erp d f gt lth t tp w w w 2 m u m m a c b e d o w n lo a d s p u b l i c a t io n s n eu kerm ans_phd_m anuscrip t_ l 7x24pdfgt

G H Loisel X M eriaux R Astoreca an d D McKee2012 In situ variab ility of mass-specific beam a tten u a tio n an d backscattering of m arine particles w ith respect to p a rshyticle size density an d com position Lim nol Oceanogr 57124-144 [doi104319lo 20125710124]

Pearlm an S R H S Costa R A Jung J J M cKeown an d H E Pearson 1995 Solids (sec 2540) p 2-53-52-64 In A D Eaton L S Clesceri an d A E G reenberg [eds] S tandard m e th o d s for th e ex am in a tio n of w ater an d w astew ater A m erican Public H ealth Association

PML an d ICES 2004 ECASA (Ecosystem A pproach for Susshyta inab le A quaculture) bo o k of protocols Particulate m atte r in seawater P lym outh M arine Laboratory an d In te rn a tio n a l C ouncil for th e E xploration of th e Sea lth ttp w w w ecasa to o lb o x o rg u k th e - to o lb o x e ia -c o u n try b o o k -o f -p ro to - co lsparticu la te-m atter-in -seaw atergt

Sheldon R W 1972 Size separation of m arine seston by m e m b ra n e a n d glass-fiber filte rs L im nol O ceanogr 17494-498 [doi10 4319lo l972 17 3 0494]

an d W H J Sutcliffe 1969 R eten tion of m arine p a rtishycles by screens an d filters L im nol Oceanogr 14441-444 [doi10 4319lo 19691430441]

Stavn R H H J Rick an d A V Falster 2009 C orrecting th e

errors from variable sea salt re te n tio n an d w ater of h y d ra shytio n in loss o n ig n itio n analysis Im plications for studies of estuarine an d coastal w aters Estuar Coast Shelf Sei 81575-582 [doi101016jecss200812017]

Stram ski D E Boss D Bogucki an d K J Voss 2004 The role o f seaw ater co n s titu en ts in ligh t backscattering in the ocean Prog Oceanogr 61 27-56

Strickland J D H an d T R Parsons 1968 A practical h a n d shybook of seaw ater analysis B ulletin 167 Fisheries Research Board of C anada

Tilstone G an d others 2002 REVAMP Regional V alidation of MERIS C h lo rophy ll p roducts in N o rth Sea coastal waters Protocols d ocum en t REVAMP m ethodo log ies - EVG1 - CT - 2001 - 00049 lth ttp en v isa te sa in tw o rk sh o p sm av t_ 2003M AVT-2003_802_REVAM Pprotocols3pdfgt

Trees C C 1978 A nalytical analysis o f effect of dissolved solids o n suspended solids d e term in a tio n J W ater Poll C on tro l Fed 502370-2373

van der Linde D W 1998 P rotocol for th e d e te rm in a tio n of to ta l suspended m a tte r in oceans an d coastal zones Jo in t Research C entre Ispra Technical n o te 198182

York D 1966 Least-squares f ittin g of a straigh t line Can J Phys 441079-1086 [doi101139p66-090]

Submitted 26 May 2012 Revised 5 October 2012

Accepted 18 November 2012

1023

Page 5: LIMNOLOGY and OCEANOGRAPHY: METHODS - vliz.be · Neukermans et al. Optimizing [SPM] Measurement Table 1 . Overview of types of [SPM] procedural control filters and treatments. Filter

Neukermans et al Optimizing [SPM] Measurement

no rim rine

rim rinse

x io

tgtD

-6 -4 -2 0 2 WD (g) x 10

-4

150 200 250 500 1000 2000Vssw (mL)

Fig 2 D ifference in filter w e ig h t before an d after filtration of 250 mL of SSW of 34 PSU w ith an d w ith o u t rinsing of th e filter rim (step 1 3 in p ro shytocol in Fig 1) G ray d ash ed lines rep re sen t u n certa in ty on W D = wa - wb d u e to th e d e tec tio n limit of th e b alance S w bd = 0 1 4 m g

Fig 3 D ifference in filter w e ig h t before an d after filtration versus filtered vo lum e of SSW of 34 PSU N u m b er of o b se rvations for each v o lu m e are 2 6 15 95 5 an d 3 respectively

vo lum es of 02 05 1 an d 2 tim es V t an d every filtra tion was d o n e o n five rep licate filters T was c o n tin u o u sly m o n ishyto red d u rin g th e course of each filtra tio n experim en t to ensure good m ix in g of th e sam pled seawater Table 2 lists th e sam pling tim e an d location salinity tem pera tu re d ep th [C hlo rophy ll a] an d th e m ean an d s tan d ard d ev ia tion of T for each sam pleStatistical analysis

B etw een g ro u p d iffe rences are in v e s tig a ted b y o ne-w ay analysis o f v a rian ce (ANOVA) c o m p a rin g th e m e an s of sevshyeral g roups to te s t th e h y p o th e s is th a t th e y are all th e sam e ag a in s t th e a l te rn a tiv e th a t th e y are n o t all th e sam e To te s t w h ich pairs o f m e an s are s ig n ific an tly d iffe ren t paired - sam p le t te s ts w ere d o n e a t th e 5 sign ificance level A naly shyses w ere ca rried o u t u s in g th e s ta tis tics to o lb o x of MATLAB v R2011b

The d is trib u tio n of observations is illu stra ted graphically w ith boxplo ts The edges of th e box ind icate th e 25 th an d 75 th percentiles w hereas th e m idd le line represen ts th e sam shyple m ed ian The le n g th of th e box is called th e in te rquartile range (IQR) O bservations fu rthe r th a n 15 IQR from th e 25 th an d 75 th percentiles are m arked as ou tliers an d ind ica ted by crosses This range corresponds to plusmn 27 s tandard dev iations an d 993 d ata coverage if n o rm ally d istribu ted The w hiskers ex ten d to m in im u m an d m ax im u m observations th a t are n o t m arked as outliers

Results and discussion

Uncertainties in [SPM] m easurem entS a lt re ten tion testsResults from lab experim en ts w ith SSW show significantly

h igher residual w eigh t (P = 0003 F = 1176 df = 17 ANOVA) w h en th e rim is n o t rinsed (see Fig 2) com pared w ith w hen th e filter rim is rinsed This is in accordance w ith previous w orks th a t stressed th e im portance of rin sing of th e filter rim to flush o u t diffused salts (Strickland an d Parsons 1968 van der Linde 1998)

The vo lum e of SSW filtered was n o t fo u n d to affect SSW b lan k residual w eights (P = 072 F = 057 ANOVA see Fig 3) w h ich were n o t significantly d iffe ren t from zero This suggests th a t salts are w ashed o u t u sing a w ash vo lum e of 400-450 mL of M illiQ in d e p en d e n t o f th e vo lum e of SSW filtered The ind ep en d en ce of residual w eigh t to SSW vo lum e is in accorshydance w ith Stavn et al 2009 w h o fo u n d salt re te n tio n of 11 mg in d e p e n d e n t of vo lum e of seaw ater filtered for a sa lin ity of 34 PSU an d a w ash vo lum e of 300 m L (see the ir Table 1)

The rinsed an d u n rin sed filter for SEMEDS analysis h a d a W D of 0 an d 18 m g respectively SEM p h o to g rap h s of a recshytangu lar area of 172 x 229 m m 2 near th e cen te r of th e rinsed an d u n rin sed filters are show n in Fig 4ad Patches w ith h ig h c o n c en tra tio n s of sea salt are clearly visible in th e u n rin sed filter (Fig 4a) an d absen t in th e rin sed filter (Fig 4d) An

1015

Neukermans et al Optimizing [SPM] Measurement

Detector = CENT Detector = CENTUniversiteacute du Littoral Cocircte dOpale

Miireg

Fig 4 SEM im ages of d ried GFF filters after filtration o f 5 0 0 mL of SSW w ith o u t MilliQ w ash (a b c) an d w ith a MilliQ w ash of 4 5 0 mL (d e f) G rayscale levels d e p ic t a to m ic w eig h t Patches w ith h igh c o n cen tra tio n s of sea salt (exam ple show n in im ag e b) are clearly visible in im ag e a an d a b se n t in im age d A few sea salt particles (w hite circles) w ere identified in ran d o m ly se lec ted zo n es (e f)

exam ple of such a sea salt p a tch (123 x 164 p m 2) is show n in Fig 4b A ran d o m zone of th e sam e size (123 x 164 p m 2) is show n in Fig 4c Fig 4e f show ran d o m 123 x 164 p m 2 zones o n th e rin sed filter o n w h ich 1 an d 2 m icrocrystals of sea salt w ere iden tified respectively This analysis show s th a t a M illiQ w ash vo lum e of 400-450 m L properly flushed diffused salts (Fig 4)

Filter b lanksFig 5 show s th e differences in filter w eigh t before an d after

filtra tion W D = w a - w b for dry M illiQ an d SSW blanks A bout 46 of th e b lan k w eight differences w ere fo u n d w ith in th e u n ce rta in ty o n W D due to th e de tec tion lim it of th e balance Aw hal = 0 14 m g (see Fig 3) The m ed ian absolute value of W Ds for all b lanks is 02 m g w ith 90 of th e values below 06 mg

W Ds w ere n o t significantly d ifferen t betw een b lan k types (P = 021 F = 155 df = 2 ANOVA) in d ica tin g th a t salt is p roperly w ashed out

Even th o u g h n o t statistically significant negative W D are fo u n d m ore frequen tly for M illiQ an d SSW blanks th a n for dry b lanks suggesting th a t friable fractions of glass fiber filters m ay have d islodged du rin g filtra tion w hile these shou ld have been w ashed o u t before filtra tion (step 2 in Fig 1) This process m ay be m itigated by repeating th e pre-ashing w ashshying an d d ry ing of th e filters in th e p rep ara tio n phase (steps 1- 4 in Fig 1) several tim es u n til a co n s tan t w eigh t is achieved S tavn et al (2009) recom m end 3-4 repeat cycles to b e tte r c o n shytro l loss o f filter mass b u t th is m ay n o t en tire ly e lim inate th is p rob lem (Feely et al 1991)

1016

Neukermans et al Optimizing [SPM] Measurement

milliQ

dry

S S W

1 O 1 2 3 4WD (g) x IO

Fig 5 D ifference in filter w e ig h t b efo re an d after filtration W D = wa - wb for d ifferen t blanks co llected a t th e s ta rt an d th e en d of each c a m shypaign b e tw een 2 0 0 7 an d 2 010 G ray d ash ed lines re p re se n t u n certa in ties on W D d u e to th e d e tec tio n limit of th e b a lance (w lxil = 0 1 4 m g)

N o significant differences in W Ds of SSW blanks were found betw een cam paigns in 2007-2010 (P = 011 F = 141 df = 27 ANOVA) ind icating stability of h u m id ity an d tem peratu re co n shyd itions in th e laboratory an d of sam ple trea tm en t

SSW b lan k W Ds are th o u g h t to best reflect p rocedural uncerta in ties associated w ith filtra tion of saline w aters T hereshyfore estim ates o f Awp a t th e 50 an d 90 confidence level are o b ta in ed from th e 5 0 th an d 9 0 th percentiles of absolute W Ds for SSW equal to 02 m g an d 09 m g respectively These are fu rth e r used in th e ca lcu lation of th e op tim al filtra tion v o lshyum e from Eq 4

Sam ple m ixingFig 6a show s th e com parison betw een T recorded before

a n d after filtra tion These m easurem ents m ay be separated by abou t 30 m in an d m ay be affected by nu m ero u s subsam pling opera tions by d iffe ren t p ersonne l tak ing w ater for m eashysu rem en t of SPM ch lo rophy ll an d o r o th e r param eters The m ean bias (= (T^T^-T ^ is close to zero (-2 ) an d sym m etrishycally d istribu ted w ith 90 of th e values betw een -28 an d 23 P rediction error PE = ITa-ThTh is generally betw een 1 an d 39 w ith a m ed ian of 6 In clear w aters (Tb lt 5 FNU) b o th bias an d p red ic tion error d en o ted w ith c subscript show h igher variability due to h igher m easu rem en t u n ce rshyta in ties Also show n in Fig 6a are observations recorded before Ju n e 2008 w h en seaw ater sam ples w ere stirred up w ith a m easuring cy linder an d th e n subsam pled using a 1-L con-

10

10

10

10ldquo

10

n=345 (n=184)

PE=[1639] PEc=[21245] bias=[-28-223] biasc=[-35-640]

n=146 (n = 7 2 )PE=[0676] PEc=[ 112144]

b ias=[-12376] bias =[-129144]

hand mix tumble mix 11

10 10 10T (FNU)

10

10

10

10

ct3

10

10

log10[SPM]=097(plusmn001 )log1()T+-001 (plusmn001)

r=0997(+0001) n=357 nx=33

RMSE=60 FNU M PE=11

log10T=088(plusmn001)log10[SPM ]+014(plusmn002) r=0993(plusmn0003) n=96 n = 5

RM SE=4 0 F N U M PE=8

bull hand mixbull tumble mix x outlier 90 PB

10 10 10

T (FNU)10

Fig 6 (a) C om parison of T befo re an d after filtration w ith statistics g iven using h an d m ixing an d tu m b le m ixing for all o b se rvations an d in clear w ate rs (Tb lt 5 FNU) an d (b) relationsh ip b e tw een T an d [SPM] w ith ty p e II regression an d statistics using h an d m ixing an d tu m b le m ixing The 9 0 p red ic tion b o u n d s of th e regression are also show n Error bars in (a) an d (b) are show n for 5 of th e o b se rvations an d rep re sen t th e s ta n d ard dev iation from rep licate m easu rem en ts of T an d [SPM]

1017

Neukermans et al Optimizing [SPM] M easurement

ta iner te rm ed h a n d m ix ing C om parison of Ta an d Tb for th is datase t is especially poor in clear w ater (Tb lt 5 FNU) w here th e d is trib u tio n of th e bias is strongly positive (90 of th e obsershyvations betw een -12 an d 144 w ith a m ed ian of 9) This suggests co n tam in a tio n of th e w ater sam ple du rin g th e m ix shying procedure possibly by co n tac t w ith th e glove w orn by th e person filtering From Ju n e 2008 onw ards seaw ater sam ples w ere m ixed by g en tly tu m b lin g a closed 10 L co n ta in e r a round several tim es before subsam pling te rm ed tu m b le m ix ing This illustrates th e use of T m easurem ents to detec t p roblem s w ith sam ple m ixingUncertainties in [SPM] measurement from filtration volume

Determ ining optim al filtration volumeA to ta l of 366 m easurem ents of T (= m ean of T m eashy

su rem ents before an d after filtration) an d [SPM] were done O bservations w here on ly on e [SPM] replicate rem ained were rejected (n = 9) Least squares cubic regression gives

log10 [SPM] = 097(plusmn001)log10 T - 001(plusmn001) (5)

The regression statistics an d its 90 pred ic tion b o u n d s are show n in Fig 6b The offset of th e regression line is n o t sigshyn ifican tly d ifferen t from zero for th e tum ble m ix ing dataset w hereas a sign ifican tly positive offset (014 plusmn 002) was fo u n d for th e h an d -m ix in g dataset suggesting sam ple c o n ta m in a shytio n by h a n d m ixing The m odel for [SPM] in Eq 5 perform s well w ith a m ed ian p red ic tion error (MPE) of 11 an d w ith p red ic tion errors below 40 in 95 of th e cases The 90 p re shyd ic tion b o u n d s of th e regression line show n Fig 6b can be used to quality co n tro l [SPM] by flagging data ou tside these boundaries as suspect

For our purposes a m ax im u m u n ce rta in ty of us = 15 on [SPM] is desired The filtra tion vo lum e is o p tim ally set by m easuring T before filtra tion an d using th e regression m odel in Eq 5 to p red ic t [SPM] From Eq 4 it follow s th a t A[SPM] is expected to be below 15 in 50 (90) of th e cases for a filshytra tio n vo lum e V50 (V90) of

50 =Awp 50

015[SPM]and V90 =

Awp 90

015[SPM] (6)

w here Awp50 an d Awp90 are th e 5 0 th an d 9 0 th percentiles of w eigh t differences for SSW blanks ie 02 m g an d 09 mg respectively Table 3 lists V50 an d V90 for T betw een 05 FNU a n d 140 FNU For practical use vo lum es are ro u n d ed to give R(U50) an d R(V90) respectively

M e asu rem en ts of b eam a t te n u a tio n h av e b ee n used recen tly in a sim ilar w ay to estim ate filtra tion vo lum e so th a t particle m ass re ta in ed by po lycarbonate filters was op tim al for scann ing e lectron m icroscopy im age analysis (G roundw ater et al 2012) We no te how ever th a t side scatter largely o u tp e rshyform s beam a tten u a tio n as a proxy for [SPM] (N eukerm ans et al 2012) because of low er sensitiv ity to particle ap p aren t d e n shysity As a consequence [SPM] an d hence op tim al V can be estishym a ted w ith h igher precision from side scatter

Effect o f filtration volume on precision o f [SPM] m eashysurem ent

The filtra tion vo lum e was o p tim ally set based o n T m e ashysurem ents before each filtra tion experim en t u sing R(V90) in Table 3 An overview of experim en tal results is given in Table 4 w h ich also show s th e tim e requ ired to pass a given vo lum e of sam ple th ro u g h five replicate filters N o significant changes in T were fo u n d before an d after each filtra tion expershyim e n t (P gt 005 ANOVA) in d ica tin g good sam ple m ix ing th ro u g h o u t th e experim ents

The coefficient of varia tion cv (= s tandard deviation m ean from five [SPM] replicates) is p lo tted as fu n c tio n of filshytra tio n vo lum e norm alized by V t in Fig 7 Results suggest th a t filtering m ore or less th a n th e op tim al vo lum e gives a low er precision in th e [SPM] m easurem ent except for the m ost tu rb id w ater sam ple MH5 w here cv is low est at tw ice Vopt It can be seen from filtra tion tim es in Table 4 th a t passing tw ice V t was n o t p rob lem atic for th e m ost tu rb id sam ples MH5 an d T w hereas for o th e r sam ples filtra tion tim e at least trip led to exceeding 1 h It is th o u g h t th a t filter clogging m ay be m ore likely in th e presence of o rganic particles

Differences betw een cvs for d ifferen t filtra tion volum es were tested for significance by co m p u tin g cvs for a ran d o m selection of th ree o u t of five replicates w ith o u t rep lacem ent an d repeating th is procedure 100 tim es The m ed ian 10th an d 90th percentiles of each cv datase t are also show n in Fig 7 ANOVA tests show th a t th e cv is significantly higher an d often h igher th a n th e desired precision of 15 w h en on e fifth of th e op tim al vo lum e is filtered th a n w h en larger vo lum es are filtered Cv decreases significantly w h en filtra tion vo lum e is increased to half V t except for sam ple CL Further decrease of cv w h en filtra tion vo lum e is increased to V t is significant a t s ta tions CL WGAB 0924A an d T A sign ifican t increase in cv is observed w h en filtering m ore th a n V t for sam ples WGAB 0924A MOD an d T These sligh t increases in in ter- replicate variab ility m ay be caused by th e h igher like lihood of spraying off particles du rin g rim rin sing (step 13 in Fig 1) w h en filters are sa tu ra ted w ith particles (see Figure 28 in N eukerm ans 2012)

[SPM] m eans w ere in d e p en d e n t of filtra tion volum e as show n in Fig 8 w ith th e excep tion of significantly lower [SPM] for th e sm allest filtra tion vo lum e for sam ples 0924A an d MH5 This could be an effect o f th e reduc tion of th e effecshytive pore size w ith increasing vo lum e This p h e n o m e n o n is know n to be som ew hat unp red ic tab le an d to d ep e n d o n the particle size d is trib u tio n an d th e shape of th e particles in susshyp en sio n (Sheldon an d Sutcliffe 1969 S heldon 1972) as well as p o ten tia lly particle com position (stickiness)

Least-squares regressions of W D versus filtered vo lum e of seaw ater are show n in Fig 9 The offsets of th e regression lines for all sam ples are n o t significantly d ifferen t from zero again ind ica ting th a t salts are p roperly w ashed from th e filters It has been n o te d by Trees 1978 th a t th e re la tionsh ip betw een filtrashytio n vo lum e an d re ta in ed m ass is linear on ly w h en salts are

1018

Neukermans et al Optimizing [SPM] Measurement

Table 3 Example of a lookup tab le for reco m m en d ed filtration vo lum e as function of tu rb id ity so th a t relative uncerta in ty on [SPM] replicates Is w ithin 15 In 50 of th e cases [R(150)] and In 90 of th e cases [R(Vpo)]

T (FNU) [SPM]50 (m gL ) V50 (mL) V90 (mL) R(V50) (mL) R(V90) (mL)

05 050 2673 12027 3000 120001 098 1364 6140 1000 60002 191 697 3134 500 30003 284 470 2115 500 20004 375 356 1600 350 15005 466 286 1289 250 12506 556 240 1080 250 10007 645 207 930 200 10008 735 182 817 200 8009 823 162 729 150 75010 912 146 658 150 60011 1000 133 600 150 60013 1176 113 510 100 50014 1264 105 475 100 50015 1351 99 444 100 40016 1439 93 417 100 40018 1613 83 372 100 40019 1700 78 353 75 37521 1873 71 320 75 30022 1960 68 306 75 30026 2304 58 260 50 25027 2390 56 251 50 25032 2818 47 213 50 20033 2904 46 207 50 20037 3245 41 185 50 20038 3330 40 180 50 20040 3499 38 171 50 17545 3923 34 153 25 15050 4345 31 138 25 15055 4766 28 126 25 12565 5604 24 107 20 11070 6022 22 100 20 10075 6439 21 93 20 9080 6855 19 88 20 9085 7270 18 83 20 8095 8098 16 74 20 70100 8511 16 70 20 70110 9336 14 64 10 60115 9747 14 62 10 60140 11796 11 51 10 50

Table 4 O verview of turbidity T w ith standard deviation AT optim al filtration volum e ob ta ined from R(V ) In Table 3 and tim erequired to pass seaw ater th ro u g h five replicate filters

Filtration tim e (m in)

sam ple T (FNU) AT (FNU) Vopt (mL) 0 2 V ntopt 0 5 Vnntopt Vopt 2 Vopt

Cl 298 032 1500 17 20 29 94WGAB 683 014 1000 13 10 24 640924A 1093 018 500 19 12 15 78Mod 1218 042 500 10 11 16 48T 2553 031 250 20 12 30 25MH5 5330 159 150 6 8 21 18

1019

Neukermans et al Optimizing [SPM] Measurement

sample CL

S 20

05

sample WGAB sample 0924A

sample MOD

S 20

05VV

Opt

35

30

25

20

15

10

5

00 05 1 15 2

sample T

VV

35

30

25

20

15

10

5

00 05 15 21

35

30

25

20

15

10

5

00 05 1 15 2

sample MH535

bull median n=310th-90th percentiles n=3

30

25

20

15

10

5

00 05 15 21

VV

Fig 7 Coefficient o f variation cv (in ) of [SPM] o b ta in ed from five rep licates versus filtration vo lum e norm alized to th e op tim al filtration volum e V Show n in g ray are th e m ed ian 10 th an d 9 0 th percen tiles o f cv o b ta in e d from 100 resam plings w ith o u t re p lacem en t of 3 [SPM] rep licates o u t of 5

w ashed out

ConclusionThis s tudy show s th a t sim ple fast an d low -cost m eashy

surem ents of turbid ity T can be used to op tim ize [SPM] m eashysurem ents M ore specifically tu rb id ity m easurem ents can be used to o p tim ally set th e filtra tion volum e to detec t p roblem s w ith th e m ix ing of th e sam ple du rin g subsam pling for filtrashytio n an d for th e quality co n tro l of [SPM] The re la tionsh ip b etw een T an d op tim al f iltra tion vo lum e is set up using estishym ates of [SPM] m easu rem en t procedural uncerta in ties from b la n k m easurem ents an d a value for m ax im u m allow able u n ce rta in ty o n [SPM] Procedural uncerta in ties w ere assessed from filter b lanks w here syn the tic seaw ater of a typical sa lin shyity is passed th ro u g h rep resen ting uncerta in ties due to filter p repara tion han d lin g an d rin sing of sea salt The use of varishyous types of filter b lanks subjected to d iffe ren t steps in the m easu rem en t procedure m ay help reveal sources of u n ce rshyta in ty In th is study for exam ple differences in w eights of d ry

an d w et filter b lanks suggest th a t friable fractions of glass fiber filters m ay have d islodged d u ring filtra tion This fiber loss m ay be m itigated in th e fu tu re by repeating th e pre-ashing w ashing an d d ry ing steps of filters in th e p rep ara tio n phase u n til co n s tan t w eigh t is achieved B lank filters an d regressions of residual w eight versus filtra tion vo lum e suggest th a t salts are p roperly flushed using a w ash vo lum e of 400-450 mL of M illiQ for w ater sam ples w ith salinities of 33-35 PSU w hile a w ash vo lum e of 300 m L has been show n to be insufficien t (Stavn e t al 2009)

We fu rthe r investigated th e role of filtra tion vo lum e o n th e precision of [SPM] m easu rem en t by filtering vo lum es of seashyw ater rang ing betw een one-fifth an d tw ice th e op tim al filtrashytio n volum e It is show n th a t if th e op tim al vo lum e is filtered [SPM] m easurem ents are m ost precise an d cost effective In m ost cases filtering tw ice th e op tim al vo lum e caused clogging an d trip led filtra tion tim es to over 1 h w h ich is im practical an d p rob lem atic in lim ited sh ip tim e

It is recom m ended th a t each research group establishes

1020

Neukermans et al Optimizing [SPM] M easurement

sample CL sample WGAB sample 0924A

95115

10535

7595

25

5575

020 0 5 0 100

sample MOD200 020 0 5 0 100

sample T150 020 0 5 0 100

sample MH5200

125

^ 115

^ 105

95

0 26 0 50 100 200 020VV

opt

0 60 100VV

opt

200

60

55

50

45

40020 0 53 100 167

VVopt

Fig 8 Boxplot of [SPM] o b ta in e d th ro u g h filtration o f d ifferen t vo lum es of sam p led seaw ate r a t six d ifferen t sta tions

th e ir ow n re la tionsh ip betw een tu rb id ity an d op tim al filtrashytio n vo lum e w h ich is specific to th e type of tu rb id ity in s tru shym e n t (w avelength an d angular response) th e uncerta in ties of th e [SPM] m easu rem en t p rocedure w h ich can be assessed from procedural co n tro l filters th e desired m ax im u m relative variab ility betw een replicates an d th e com position of th e p arshyticles (organic inorganic)

The idea of estim ating op tim al filtra tion vo lum e from tu r shyb id ity (or an o th er su itab ly chosen optical proxy) an d of checkshyin g tu rb id ity before an d after all filtra tion opera tions has been illu stra ted specifically for th e m ass co n c en tra tio n of [SPM] in th is article However th is idea cou ld have m ore general app lishyca tion to im prov ing th e q uality an d th e quality co n tro l for o th e r physical or chem ical properties of [SPM] (eg G ro u n d shyw ater e t al 2012)

ReferencesB ooth B C 1987 Cell breakage in n a n o p h y to p la n k to n d u rshy

ing filtra tion of liv ing organism s Eos 68(50)1723Boss E an d others 2009 C om parison of in h e re n t op tical

properties as a surrogate for particu la te m atte r co n c en tra shy

tio n in coastal w aters L im nol Oceanogr M ethods 7803- 810 [doi104319lom 20097803]

Chavez F P an d o thers 1995 O n th e ch lo rophy ll-a re te n tio n properties of glass-fiber GFF filters F im nol Oceanogr 40428-433 [doi104319lo 19954020428]

Feely R A J H Trefry an d B M onger 1991 Particle sam shyp ling an d preservation p 5 -22 In D C H eard an d D W Spencer [eds] M arine particles analysis an d characterizashytion A m erican G eophysical U n ion

G oldm an J C an d M R D enne tt 1985 Susceptibility of som e m arine p h y to p la n k to n species to cell breakage du rin g filtra tion an d post-filtra tion rinsing J Exp Mar Biol Ecol 8647-58 [doi1010160022-0981 (85)90041-3]

G roundw ater H M S Twardowski H Dierssen A Sciendra an d S Freem an 2012 D eterm in ing size d istribu tions an d com position of particles suspended in w ater a new SEM- EDS p ro toco l w ith va lida tion an d com parison to o the r m e th o d s J A tm os O cean T echno l 29433-449 [doi101175JTECH-D-l 1-000261]

ICES 2004 C hem ical m easurem ents in th e Baltic Sea G uideshylines o n q uality assurance In te rn a tio n a l C ouncil for the

1021

Neukermans et al Optimizing [SPM] Measurement

sample CL sample WGAB sample 0924A12 7 88+050

10WD=800(plusmn076)V+-03 K Iacute0 71 )

87 50+028

6

47 36+052

26 90plusmn 152

00 05 1 15

9

2 71+0398

7

6 W D=266(plusmn065)V+005itll3)

OD rP 5

42 47+033

3107+075

2

1 2 73+064

00 1 2 3

12

1048+07810

WD=1065(plusmn198)V+-001(+gtfU4)

8

6 136+043

4

1056+0672

60plusmn089

00 02 04 06 08 1 12

Qamp

W D=26171+056) V+0

47+099

WD=6048(plusmn595)VWD= 10461+157)V+012(plusmnCK91)

1080+049

131+ 177

5856+092

sample MOD sample T sample MH5

Fig 9 S catterp lo ts o f particu la te d ry m ass (WD = w a - w]j versus filtrate vo lum e V The erro r bars d e n o te th e s ta n d a rd erro r on W D o b ta in ed from 5 replicates The m ean an d s ta n d a rd erro r of [SPM] are also show n for each filtration vo lum e Show n in red are th e regression line an d its eq u a tio n w ith 95 confid en ce intervals of th e coeffic ient estim ates

E xploration of th e Sea ICES T echniques in M arine Envishyro n m en ta l Sciences 35 E Lysiak-Pastuszak an d M Krysell [Eds] lth ttp w w w ic e s d k p u b s t im e s tim e s3 5 T IM E S 35 pdfgt

ISO 1995 G uide to th e expression of u n ce rta in ty in m eashysu rem e n t In te rn a tio n a l S tan d a rd O rg a n isa tio n ISO 1995101

1997 W ater qualitymdashd ete rm in a tio n of suspendedsolids by filtra tion th ro u g h glass-fibre filters In te rn a tio n a l S tandard O rganisation ISO 11923

1999 W ater qualifymdashd ete rm in a tio n of turbid ity In te rshyn a tio n a l S tandard O rganisation ISO 70271999(E)

Kiene R P an d L J L inn 1999 F ilter-type an d sam ple h a n shyd ling affect d e te rm in a tio n of o rganic substrate up take by b a c te r io p la n k to n A quat M icrob Ecol 17311-321 [doi103354am e017311]

Kirst G O 1990 Salinity to lerance of eukaryotic m arine algae A nnu Rev P lan t Physiol P lan t M ol Biol 4121-53

[doi10 1146 annurev pp 41060190000321]Logan B E 1993 Theoretical analysis o f size d istribu tions

de term in ed w ith screens an d filters L im nol Oceanogr 38372-381 [doi104319lo 19933820372]

Lovegrove T 1966 The d e te rm in a tio n of th e d ry w eigh t of p lan k to n an d th e effect of various factors o n th e values ob ta ined p 429-467 In Som e con tem p o rary studies in m arine science H afner Publ C om p

M ueller J L an d others 2003 O cean optics p ro toco ls for satellite ocean color sensor validation In J L M ueller G S Fargion an d C R M cClain [Eds] Technical M em orandum TM -2003-21621R evision 5 Vol 5 N ational A eronautical an d Space ad m in istra tio n (NASA)

N eukerm ans G 2012 O ptical in situ an d geosta tionary satelshylite-borne observations of suspended particles in coastal w aters PhD d issertation U niversiteacute d u Littoral - Cocircte d O pale W im ereux France A cadem ic an d Scientific Pubshylishers Ravensteingalerij 28 1000 Brussels Belgium ISBN

1022

Neukermans et al Optimizing [SPM] Measurement

978 90 7028 949 2 Perm a-links lth ttp w w w 2m um m ac b e d o w n lo a d s p u b lic a tio n s neukerm an s_ p h d _ co v erp d f gt lth t tp w w w 2 m u m m a c b e d o w n lo a d s p u b l i c a t io n s n eu kerm ans_phd_m anuscrip t_ l 7x24pdfgt

G H Loisel X M eriaux R Astoreca an d D McKee2012 In situ variab ility of mass-specific beam a tten u a tio n an d backscattering of m arine particles w ith respect to p a rshyticle size density an d com position Lim nol Oceanogr 57124-144 [doi104319lo 20125710124]

Pearlm an S R H S Costa R A Jung J J M cKeown an d H E Pearson 1995 Solids (sec 2540) p 2-53-52-64 In A D Eaton L S Clesceri an d A E G reenberg [eds] S tandard m e th o d s for th e ex am in a tio n of w ater an d w astew ater A m erican Public H ealth Association

PML an d ICES 2004 ECASA (Ecosystem A pproach for Susshyta inab le A quaculture) bo o k of protocols Particulate m atte r in seawater P lym outh M arine Laboratory an d In te rn a tio n a l C ouncil for th e E xploration of th e Sea lth ttp w w w ecasa to o lb o x o rg u k th e - to o lb o x e ia -c o u n try b o o k -o f -p ro to - co lsparticu la te-m atter-in -seaw atergt

Sheldon R W 1972 Size separation of m arine seston by m e m b ra n e a n d glass-fiber filte rs L im nol O ceanogr 17494-498 [doi10 4319lo l972 17 3 0494]

an d W H J Sutcliffe 1969 R eten tion of m arine p a rtishycles by screens an d filters L im nol Oceanogr 14441-444 [doi10 4319lo 19691430441]

Stavn R H H J Rick an d A V Falster 2009 C orrecting th e

errors from variable sea salt re te n tio n an d w ater of h y d ra shytio n in loss o n ig n itio n analysis Im plications for studies of estuarine an d coastal w aters Estuar Coast Shelf Sei 81575-582 [doi101016jecss200812017]

Stram ski D E Boss D Bogucki an d K J Voss 2004 The role o f seaw ater co n s titu en ts in ligh t backscattering in the ocean Prog Oceanogr 61 27-56

Strickland J D H an d T R Parsons 1968 A practical h a n d shybook of seaw ater analysis B ulletin 167 Fisheries Research Board of C anada

Tilstone G an d others 2002 REVAMP Regional V alidation of MERIS C h lo rophy ll p roducts in N o rth Sea coastal waters Protocols d ocum en t REVAMP m ethodo log ies - EVG1 - CT - 2001 - 00049 lth ttp en v isa te sa in tw o rk sh o p sm av t_ 2003M AVT-2003_802_REVAM Pprotocols3pdfgt

Trees C C 1978 A nalytical analysis o f effect of dissolved solids o n suspended solids d e term in a tio n J W ater Poll C on tro l Fed 502370-2373

van der Linde D W 1998 P rotocol for th e d e te rm in a tio n of to ta l suspended m a tte r in oceans an d coastal zones Jo in t Research C entre Ispra Technical n o te 198182

York D 1966 Least-squares f ittin g of a straigh t line Can J Phys 441079-1086 [doi101139p66-090]

Submitted 26 May 2012 Revised 5 October 2012

Accepted 18 November 2012

1023

Page 6: LIMNOLOGY and OCEANOGRAPHY: METHODS - vliz.be · Neukermans et al. Optimizing [SPM] Measurement Table 1 . Overview of types of [SPM] procedural control filters and treatments. Filter

Neukermans et al Optimizing [SPM] Measurement

Detector = CENT Detector = CENTUniversiteacute du Littoral Cocircte dOpale

Miireg

Fig 4 SEM im ages of d ried GFF filters after filtration o f 5 0 0 mL of SSW w ith o u t MilliQ w ash (a b c) an d w ith a MilliQ w ash of 4 5 0 mL (d e f) G rayscale levels d e p ic t a to m ic w eig h t Patches w ith h igh c o n cen tra tio n s of sea salt (exam ple show n in im ag e b) are clearly visible in im ag e a an d a b se n t in im age d A few sea salt particles (w hite circles) w ere identified in ran d o m ly se lec ted zo n es (e f)

exam ple of such a sea salt p a tch (123 x 164 p m 2) is show n in Fig 4b A ran d o m zone of th e sam e size (123 x 164 p m 2) is show n in Fig 4c Fig 4e f show ran d o m 123 x 164 p m 2 zones o n th e rin sed filter o n w h ich 1 an d 2 m icrocrystals of sea salt w ere iden tified respectively This analysis show s th a t a M illiQ w ash vo lum e of 400-450 m L properly flushed diffused salts (Fig 4)

Filter b lanksFig 5 show s th e differences in filter w eigh t before an d after

filtra tion W D = w a - w b for dry M illiQ an d SSW blanks A bout 46 of th e b lan k w eight differences w ere fo u n d w ith in th e u n ce rta in ty o n W D due to th e de tec tion lim it of th e balance Aw hal = 0 14 m g (see Fig 3) The m ed ian absolute value of W Ds for all b lanks is 02 m g w ith 90 of th e values below 06 mg

W Ds w ere n o t significantly d ifferen t betw een b lan k types (P = 021 F = 155 df = 2 ANOVA) in d ica tin g th a t salt is p roperly w ashed out

Even th o u g h n o t statistically significant negative W D are fo u n d m ore frequen tly for M illiQ an d SSW blanks th a n for dry b lanks suggesting th a t friable fractions of glass fiber filters m ay have d islodged du rin g filtra tion w hile these shou ld have been w ashed o u t before filtra tion (step 2 in Fig 1) This process m ay be m itigated by repeating th e pre-ashing w ashshying an d d ry ing of th e filters in th e p rep ara tio n phase (steps 1- 4 in Fig 1) several tim es u n til a co n s tan t w eigh t is achieved S tavn et al (2009) recom m end 3-4 repeat cycles to b e tte r c o n shytro l loss o f filter mass b u t th is m ay n o t en tire ly e lim inate th is p rob lem (Feely et al 1991)

1016

Neukermans et al Optimizing [SPM] Measurement

milliQ

dry

S S W

1 O 1 2 3 4WD (g) x IO

Fig 5 D ifference in filter w e ig h t b efo re an d after filtration W D = wa - wb for d ifferen t blanks co llected a t th e s ta rt an d th e en d of each c a m shypaign b e tw een 2 0 0 7 an d 2 010 G ray d ash ed lines re p re se n t u n certa in ties on W D d u e to th e d e tec tio n limit of th e b a lance (w lxil = 0 1 4 m g)

N o significant differences in W Ds of SSW blanks were found betw een cam paigns in 2007-2010 (P = 011 F = 141 df = 27 ANOVA) ind icating stability of h u m id ity an d tem peratu re co n shyd itions in th e laboratory an d of sam ple trea tm en t

SSW b lan k W Ds are th o u g h t to best reflect p rocedural uncerta in ties associated w ith filtra tion of saline w aters T hereshyfore estim ates o f Awp a t th e 50 an d 90 confidence level are o b ta in ed from th e 5 0 th an d 9 0 th percentiles of absolute W Ds for SSW equal to 02 m g an d 09 m g respectively These are fu rth e r used in th e ca lcu lation of th e op tim al filtra tion v o lshyum e from Eq 4

Sam ple m ixingFig 6a show s th e com parison betw een T recorded before

a n d after filtra tion These m easurem ents m ay be separated by abou t 30 m in an d m ay be affected by nu m ero u s subsam pling opera tions by d iffe ren t p ersonne l tak ing w ater for m eashysu rem en t of SPM ch lo rophy ll an d o r o th e r param eters The m ean bias (= (T^T^-T ^ is close to zero (-2 ) an d sym m etrishycally d istribu ted w ith 90 of th e values betw een -28 an d 23 P rediction error PE = ITa-ThTh is generally betw een 1 an d 39 w ith a m ed ian of 6 In clear w aters (Tb lt 5 FNU) b o th bias an d p red ic tion error d en o ted w ith c subscript show h igher variability due to h igher m easu rem en t u n ce rshyta in ties Also show n in Fig 6a are observations recorded before Ju n e 2008 w h en seaw ater sam ples w ere stirred up w ith a m easuring cy linder an d th e n subsam pled using a 1-L con-

10

10

10

10ldquo

10

n=345 (n=184)

PE=[1639] PEc=[21245] bias=[-28-223] biasc=[-35-640]

n=146 (n = 7 2 )PE=[0676] PEc=[ 112144]

b ias=[-12376] bias =[-129144]

hand mix tumble mix 11

10 10 10T (FNU)

10

10

10

10

ct3

10

10

log10[SPM]=097(plusmn001 )log1()T+-001 (plusmn001)

r=0997(+0001) n=357 nx=33

RMSE=60 FNU M PE=11

log10T=088(plusmn001)log10[SPM ]+014(plusmn002) r=0993(plusmn0003) n=96 n = 5

RM SE=4 0 F N U M PE=8

bull hand mixbull tumble mix x outlier 90 PB

10 10 10

T (FNU)10

Fig 6 (a) C om parison of T befo re an d after filtration w ith statistics g iven using h an d m ixing an d tu m b le m ixing for all o b se rvations an d in clear w ate rs (Tb lt 5 FNU) an d (b) relationsh ip b e tw een T an d [SPM] w ith ty p e II regression an d statistics using h an d m ixing an d tu m b le m ixing The 9 0 p red ic tion b o u n d s of th e regression are also show n Error bars in (a) an d (b) are show n for 5 of th e o b se rvations an d rep re sen t th e s ta n d ard dev iation from rep licate m easu rem en ts of T an d [SPM]

1017

Neukermans et al Optimizing [SPM] M easurement

ta iner te rm ed h a n d m ix ing C om parison of Ta an d Tb for th is datase t is especially poor in clear w ater (Tb lt 5 FNU) w here th e d is trib u tio n of th e bias is strongly positive (90 of th e obsershyvations betw een -12 an d 144 w ith a m ed ian of 9) This suggests co n tam in a tio n of th e w ater sam ple du rin g th e m ix shying procedure possibly by co n tac t w ith th e glove w orn by th e person filtering From Ju n e 2008 onw ards seaw ater sam ples w ere m ixed by g en tly tu m b lin g a closed 10 L co n ta in e r a round several tim es before subsam pling te rm ed tu m b le m ix ing This illustrates th e use of T m easurem ents to detec t p roblem s w ith sam ple m ixingUncertainties in [SPM] measurement from filtration volume

Determ ining optim al filtration volumeA to ta l of 366 m easurem ents of T (= m ean of T m eashy

su rem ents before an d after filtration) an d [SPM] were done O bservations w here on ly on e [SPM] replicate rem ained were rejected (n = 9) Least squares cubic regression gives

log10 [SPM] = 097(plusmn001)log10 T - 001(plusmn001) (5)

The regression statistics an d its 90 pred ic tion b o u n d s are show n in Fig 6b The offset of th e regression line is n o t sigshyn ifican tly d ifferen t from zero for th e tum ble m ix ing dataset w hereas a sign ifican tly positive offset (014 plusmn 002) was fo u n d for th e h an d -m ix in g dataset suggesting sam ple c o n ta m in a shytio n by h a n d m ixing The m odel for [SPM] in Eq 5 perform s well w ith a m ed ian p red ic tion error (MPE) of 11 an d w ith p red ic tion errors below 40 in 95 of th e cases The 90 p re shyd ic tion b o u n d s of th e regression line show n Fig 6b can be used to quality co n tro l [SPM] by flagging data ou tside these boundaries as suspect

For our purposes a m ax im u m u n ce rta in ty of us = 15 on [SPM] is desired The filtra tion vo lum e is o p tim ally set by m easuring T before filtra tion an d using th e regression m odel in Eq 5 to p red ic t [SPM] From Eq 4 it follow s th a t A[SPM] is expected to be below 15 in 50 (90) of th e cases for a filshytra tio n vo lum e V50 (V90) of

50 =Awp 50

015[SPM]and V90 =

Awp 90

015[SPM] (6)

w here Awp50 an d Awp90 are th e 5 0 th an d 9 0 th percentiles of w eigh t differences for SSW blanks ie 02 m g an d 09 mg respectively Table 3 lists V50 an d V90 for T betw een 05 FNU a n d 140 FNU For practical use vo lum es are ro u n d ed to give R(U50) an d R(V90) respectively

M e asu rem en ts of b eam a t te n u a tio n h av e b ee n used recen tly in a sim ilar w ay to estim ate filtra tion vo lum e so th a t particle m ass re ta in ed by po lycarbonate filters was op tim al for scann ing e lectron m icroscopy im age analysis (G roundw ater et al 2012) We no te how ever th a t side scatter largely o u tp e rshyform s beam a tten u a tio n as a proxy for [SPM] (N eukerm ans et al 2012) because of low er sensitiv ity to particle ap p aren t d e n shysity As a consequence [SPM] an d hence op tim al V can be estishym a ted w ith h igher precision from side scatter

Effect o f filtration volume on precision o f [SPM] m eashysurem ent

The filtra tion vo lum e was o p tim ally set based o n T m e ashysurem ents before each filtra tion experim en t u sing R(V90) in Table 3 An overview of experim en tal results is given in Table 4 w h ich also show s th e tim e requ ired to pass a given vo lum e of sam ple th ro u g h five replicate filters N o significant changes in T were fo u n d before an d after each filtra tion expershyim e n t (P gt 005 ANOVA) in d ica tin g good sam ple m ix ing th ro u g h o u t th e experim ents

The coefficient of varia tion cv (= s tandard deviation m ean from five [SPM] replicates) is p lo tted as fu n c tio n of filshytra tio n vo lum e norm alized by V t in Fig 7 Results suggest th a t filtering m ore or less th a n th e op tim al vo lum e gives a low er precision in th e [SPM] m easurem ent except for the m ost tu rb id w ater sam ple MH5 w here cv is low est at tw ice Vopt It can be seen from filtra tion tim es in Table 4 th a t passing tw ice V t was n o t p rob lem atic for th e m ost tu rb id sam ples MH5 an d T w hereas for o th e r sam ples filtra tion tim e at least trip led to exceeding 1 h It is th o u g h t th a t filter clogging m ay be m ore likely in th e presence of o rganic particles

Differences betw een cvs for d ifferen t filtra tion volum es were tested for significance by co m p u tin g cvs for a ran d o m selection of th ree o u t of five replicates w ith o u t rep lacem ent an d repeating th is procedure 100 tim es The m ed ian 10th an d 90th percentiles of each cv datase t are also show n in Fig 7 ANOVA tests show th a t th e cv is significantly higher an d often h igher th a n th e desired precision of 15 w h en on e fifth of th e op tim al vo lum e is filtered th a n w h en larger vo lum es are filtered Cv decreases significantly w h en filtra tion vo lum e is increased to half V t except for sam ple CL Further decrease of cv w h en filtra tion vo lum e is increased to V t is significant a t s ta tions CL WGAB 0924A an d T A sign ifican t increase in cv is observed w h en filtering m ore th a n V t for sam ples WGAB 0924A MOD an d T These sligh t increases in in ter- replicate variab ility m ay be caused by th e h igher like lihood of spraying off particles du rin g rim rin sing (step 13 in Fig 1) w h en filters are sa tu ra ted w ith particles (see Figure 28 in N eukerm ans 2012)

[SPM] m eans w ere in d e p en d e n t of filtra tion volum e as show n in Fig 8 w ith th e excep tion of significantly lower [SPM] for th e sm allest filtra tion vo lum e for sam ples 0924A an d MH5 This could be an effect o f th e reduc tion of th e effecshytive pore size w ith increasing vo lum e This p h e n o m e n o n is know n to be som ew hat unp red ic tab le an d to d ep e n d o n the particle size d is trib u tio n an d th e shape of th e particles in susshyp en sio n (Sheldon an d Sutcliffe 1969 S heldon 1972) as well as p o ten tia lly particle com position (stickiness)

Least-squares regressions of W D versus filtered vo lum e of seaw ater are show n in Fig 9 The offsets of th e regression lines for all sam ples are n o t significantly d ifferen t from zero again ind ica ting th a t salts are p roperly w ashed from th e filters It has been n o te d by Trees 1978 th a t th e re la tionsh ip betw een filtrashytio n vo lum e an d re ta in ed m ass is linear on ly w h en salts are

1018

Neukermans et al Optimizing [SPM] Measurement

Table 3 Example of a lookup tab le for reco m m en d ed filtration vo lum e as function of tu rb id ity so th a t relative uncerta in ty on [SPM] replicates Is w ithin 15 In 50 of th e cases [R(150)] and In 90 of th e cases [R(Vpo)]

T (FNU) [SPM]50 (m gL ) V50 (mL) V90 (mL) R(V50) (mL) R(V90) (mL)

05 050 2673 12027 3000 120001 098 1364 6140 1000 60002 191 697 3134 500 30003 284 470 2115 500 20004 375 356 1600 350 15005 466 286 1289 250 12506 556 240 1080 250 10007 645 207 930 200 10008 735 182 817 200 8009 823 162 729 150 75010 912 146 658 150 60011 1000 133 600 150 60013 1176 113 510 100 50014 1264 105 475 100 50015 1351 99 444 100 40016 1439 93 417 100 40018 1613 83 372 100 40019 1700 78 353 75 37521 1873 71 320 75 30022 1960 68 306 75 30026 2304 58 260 50 25027 2390 56 251 50 25032 2818 47 213 50 20033 2904 46 207 50 20037 3245 41 185 50 20038 3330 40 180 50 20040 3499 38 171 50 17545 3923 34 153 25 15050 4345 31 138 25 15055 4766 28 126 25 12565 5604 24 107 20 11070 6022 22 100 20 10075 6439 21 93 20 9080 6855 19 88 20 9085 7270 18 83 20 8095 8098 16 74 20 70100 8511 16 70 20 70110 9336 14 64 10 60115 9747 14 62 10 60140 11796 11 51 10 50

Table 4 O verview of turbidity T w ith standard deviation AT optim al filtration volum e ob ta ined from R(V ) In Table 3 and tim erequired to pass seaw ater th ro u g h five replicate filters

Filtration tim e (m in)

sam ple T (FNU) AT (FNU) Vopt (mL) 0 2 V ntopt 0 5 Vnntopt Vopt 2 Vopt

Cl 298 032 1500 17 20 29 94WGAB 683 014 1000 13 10 24 640924A 1093 018 500 19 12 15 78Mod 1218 042 500 10 11 16 48T 2553 031 250 20 12 30 25MH5 5330 159 150 6 8 21 18

1019

Neukermans et al Optimizing [SPM] Measurement

sample CL

S 20

05

sample WGAB sample 0924A

sample MOD

S 20

05VV

Opt

35

30

25

20

15

10

5

00 05 1 15 2

sample T

VV

35

30

25

20

15

10

5

00 05 15 21

35

30

25

20

15

10

5

00 05 1 15 2

sample MH535

bull median n=310th-90th percentiles n=3

30

25

20

15

10

5

00 05 15 21

VV

Fig 7 Coefficient o f variation cv (in ) of [SPM] o b ta in ed from five rep licates versus filtration vo lum e norm alized to th e op tim al filtration volum e V Show n in g ray are th e m ed ian 10 th an d 9 0 th percen tiles o f cv o b ta in e d from 100 resam plings w ith o u t re p lacem en t of 3 [SPM] rep licates o u t of 5

w ashed out

ConclusionThis s tudy show s th a t sim ple fast an d low -cost m eashy

surem ents of turbid ity T can be used to op tim ize [SPM] m eashysurem ents M ore specifically tu rb id ity m easurem ents can be used to o p tim ally set th e filtra tion volum e to detec t p roblem s w ith th e m ix ing of th e sam ple du rin g subsam pling for filtrashytio n an d for th e quality co n tro l of [SPM] The re la tionsh ip b etw een T an d op tim al f iltra tion vo lum e is set up using estishym ates of [SPM] m easu rem en t procedural uncerta in ties from b la n k m easurem ents an d a value for m ax im u m allow able u n ce rta in ty o n [SPM] Procedural uncerta in ties w ere assessed from filter b lanks w here syn the tic seaw ater of a typical sa lin shyity is passed th ro u g h rep resen ting uncerta in ties due to filter p repara tion han d lin g an d rin sing of sea salt The use of varishyous types of filter b lanks subjected to d iffe ren t steps in the m easu rem en t procedure m ay help reveal sources of u n ce rshyta in ty In th is study for exam ple differences in w eights of d ry

an d w et filter b lanks suggest th a t friable fractions of glass fiber filters m ay have d islodged d u ring filtra tion This fiber loss m ay be m itigated in th e fu tu re by repeating th e pre-ashing w ashing an d d ry ing steps of filters in th e p rep ara tio n phase u n til co n s tan t w eigh t is achieved B lank filters an d regressions of residual w eight versus filtra tion vo lum e suggest th a t salts are p roperly flushed using a w ash vo lum e of 400-450 mL of M illiQ for w ater sam ples w ith salinities of 33-35 PSU w hile a w ash vo lum e of 300 m L has been show n to be insufficien t (Stavn e t al 2009)

We fu rthe r investigated th e role of filtra tion vo lum e o n th e precision of [SPM] m easu rem en t by filtering vo lum es of seashyw ater rang ing betw een one-fifth an d tw ice th e op tim al filtrashytio n volum e It is show n th a t if th e op tim al vo lum e is filtered [SPM] m easurem ents are m ost precise an d cost effective In m ost cases filtering tw ice th e op tim al vo lum e caused clogging an d trip led filtra tion tim es to over 1 h w h ich is im practical an d p rob lem atic in lim ited sh ip tim e

It is recom m ended th a t each research group establishes

1020

Neukermans et al Optimizing [SPM] M easurement

sample CL sample WGAB sample 0924A

95115

10535

7595

25

5575

020 0 5 0 100

sample MOD200 020 0 5 0 100

sample T150 020 0 5 0 100

sample MH5200

125

^ 115

^ 105

95

0 26 0 50 100 200 020VV

opt

0 60 100VV

opt

200

60

55

50

45

40020 0 53 100 167

VVopt

Fig 8 Boxplot of [SPM] o b ta in e d th ro u g h filtration o f d ifferen t vo lum es of sam p led seaw ate r a t six d ifferen t sta tions

th e ir ow n re la tionsh ip betw een tu rb id ity an d op tim al filtrashytio n vo lum e w h ich is specific to th e type of tu rb id ity in s tru shym e n t (w avelength an d angular response) th e uncerta in ties of th e [SPM] m easu rem en t p rocedure w h ich can be assessed from procedural co n tro l filters th e desired m ax im u m relative variab ility betw een replicates an d th e com position of th e p arshyticles (organic inorganic)

The idea of estim ating op tim al filtra tion vo lum e from tu r shyb id ity (or an o th er su itab ly chosen optical proxy) an d of checkshyin g tu rb id ity before an d after all filtra tion opera tions has been illu stra ted specifically for th e m ass co n c en tra tio n of [SPM] in th is article However th is idea cou ld have m ore general app lishyca tion to im prov ing th e q uality an d th e quality co n tro l for o th e r physical or chem ical properties of [SPM] (eg G ro u n d shyw ater e t al 2012)

ReferencesB ooth B C 1987 Cell breakage in n a n o p h y to p la n k to n d u rshy

ing filtra tion of liv ing organism s Eos 68(50)1723Boss E an d others 2009 C om parison of in h e re n t op tical

properties as a surrogate for particu la te m atte r co n c en tra shy

tio n in coastal w aters L im nol Oceanogr M ethods 7803- 810 [doi104319lom 20097803]

Chavez F P an d o thers 1995 O n th e ch lo rophy ll-a re te n tio n properties of glass-fiber GFF filters F im nol Oceanogr 40428-433 [doi104319lo 19954020428]

Feely R A J H Trefry an d B M onger 1991 Particle sam shyp ling an d preservation p 5 -22 In D C H eard an d D W Spencer [eds] M arine particles analysis an d characterizashytion A m erican G eophysical U n ion

G oldm an J C an d M R D enne tt 1985 Susceptibility of som e m arine p h y to p la n k to n species to cell breakage du rin g filtra tion an d post-filtra tion rinsing J Exp Mar Biol Ecol 8647-58 [doi1010160022-0981 (85)90041-3]

G roundw ater H M S Twardowski H Dierssen A Sciendra an d S Freem an 2012 D eterm in ing size d istribu tions an d com position of particles suspended in w ater a new SEM- EDS p ro toco l w ith va lida tion an d com parison to o the r m e th o d s J A tm os O cean T echno l 29433-449 [doi101175JTECH-D-l 1-000261]

ICES 2004 C hem ical m easurem ents in th e Baltic Sea G uideshylines o n q uality assurance In te rn a tio n a l C ouncil for the

1021

Neukermans et al Optimizing [SPM] Measurement

sample CL sample WGAB sample 0924A12 7 88+050

10WD=800(plusmn076)V+-03 K Iacute0 71 )

87 50+028

6

47 36+052

26 90plusmn 152

00 05 1 15

9

2 71+0398

7

6 W D=266(plusmn065)V+005itll3)

OD rP 5

42 47+033

3107+075

2

1 2 73+064

00 1 2 3

12

1048+07810

WD=1065(plusmn198)V+-001(+gtfU4)

8

6 136+043

4

1056+0672

60plusmn089

00 02 04 06 08 1 12

Qamp

W D=26171+056) V+0

47+099

WD=6048(plusmn595)VWD= 10461+157)V+012(plusmnCK91)

1080+049

131+ 177

5856+092

sample MOD sample T sample MH5

Fig 9 S catterp lo ts o f particu la te d ry m ass (WD = w a - w]j versus filtrate vo lum e V The erro r bars d e n o te th e s ta n d a rd erro r on W D o b ta in ed from 5 replicates The m ean an d s ta n d a rd erro r of [SPM] are also show n for each filtration vo lum e Show n in red are th e regression line an d its eq u a tio n w ith 95 confid en ce intervals of th e coeffic ient estim ates

E xploration of th e Sea ICES T echniques in M arine Envishyro n m en ta l Sciences 35 E Lysiak-Pastuszak an d M Krysell [Eds] lth ttp w w w ic e s d k p u b s t im e s tim e s3 5 T IM E S 35 pdfgt

ISO 1995 G uide to th e expression of u n ce rta in ty in m eashysu rem e n t In te rn a tio n a l S tan d a rd O rg a n isa tio n ISO 1995101

1997 W ater qualitymdashd ete rm in a tio n of suspendedsolids by filtra tion th ro u g h glass-fibre filters In te rn a tio n a l S tandard O rganisation ISO 11923

1999 W ater qualifymdashd ete rm in a tio n of turbid ity In te rshyn a tio n a l S tandard O rganisation ISO 70271999(E)

Kiene R P an d L J L inn 1999 F ilter-type an d sam ple h a n shyd ling affect d e te rm in a tio n of o rganic substrate up take by b a c te r io p la n k to n A quat M icrob Ecol 17311-321 [doi103354am e017311]

Kirst G O 1990 Salinity to lerance of eukaryotic m arine algae A nnu Rev P lan t Physiol P lan t M ol Biol 4121-53

[doi10 1146 annurev pp 41060190000321]Logan B E 1993 Theoretical analysis o f size d istribu tions

de term in ed w ith screens an d filters L im nol Oceanogr 38372-381 [doi104319lo 19933820372]

Lovegrove T 1966 The d e te rm in a tio n of th e d ry w eigh t of p lan k to n an d th e effect of various factors o n th e values ob ta ined p 429-467 In Som e con tem p o rary studies in m arine science H afner Publ C om p

M ueller J L an d others 2003 O cean optics p ro toco ls for satellite ocean color sensor validation In J L M ueller G S Fargion an d C R M cClain [Eds] Technical M em orandum TM -2003-21621R evision 5 Vol 5 N ational A eronautical an d Space ad m in istra tio n (NASA)

N eukerm ans G 2012 O ptical in situ an d geosta tionary satelshylite-borne observations of suspended particles in coastal w aters PhD d issertation U niversiteacute d u Littoral - Cocircte d O pale W im ereux France A cadem ic an d Scientific Pubshylishers Ravensteingalerij 28 1000 Brussels Belgium ISBN

1022

Neukermans et al Optimizing [SPM] Measurement

978 90 7028 949 2 Perm a-links lth ttp w w w 2m um m ac b e d o w n lo a d s p u b lic a tio n s neukerm an s_ p h d _ co v erp d f gt lth t tp w w w 2 m u m m a c b e d o w n lo a d s p u b l i c a t io n s n eu kerm ans_phd_m anuscrip t_ l 7x24pdfgt

G H Loisel X M eriaux R Astoreca an d D McKee2012 In situ variab ility of mass-specific beam a tten u a tio n an d backscattering of m arine particles w ith respect to p a rshyticle size density an d com position Lim nol Oceanogr 57124-144 [doi104319lo 20125710124]

Pearlm an S R H S Costa R A Jung J J M cKeown an d H E Pearson 1995 Solids (sec 2540) p 2-53-52-64 In A D Eaton L S Clesceri an d A E G reenberg [eds] S tandard m e th o d s for th e ex am in a tio n of w ater an d w astew ater A m erican Public H ealth Association

PML an d ICES 2004 ECASA (Ecosystem A pproach for Susshyta inab le A quaculture) bo o k of protocols Particulate m atte r in seawater P lym outh M arine Laboratory an d In te rn a tio n a l C ouncil for th e E xploration of th e Sea lth ttp w w w ecasa to o lb o x o rg u k th e - to o lb o x e ia -c o u n try b o o k -o f -p ro to - co lsparticu la te-m atter-in -seaw atergt

Sheldon R W 1972 Size separation of m arine seston by m e m b ra n e a n d glass-fiber filte rs L im nol O ceanogr 17494-498 [doi10 4319lo l972 17 3 0494]

an d W H J Sutcliffe 1969 R eten tion of m arine p a rtishycles by screens an d filters L im nol Oceanogr 14441-444 [doi10 4319lo 19691430441]

Stavn R H H J Rick an d A V Falster 2009 C orrecting th e

errors from variable sea salt re te n tio n an d w ater of h y d ra shytio n in loss o n ig n itio n analysis Im plications for studies of estuarine an d coastal w aters Estuar Coast Shelf Sei 81575-582 [doi101016jecss200812017]

Stram ski D E Boss D Bogucki an d K J Voss 2004 The role o f seaw ater co n s titu en ts in ligh t backscattering in the ocean Prog Oceanogr 61 27-56

Strickland J D H an d T R Parsons 1968 A practical h a n d shybook of seaw ater analysis B ulletin 167 Fisheries Research Board of C anada

Tilstone G an d others 2002 REVAMP Regional V alidation of MERIS C h lo rophy ll p roducts in N o rth Sea coastal waters Protocols d ocum en t REVAMP m ethodo log ies - EVG1 - CT - 2001 - 00049 lth ttp en v isa te sa in tw o rk sh o p sm av t_ 2003M AVT-2003_802_REVAM Pprotocols3pdfgt

Trees C C 1978 A nalytical analysis o f effect of dissolved solids o n suspended solids d e term in a tio n J W ater Poll C on tro l Fed 502370-2373

van der Linde D W 1998 P rotocol for th e d e te rm in a tio n of to ta l suspended m a tte r in oceans an d coastal zones Jo in t Research C entre Ispra Technical n o te 198182

York D 1966 Least-squares f ittin g of a straigh t line Can J Phys 441079-1086 [doi101139p66-090]

Submitted 26 May 2012 Revised 5 October 2012

Accepted 18 November 2012

1023

Page 7: LIMNOLOGY and OCEANOGRAPHY: METHODS - vliz.be · Neukermans et al. Optimizing [SPM] Measurement Table 1 . Overview of types of [SPM] procedural control filters and treatments. Filter

Neukermans et al Optimizing [SPM] Measurement

milliQ

dry

S S W

1 O 1 2 3 4WD (g) x IO

Fig 5 D ifference in filter w e ig h t b efo re an d after filtration W D = wa - wb for d ifferen t blanks co llected a t th e s ta rt an d th e en d of each c a m shypaign b e tw een 2 0 0 7 an d 2 010 G ray d ash ed lines re p re se n t u n certa in ties on W D d u e to th e d e tec tio n limit of th e b a lance (w lxil = 0 1 4 m g)

N o significant differences in W Ds of SSW blanks were found betw een cam paigns in 2007-2010 (P = 011 F = 141 df = 27 ANOVA) ind icating stability of h u m id ity an d tem peratu re co n shyd itions in th e laboratory an d of sam ple trea tm en t

SSW b lan k W Ds are th o u g h t to best reflect p rocedural uncerta in ties associated w ith filtra tion of saline w aters T hereshyfore estim ates o f Awp a t th e 50 an d 90 confidence level are o b ta in ed from th e 5 0 th an d 9 0 th percentiles of absolute W Ds for SSW equal to 02 m g an d 09 m g respectively These are fu rth e r used in th e ca lcu lation of th e op tim al filtra tion v o lshyum e from Eq 4

Sam ple m ixingFig 6a show s th e com parison betw een T recorded before

a n d after filtra tion These m easurem ents m ay be separated by abou t 30 m in an d m ay be affected by nu m ero u s subsam pling opera tions by d iffe ren t p ersonne l tak ing w ater for m eashysu rem en t of SPM ch lo rophy ll an d o r o th e r param eters The m ean bias (= (T^T^-T ^ is close to zero (-2 ) an d sym m etrishycally d istribu ted w ith 90 of th e values betw een -28 an d 23 P rediction error PE = ITa-ThTh is generally betw een 1 an d 39 w ith a m ed ian of 6 In clear w aters (Tb lt 5 FNU) b o th bias an d p red ic tion error d en o ted w ith c subscript show h igher variability due to h igher m easu rem en t u n ce rshyta in ties Also show n in Fig 6a are observations recorded before Ju n e 2008 w h en seaw ater sam ples w ere stirred up w ith a m easuring cy linder an d th e n subsam pled using a 1-L con-

10

10

10

10ldquo

10

n=345 (n=184)

PE=[1639] PEc=[21245] bias=[-28-223] biasc=[-35-640]

n=146 (n = 7 2 )PE=[0676] PEc=[ 112144]

b ias=[-12376] bias =[-129144]

hand mix tumble mix 11

10 10 10T (FNU)

10

10

10

10

ct3

10

10

log10[SPM]=097(plusmn001 )log1()T+-001 (plusmn001)

r=0997(+0001) n=357 nx=33

RMSE=60 FNU M PE=11

log10T=088(plusmn001)log10[SPM ]+014(plusmn002) r=0993(plusmn0003) n=96 n = 5

RM SE=4 0 F N U M PE=8

bull hand mixbull tumble mix x outlier 90 PB

10 10 10

T (FNU)10

Fig 6 (a) C om parison of T befo re an d after filtration w ith statistics g iven using h an d m ixing an d tu m b le m ixing for all o b se rvations an d in clear w ate rs (Tb lt 5 FNU) an d (b) relationsh ip b e tw een T an d [SPM] w ith ty p e II regression an d statistics using h an d m ixing an d tu m b le m ixing The 9 0 p red ic tion b o u n d s of th e regression are also show n Error bars in (a) an d (b) are show n for 5 of th e o b se rvations an d rep re sen t th e s ta n d ard dev iation from rep licate m easu rem en ts of T an d [SPM]

1017

Neukermans et al Optimizing [SPM] M easurement

ta iner te rm ed h a n d m ix ing C om parison of Ta an d Tb for th is datase t is especially poor in clear w ater (Tb lt 5 FNU) w here th e d is trib u tio n of th e bias is strongly positive (90 of th e obsershyvations betw een -12 an d 144 w ith a m ed ian of 9) This suggests co n tam in a tio n of th e w ater sam ple du rin g th e m ix shying procedure possibly by co n tac t w ith th e glove w orn by th e person filtering From Ju n e 2008 onw ards seaw ater sam ples w ere m ixed by g en tly tu m b lin g a closed 10 L co n ta in e r a round several tim es before subsam pling te rm ed tu m b le m ix ing This illustrates th e use of T m easurem ents to detec t p roblem s w ith sam ple m ixingUncertainties in [SPM] measurement from filtration volume

Determ ining optim al filtration volumeA to ta l of 366 m easurem ents of T (= m ean of T m eashy

su rem ents before an d after filtration) an d [SPM] were done O bservations w here on ly on e [SPM] replicate rem ained were rejected (n = 9) Least squares cubic regression gives

log10 [SPM] = 097(plusmn001)log10 T - 001(plusmn001) (5)

The regression statistics an d its 90 pred ic tion b o u n d s are show n in Fig 6b The offset of th e regression line is n o t sigshyn ifican tly d ifferen t from zero for th e tum ble m ix ing dataset w hereas a sign ifican tly positive offset (014 plusmn 002) was fo u n d for th e h an d -m ix in g dataset suggesting sam ple c o n ta m in a shytio n by h a n d m ixing The m odel for [SPM] in Eq 5 perform s well w ith a m ed ian p red ic tion error (MPE) of 11 an d w ith p red ic tion errors below 40 in 95 of th e cases The 90 p re shyd ic tion b o u n d s of th e regression line show n Fig 6b can be used to quality co n tro l [SPM] by flagging data ou tside these boundaries as suspect

For our purposes a m ax im u m u n ce rta in ty of us = 15 on [SPM] is desired The filtra tion vo lum e is o p tim ally set by m easuring T before filtra tion an d using th e regression m odel in Eq 5 to p red ic t [SPM] From Eq 4 it follow s th a t A[SPM] is expected to be below 15 in 50 (90) of th e cases for a filshytra tio n vo lum e V50 (V90) of

50 =Awp 50

015[SPM]and V90 =

Awp 90

015[SPM] (6)

w here Awp50 an d Awp90 are th e 5 0 th an d 9 0 th percentiles of w eigh t differences for SSW blanks ie 02 m g an d 09 mg respectively Table 3 lists V50 an d V90 for T betw een 05 FNU a n d 140 FNU For practical use vo lum es are ro u n d ed to give R(U50) an d R(V90) respectively

M e asu rem en ts of b eam a t te n u a tio n h av e b ee n used recen tly in a sim ilar w ay to estim ate filtra tion vo lum e so th a t particle m ass re ta in ed by po lycarbonate filters was op tim al for scann ing e lectron m icroscopy im age analysis (G roundw ater et al 2012) We no te how ever th a t side scatter largely o u tp e rshyform s beam a tten u a tio n as a proxy for [SPM] (N eukerm ans et al 2012) because of low er sensitiv ity to particle ap p aren t d e n shysity As a consequence [SPM] an d hence op tim al V can be estishym a ted w ith h igher precision from side scatter

Effect o f filtration volume on precision o f [SPM] m eashysurem ent

The filtra tion vo lum e was o p tim ally set based o n T m e ashysurem ents before each filtra tion experim en t u sing R(V90) in Table 3 An overview of experim en tal results is given in Table 4 w h ich also show s th e tim e requ ired to pass a given vo lum e of sam ple th ro u g h five replicate filters N o significant changes in T were fo u n d before an d after each filtra tion expershyim e n t (P gt 005 ANOVA) in d ica tin g good sam ple m ix ing th ro u g h o u t th e experim ents

The coefficient of varia tion cv (= s tandard deviation m ean from five [SPM] replicates) is p lo tted as fu n c tio n of filshytra tio n vo lum e norm alized by V t in Fig 7 Results suggest th a t filtering m ore or less th a n th e op tim al vo lum e gives a low er precision in th e [SPM] m easurem ent except for the m ost tu rb id w ater sam ple MH5 w here cv is low est at tw ice Vopt It can be seen from filtra tion tim es in Table 4 th a t passing tw ice V t was n o t p rob lem atic for th e m ost tu rb id sam ples MH5 an d T w hereas for o th e r sam ples filtra tion tim e at least trip led to exceeding 1 h It is th o u g h t th a t filter clogging m ay be m ore likely in th e presence of o rganic particles

Differences betw een cvs for d ifferen t filtra tion volum es were tested for significance by co m p u tin g cvs for a ran d o m selection of th ree o u t of five replicates w ith o u t rep lacem ent an d repeating th is procedure 100 tim es The m ed ian 10th an d 90th percentiles of each cv datase t are also show n in Fig 7 ANOVA tests show th a t th e cv is significantly higher an d often h igher th a n th e desired precision of 15 w h en on e fifth of th e op tim al vo lum e is filtered th a n w h en larger vo lum es are filtered Cv decreases significantly w h en filtra tion vo lum e is increased to half V t except for sam ple CL Further decrease of cv w h en filtra tion vo lum e is increased to V t is significant a t s ta tions CL WGAB 0924A an d T A sign ifican t increase in cv is observed w h en filtering m ore th a n V t for sam ples WGAB 0924A MOD an d T These sligh t increases in in ter- replicate variab ility m ay be caused by th e h igher like lihood of spraying off particles du rin g rim rin sing (step 13 in Fig 1) w h en filters are sa tu ra ted w ith particles (see Figure 28 in N eukerm ans 2012)

[SPM] m eans w ere in d e p en d e n t of filtra tion volum e as show n in Fig 8 w ith th e excep tion of significantly lower [SPM] for th e sm allest filtra tion vo lum e for sam ples 0924A an d MH5 This could be an effect o f th e reduc tion of th e effecshytive pore size w ith increasing vo lum e This p h e n o m e n o n is know n to be som ew hat unp red ic tab le an d to d ep e n d o n the particle size d is trib u tio n an d th e shape of th e particles in susshyp en sio n (Sheldon an d Sutcliffe 1969 S heldon 1972) as well as p o ten tia lly particle com position (stickiness)

Least-squares regressions of W D versus filtered vo lum e of seaw ater are show n in Fig 9 The offsets of th e regression lines for all sam ples are n o t significantly d ifferen t from zero again ind ica ting th a t salts are p roperly w ashed from th e filters It has been n o te d by Trees 1978 th a t th e re la tionsh ip betw een filtrashytio n vo lum e an d re ta in ed m ass is linear on ly w h en salts are

1018

Neukermans et al Optimizing [SPM] Measurement

Table 3 Example of a lookup tab le for reco m m en d ed filtration vo lum e as function of tu rb id ity so th a t relative uncerta in ty on [SPM] replicates Is w ithin 15 In 50 of th e cases [R(150)] and In 90 of th e cases [R(Vpo)]

T (FNU) [SPM]50 (m gL ) V50 (mL) V90 (mL) R(V50) (mL) R(V90) (mL)

05 050 2673 12027 3000 120001 098 1364 6140 1000 60002 191 697 3134 500 30003 284 470 2115 500 20004 375 356 1600 350 15005 466 286 1289 250 12506 556 240 1080 250 10007 645 207 930 200 10008 735 182 817 200 8009 823 162 729 150 75010 912 146 658 150 60011 1000 133 600 150 60013 1176 113 510 100 50014 1264 105 475 100 50015 1351 99 444 100 40016 1439 93 417 100 40018 1613 83 372 100 40019 1700 78 353 75 37521 1873 71 320 75 30022 1960 68 306 75 30026 2304 58 260 50 25027 2390 56 251 50 25032 2818 47 213 50 20033 2904 46 207 50 20037 3245 41 185 50 20038 3330 40 180 50 20040 3499 38 171 50 17545 3923 34 153 25 15050 4345 31 138 25 15055 4766 28 126 25 12565 5604 24 107 20 11070 6022 22 100 20 10075 6439 21 93 20 9080 6855 19 88 20 9085 7270 18 83 20 8095 8098 16 74 20 70100 8511 16 70 20 70110 9336 14 64 10 60115 9747 14 62 10 60140 11796 11 51 10 50

Table 4 O verview of turbidity T w ith standard deviation AT optim al filtration volum e ob ta ined from R(V ) In Table 3 and tim erequired to pass seaw ater th ro u g h five replicate filters

Filtration tim e (m in)

sam ple T (FNU) AT (FNU) Vopt (mL) 0 2 V ntopt 0 5 Vnntopt Vopt 2 Vopt

Cl 298 032 1500 17 20 29 94WGAB 683 014 1000 13 10 24 640924A 1093 018 500 19 12 15 78Mod 1218 042 500 10 11 16 48T 2553 031 250 20 12 30 25MH5 5330 159 150 6 8 21 18

1019

Neukermans et al Optimizing [SPM] Measurement

sample CL

S 20

05

sample WGAB sample 0924A

sample MOD

S 20

05VV

Opt

35

30

25

20

15

10

5

00 05 1 15 2

sample T

VV

35

30

25

20

15

10

5

00 05 15 21

35

30

25

20

15

10

5

00 05 1 15 2

sample MH535

bull median n=310th-90th percentiles n=3

30

25

20

15

10

5

00 05 15 21

VV

Fig 7 Coefficient o f variation cv (in ) of [SPM] o b ta in ed from five rep licates versus filtration vo lum e norm alized to th e op tim al filtration volum e V Show n in g ray are th e m ed ian 10 th an d 9 0 th percen tiles o f cv o b ta in e d from 100 resam plings w ith o u t re p lacem en t of 3 [SPM] rep licates o u t of 5

w ashed out

ConclusionThis s tudy show s th a t sim ple fast an d low -cost m eashy

surem ents of turbid ity T can be used to op tim ize [SPM] m eashysurem ents M ore specifically tu rb id ity m easurem ents can be used to o p tim ally set th e filtra tion volum e to detec t p roblem s w ith th e m ix ing of th e sam ple du rin g subsam pling for filtrashytio n an d for th e quality co n tro l of [SPM] The re la tionsh ip b etw een T an d op tim al f iltra tion vo lum e is set up using estishym ates of [SPM] m easu rem en t procedural uncerta in ties from b la n k m easurem ents an d a value for m ax im u m allow able u n ce rta in ty o n [SPM] Procedural uncerta in ties w ere assessed from filter b lanks w here syn the tic seaw ater of a typical sa lin shyity is passed th ro u g h rep resen ting uncerta in ties due to filter p repara tion han d lin g an d rin sing of sea salt The use of varishyous types of filter b lanks subjected to d iffe ren t steps in the m easu rem en t procedure m ay help reveal sources of u n ce rshyta in ty In th is study for exam ple differences in w eights of d ry

an d w et filter b lanks suggest th a t friable fractions of glass fiber filters m ay have d islodged d u ring filtra tion This fiber loss m ay be m itigated in th e fu tu re by repeating th e pre-ashing w ashing an d d ry ing steps of filters in th e p rep ara tio n phase u n til co n s tan t w eigh t is achieved B lank filters an d regressions of residual w eight versus filtra tion vo lum e suggest th a t salts are p roperly flushed using a w ash vo lum e of 400-450 mL of M illiQ for w ater sam ples w ith salinities of 33-35 PSU w hile a w ash vo lum e of 300 m L has been show n to be insufficien t (Stavn e t al 2009)

We fu rthe r investigated th e role of filtra tion vo lum e o n th e precision of [SPM] m easu rem en t by filtering vo lum es of seashyw ater rang ing betw een one-fifth an d tw ice th e op tim al filtrashytio n volum e It is show n th a t if th e op tim al vo lum e is filtered [SPM] m easurem ents are m ost precise an d cost effective In m ost cases filtering tw ice th e op tim al vo lum e caused clogging an d trip led filtra tion tim es to over 1 h w h ich is im practical an d p rob lem atic in lim ited sh ip tim e

It is recom m ended th a t each research group establishes

1020

Neukermans et al Optimizing [SPM] M easurement

sample CL sample WGAB sample 0924A

95115

10535

7595

25

5575

020 0 5 0 100

sample MOD200 020 0 5 0 100

sample T150 020 0 5 0 100

sample MH5200

125

^ 115

^ 105

95

0 26 0 50 100 200 020VV

opt

0 60 100VV

opt

200

60

55

50

45

40020 0 53 100 167

VVopt

Fig 8 Boxplot of [SPM] o b ta in e d th ro u g h filtration o f d ifferen t vo lum es of sam p led seaw ate r a t six d ifferen t sta tions

th e ir ow n re la tionsh ip betw een tu rb id ity an d op tim al filtrashytio n vo lum e w h ich is specific to th e type of tu rb id ity in s tru shym e n t (w avelength an d angular response) th e uncerta in ties of th e [SPM] m easu rem en t p rocedure w h ich can be assessed from procedural co n tro l filters th e desired m ax im u m relative variab ility betw een replicates an d th e com position of th e p arshyticles (organic inorganic)

The idea of estim ating op tim al filtra tion vo lum e from tu r shyb id ity (or an o th er su itab ly chosen optical proxy) an d of checkshyin g tu rb id ity before an d after all filtra tion opera tions has been illu stra ted specifically for th e m ass co n c en tra tio n of [SPM] in th is article However th is idea cou ld have m ore general app lishyca tion to im prov ing th e q uality an d th e quality co n tro l for o th e r physical or chem ical properties of [SPM] (eg G ro u n d shyw ater e t al 2012)

ReferencesB ooth B C 1987 Cell breakage in n a n o p h y to p la n k to n d u rshy

ing filtra tion of liv ing organism s Eos 68(50)1723Boss E an d others 2009 C om parison of in h e re n t op tical

properties as a surrogate for particu la te m atte r co n c en tra shy

tio n in coastal w aters L im nol Oceanogr M ethods 7803- 810 [doi104319lom 20097803]

Chavez F P an d o thers 1995 O n th e ch lo rophy ll-a re te n tio n properties of glass-fiber GFF filters F im nol Oceanogr 40428-433 [doi104319lo 19954020428]

Feely R A J H Trefry an d B M onger 1991 Particle sam shyp ling an d preservation p 5 -22 In D C H eard an d D W Spencer [eds] M arine particles analysis an d characterizashytion A m erican G eophysical U n ion

G oldm an J C an d M R D enne tt 1985 Susceptibility of som e m arine p h y to p la n k to n species to cell breakage du rin g filtra tion an d post-filtra tion rinsing J Exp Mar Biol Ecol 8647-58 [doi1010160022-0981 (85)90041-3]

G roundw ater H M S Twardowski H Dierssen A Sciendra an d S Freem an 2012 D eterm in ing size d istribu tions an d com position of particles suspended in w ater a new SEM- EDS p ro toco l w ith va lida tion an d com parison to o the r m e th o d s J A tm os O cean T echno l 29433-449 [doi101175JTECH-D-l 1-000261]

ICES 2004 C hem ical m easurem ents in th e Baltic Sea G uideshylines o n q uality assurance In te rn a tio n a l C ouncil for the

1021

Neukermans et al Optimizing [SPM] Measurement

sample CL sample WGAB sample 0924A12 7 88+050

10WD=800(plusmn076)V+-03 K Iacute0 71 )

87 50+028

6

47 36+052

26 90plusmn 152

00 05 1 15

9

2 71+0398

7

6 W D=266(plusmn065)V+005itll3)

OD rP 5

42 47+033

3107+075

2

1 2 73+064

00 1 2 3

12

1048+07810

WD=1065(plusmn198)V+-001(+gtfU4)

8

6 136+043

4

1056+0672

60plusmn089

00 02 04 06 08 1 12

Qamp

W D=26171+056) V+0

47+099

WD=6048(plusmn595)VWD= 10461+157)V+012(plusmnCK91)

1080+049

131+ 177

5856+092

sample MOD sample T sample MH5

Fig 9 S catterp lo ts o f particu la te d ry m ass (WD = w a - w]j versus filtrate vo lum e V The erro r bars d e n o te th e s ta n d a rd erro r on W D o b ta in ed from 5 replicates The m ean an d s ta n d a rd erro r of [SPM] are also show n for each filtration vo lum e Show n in red are th e regression line an d its eq u a tio n w ith 95 confid en ce intervals of th e coeffic ient estim ates

E xploration of th e Sea ICES T echniques in M arine Envishyro n m en ta l Sciences 35 E Lysiak-Pastuszak an d M Krysell [Eds] lth ttp w w w ic e s d k p u b s t im e s tim e s3 5 T IM E S 35 pdfgt

ISO 1995 G uide to th e expression of u n ce rta in ty in m eashysu rem e n t In te rn a tio n a l S tan d a rd O rg a n isa tio n ISO 1995101

1997 W ater qualitymdashd ete rm in a tio n of suspendedsolids by filtra tion th ro u g h glass-fibre filters In te rn a tio n a l S tandard O rganisation ISO 11923

1999 W ater qualifymdashd ete rm in a tio n of turbid ity In te rshyn a tio n a l S tandard O rganisation ISO 70271999(E)

Kiene R P an d L J L inn 1999 F ilter-type an d sam ple h a n shyd ling affect d e te rm in a tio n of o rganic substrate up take by b a c te r io p la n k to n A quat M icrob Ecol 17311-321 [doi103354am e017311]

Kirst G O 1990 Salinity to lerance of eukaryotic m arine algae A nnu Rev P lan t Physiol P lan t M ol Biol 4121-53

[doi10 1146 annurev pp 41060190000321]Logan B E 1993 Theoretical analysis o f size d istribu tions

de term in ed w ith screens an d filters L im nol Oceanogr 38372-381 [doi104319lo 19933820372]

Lovegrove T 1966 The d e te rm in a tio n of th e d ry w eigh t of p lan k to n an d th e effect of various factors o n th e values ob ta ined p 429-467 In Som e con tem p o rary studies in m arine science H afner Publ C om p

M ueller J L an d others 2003 O cean optics p ro toco ls for satellite ocean color sensor validation In J L M ueller G S Fargion an d C R M cClain [Eds] Technical M em orandum TM -2003-21621R evision 5 Vol 5 N ational A eronautical an d Space ad m in istra tio n (NASA)

N eukerm ans G 2012 O ptical in situ an d geosta tionary satelshylite-borne observations of suspended particles in coastal w aters PhD d issertation U niversiteacute d u Littoral - Cocircte d O pale W im ereux France A cadem ic an d Scientific Pubshylishers Ravensteingalerij 28 1000 Brussels Belgium ISBN

1022

Neukermans et al Optimizing [SPM] Measurement

978 90 7028 949 2 Perm a-links lth ttp w w w 2m um m ac b e d o w n lo a d s p u b lic a tio n s neukerm an s_ p h d _ co v erp d f gt lth t tp w w w 2 m u m m a c b e d o w n lo a d s p u b l i c a t io n s n eu kerm ans_phd_m anuscrip t_ l 7x24pdfgt

G H Loisel X M eriaux R Astoreca an d D McKee2012 In situ variab ility of mass-specific beam a tten u a tio n an d backscattering of m arine particles w ith respect to p a rshyticle size density an d com position Lim nol Oceanogr 57124-144 [doi104319lo 20125710124]

Pearlm an S R H S Costa R A Jung J J M cKeown an d H E Pearson 1995 Solids (sec 2540) p 2-53-52-64 In A D Eaton L S Clesceri an d A E G reenberg [eds] S tandard m e th o d s for th e ex am in a tio n of w ater an d w astew ater A m erican Public H ealth Association

PML an d ICES 2004 ECASA (Ecosystem A pproach for Susshyta inab le A quaculture) bo o k of protocols Particulate m atte r in seawater P lym outh M arine Laboratory an d In te rn a tio n a l C ouncil for th e E xploration of th e Sea lth ttp w w w ecasa to o lb o x o rg u k th e - to o lb o x e ia -c o u n try b o o k -o f -p ro to - co lsparticu la te-m atter-in -seaw atergt

Sheldon R W 1972 Size separation of m arine seston by m e m b ra n e a n d glass-fiber filte rs L im nol O ceanogr 17494-498 [doi10 4319lo l972 17 3 0494]

an d W H J Sutcliffe 1969 R eten tion of m arine p a rtishycles by screens an d filters L im nol Oceanogr 14441-444 [doi10 4319lo 19691430441]

Stavn R H H J Rick an d A V Falster 2009 C orrecting th e

errors from variable sea salt re te n tio n an d w ater of h y d ra shytio n in loss o n ig n itio n analysis Im plications for studies of estuarine an d coastal w aters Estuar Coast Shelf Sei 81575-582 [doi101016jecss200812017]

Stram ski D E Boss D Bogucki an d K J Voss 2004 The role o f seaw ater co n s titu en ts in ligh t backscattering in the ocean Prog Oceanogr 61 27-56

Strickland J D H an d T R Parsons 1968 A practical h a n d shybook of seaw ater analysis B ulletin 167 Fisheries Research Board of C anada

Tilstone G an d others 2002 REVAMP Regional V alidation of MERIS C h lo rophy ll p roducts in N o rth Sea coastal waters Protocols d ocum en t REVAMP m ethodo log ies - EVG1 - CT - 2001 - 00049 lth ttp en v isa te sa in tw o rk sh o p sm av t_ 2003M AVT-2003_802_REVAM Pprotocols3pdfgt

Trees C C 1978 A nalytical analysis o f effect of dissolved solids o n suspended solids d e term in a tio n J W ater Poll C on tro l Fed 502370-2373

van der Linde D W 1998 P rotocol for th e d e te rm in a tio n of to ta l suspended m a tte r in oceans an d coastal zones Jo in t Research C entre Ispra Technical n o te 198182

York D 1966 Least-squares f ittin g of a straigh t line Can J Phys 441079-1086 [doi101139p66-090]

Submitted 26 May 2012 Revised 5 October 2012

Accepted 18 November 2012

1023

Page 8: LIMNOLOGY and OCEANOGRAPHY: METHODS - vliz.be · Neukermans et al. Optimizing [SPM] Measurement Table 1 . Overview of types of [SPM] procedural control filters and treatments. Filter

Neukermans et al Optimizing [SPM] M easurement

ta iner te rm ed h a n d m ix ing C om parison of Ta an d Tb for th is datase t is especially poor in clear w ater (Tb lt 5 FNU) w here th e d is trib u tio n of th e bias is strongly positive (90 of th e obsershyvations betw een -12 an d 144 w ith a m ed ian of 9) This suggests co n tam in a tio n of th e w ater sam ple du rin g th e m ix shying procedure possibly by co n tac t w ith th e glove w orn by th e person filtering From Ju n e 2008 onw ards seaw ater sam ples w ere m ixed by g en tly tu m b lin g a closed 10 L co n ta in e r a round several tim es before subsam pling te rm ed tu m b le m ix ing This illustrates th e use of T m easurem ents to detec t p roblem s w ith sam ple m ixingUncertainties in [SPM] measurement from filtration volume

Determ ining optim al filtration volumeA to ta l of 366 m easurem ents of T (= m ean of T m eashy

su rem ents before an d after filtration) an d [SPM] were done O bservations w here on ly on e [SPM] replicate rem ained were rejected (n = 9) Least squares cubic regression gives

log10 [SPM] = 097(plusmn001)log10 T - 001(plusmn001) (5)

The regression statistics an d its 90 pred ic tion b o u n d s are show n in Fig 6b The offset of th e regression line is n o t sigshyn ifican tly d ifferen t from zero for th e tum ble m ix ing dataset w hereas a sign ifican tly positive offset (014 plusmn 002) was fo u n d for th e h an d -m ix in g dataset suggesting sam ple c o n ta m in a shytio n by h a n d m ixing The m odel for [SPM] in Eq 5 perform s well w ith a m ed ian p red ic tion error (MPE) of 11 an d w ith p red ic tion errors below 40 in 95 of th e cases The 90 p re shyd ic tion b o u n d s of th e regression line show n Fig 6b can be used to quality co n tro l [SPM] by flagging data ou tside these boundaries as suspect

For our purposes a m ax im u m u n ce rta in ty of us = 15 on [SPM] is desired The filtra tion vo lum e is o p tim ally set by m easuring T before filtra tion an d using th e regression m odel in Eq 5 to p red ic t [SPM] From Eq 4 it follow s th a t A[SPM] is expected to be below 15 in 50 (90) of th e cases for a filshytra tio n vo lum e V50 (V90) of

50 =Awp 50

015[SPM]and V90 =

Awp 90

015[SPM] (6)

w here Awp50 an d Awp90 are th e 5 0 th an d 9 0 th percentiles of w eigh t differences for SSW blanks ie 02 m g an d 09 mg respectively Table 3 lists V50 an d V90 for T betw een 05 FNU a n d 140 FNU For practical use vo lum es are ro u n d ed to give R(U50) an d R(V90) respectively

M e asu rem en ts of b eam a t te n u a tio n h av e b ee n used recen tly in a sim ilar w ay to estim ate filtra tion vo lum e so th a t particle m ass re ta in ed by po lycarbonate filters was op tim al for scann ing e lectron m icroscopy im age analysis (G roundw ater et al 2012) We no te how ever th a t side scatter largely o u tp e rshyform s beam a tten u a tio n as a proxy for [SPM] (N eukerm ans et al 2012) because of low er sensitiv ity to particle ap p aren t d e n shysity As a consequence [SPM] an d hence op tim al V can be estishym a ted w ith h igher precision from side scatter

Effect o f filtration volume on precision o f [SPM] m eashysurem ent

The filtra tion vo lum e was o p tim ally set based o n T m e ashysurem ents before each filtra tion experim en t u sing R(V90) in Table 3 An overview of experim en tal results is given in Table 4 w h ich also show s th e tim e requ ired to pass a given vo lum e of sam ple th ro u g h five replicate filters N o significant changes in T were fo u n d before an d after each filtra tion expershyim e n t (P gt 005 ANOVA) in d ica tin g good sam ple m ix ing th ro u g h o u t th e experim ents

The coefficient of varia tion cv (= s tandard deviation m ean from five [SPM] replicates) is p lo tted as fu n c tio n of filshytra tio n vo lum e norm alized by V t in Fig 7 Results suggest th a t filtering m ore or less th a n th e op tim al vo lum e gives a low er precision in th e [SPM] m easurem ent except for the m ost tu rb id w ater sam ple MH5 w here cv is low est at tw ice Vopt It can be seen from filtra tion tim es in Table 4 th a t passing tw ice V t was n o t p rob lem atic for th e m ost tu rb id sam ples MH5 an d T w hereas for o th e r sam ples filtra tion tim e at least trip led to exceeding 1 h It is th o u g h t th a t filter clogging m ay be m ore likely in th e presence of o rganic particles

Differences betw een cvs for d ifferen t filtra tion volum es were tested for significance by co m p u tin g cvs for a ran d o m selection of th ree o u t of five replicates w ith o u t rep lacem ent an d repeating th is procedure 100 tim es The m ed ian 10th an d 90th percentiles of each cv datase t are also show n in Fig 7 ANOVA tests show th a t th e cv is significantly higher an d often h igher th a n th e desired precision of 15 w h en on e fifth of th e op tim al vo lum e is filtered th a n w h en larger vo lum es are filtered Cv decreases significantly w h en filtra tion vo lum e is increased to half V t except for sam ple CL Further decrease of cv w h en filtra tion vo lum e is increased to V t is significant a t s ta tions CL WGAB 0924A an d T A sign ifican t increase in cv is observed w h en filtering m ore th a n V t for sam ples WGAB 0924A MOD an d T These sligh t increases in in ter- replicate variab ility m ay be caused by th e h igher like lihood of spraying off particles du rin g rim rin sing (step 13 in Fig 1) w h en filters are sa tu ra ted w ith particles (see Figure 28 in N eukerm ans 2012)

[SPM] m eans w ere in d e p en d e n t of filtra tion volum e as show n in Fig 8 w ith th e excep tion of significantly lower [SPM] for th e sm allest filtra tion vo lum e for sam ples 0924A an d MH5 This could be an effect o f th e reduc tion of th e effecshytive pore size w ith increasing vo lum e This p h e n o m e n o n is know n to be som ew hat unp red ic tab le an d to d ep e n d o n the particle size d is trib u tio n an d th e shape of th e particles in susshyp en sio n (Sheldon an d Sutcliffe 1969 S heldon 1972) as well as p o ten tia lly particle com position (stickiness)

Least-squares regressions of W D versus filtered vo lum e of seaw ater are show n in Fig 9 The offsets of th e regression lines for all sam ples are n o t significantly d ifferen t from zero again ind ica ting th a t salts are p roperly w ashed from th e filters It has been n o te d by Trees 1978 th a t th e re la tionsh ip betw een filtrashytio n vo lum e an d re ta in ed m ass is linear on ly w h en salts are

1018

Neukermans et al Optimizing [SPM] Measurement

Table 3 Example of a lookup tab le for reco m m en d ed filtration vo lum e as function of tu rb id ity so th a t relative uncerta in ty on [SPM] replicates Is w ithin 15 In 50 of th e cases [R(150)] and In 90 of th e cases [R(Vpo)]

T (FNU) [SPM]50 (m gL ) V50 (mL) V90 (mL) R(V50) (mL) R(V90) (mL)

05 050 2673 12027 3000 120001 098 1364 6140 1000 60002 191 697 3134 500 30003 284 470 2115 500 20004 375 356 1600 350 15005 466 286 1289 250 12506 556 240 1080 250 10007 645 207 930 200 10008 735 182 817 200 8009 823 162 729 150 75010 912 146 658 150 60011 1000 133 600 150 60013 1176 113 510 100 50014 1264 105 475 100 50015 1351 99 444 100 40016 1439 93 417 100 40018 1613 83 372 100 40019 1700 78 353 75 37521 1873 71 320 75 30022 1960 68 306 75 30026 2304 58 260 50 25027 2390 56 251 50 25032 2818 47 213 50 20033 2904 46 207 50 20037 3245 41 185 50 20038 3330 40 180 50 20040 3499 38 171 50 17545 3923 34 153 25 15050 4345 31 138 25 15055 4766 28 126 25 12565 5604 24 107 20 11070 6022 22 100 20 10075 6439 21 93 20 9080 6855 19 88 20 9085 7270 18 83 20 8095 8098 16 74 20 70100 8511 16 70 20 70110 9336 14 64 10 60115 9747 14 62 10 60140 11796 11 51 10 50

Table 4 O verview of turbidity T w ith standard deviation AT optim al filtration volum e ob ta ined from R(V ) In Table 3 and tim erequired to pass seaw ater th ro u g h five replicate filters

Filtration tim e (m in)

sam ple T (FNU) AT (FNU) Vopt (mL) 0 2 V ntopt 0 5 Vnntopt Vopt 2 Vopt

Cl 298 032 1500 17 20 29 94WGAB 683 014 1000 13 10 24 640924A 1093 018 500 19 12 15 78Mod 1218 042 500 10 11 16 48T 2553 031 250 20 12 30 25MH5 5330 159 150 6 8 21 18

1019

Neukermans et al Optimizing [SPM] Measurement

sample CL

S 20

05

sample WGAB sample 0924A

sample MOD

S 20

05VV

Opt

35

30

25

20

15

10

5

00 05 1 15 2

sample T

VV

35

30

25

20

15

10

5

00 05 15 21

35

30

25

20

15

10

5

00 05 1 15 2

sample MH535

bull median n=310th-90th percentiles n=3

30

25

20

15

10

5

00 05 15 21

VV

Fig 7 Coefficient o f variation cv (in ) of [SPM] o b ta in ed from five rep licates versus filtration vo lum e norm alized to th e op tim al filtration volum e V Show n in g ray are th e m ed ian 10 th an d 9 0 th percen tiles o f cv o b ta in e d from 100 resam plings w ith o u t re p lacem en t of 3 [SPM] rep licates o u t of 5

w ashed out

ConclusionThis s tudy show s th a t sim ple fast an d low -cost m eashy

surem ents of turbid ity T can be used to op tim ize [SPM] m eashysurem ents M ore specifically tu rb id ity m easurem ents can be used to o p tim ally set th e filtra tion volum e to detec t p roblem s w ith th e m ix ing of th e sam ple du rin g subsam pling for filtrashytio n an d for th e quality co n tro l of [SPM] The re la tionsh ip b etw een T an d op tim al f iltra tion vo lum e is set up using estishym ates of [SPM] m easu rem en t procedural uncerta in ties from b la n k m easurem ents an d a value for m ax im u m allow able u n ce rta in ty o n [SPM] Procedural uncerta in ties w ere assessed from filter b lanks w here syn the tic seaw ater of a typical sa lin shyity is passed th ro u g h rep resen ting uncerta in ties due to filter p repara tion han d lin g an d rin sing of sea salt The use of varishyous types of filter b lanks subjected to d iffe ren t steps in the m easu rem en t procedure m ay help reveal sources of u n ce rshyta in ty In th is study for exam ple differences in w eights of d ry

an d w et filter b lanks suggest th a t friable fractions of glass fiber filters m ay have d islodged d u ring filtra tion This fiber loss m ay be m itigated in th e fu tu re by repeating th e pre-ashing w ashing an d d ry ing steps of filters in th e p rep ara tio n phase u n til co n s tan t w eigh t is achieved B lank filters an d regressions of residual w eight versus filtra tion vo lum e suggest th a t salts are p roperly flushed using a w ash vo lum e of 400-450 mL of M illiQ for w ater sam ples w ith salinities of 33-35 PSU w hile a w ash vo lum e of 300 m L has been show n to be insufficien t (Stavn e t al 2009)

We fu rthe r investigated th e role of filtra tion vo lum e o n th e precision of [SPM] m easu rem en t by filtering vo lum es of seashyw ater rang ing betw een one-fifth an d tw ice th e op tim al filtrashytio n volum e It is show n th a t if th e op tim al vo lum e is filtered [SPM] m easurem ents are m ost precise an d cost effective In m ost cases filtering tw ice th e op tim al vo lum e caused clogging an d trip led filtra tion tim es to over 1 h w h ich is im practical an d p rob lem atic in lim ited sh ip tim e

It is recom m ended th a t each research group establishes

1020

Neukermans et al Optimizing [SPM] M easurement

sample CL sample WGAB sample 0924A

95115

10535

7595

25

5575

020 0 5 0 100

sample MOD200 020 0 5 0 100

sample T150 020 0 5 0 100

sample MH5200

125

^ 115

^ 105

95

0 26 0 50 100 200 020VV

opt

0 60 100VV

opt

200

60

55

50

45

40020 0 53 100 167

VVopt

Fig 8 Boxplot of [SPM] o b ta in e d th ro u g h filtration o f d ifferen t vo lum es of sam p led seaw ate r a t six d ifferen t sta tions

th e ir ow n re la tionsh ip betw een tu rb id ity an d op tim al filtrashytio n vo lum e w h ich is specific to th e type of tu rb id ity in s tru shym e n t (w avelength an d angular response) th e uncerta in ties of th e [SPM] m easu rem en t p rocedure w h ich can be assessed from procedural co n tro l filters th e desired m ax im u m relative variab ility betw een replicates an d th e com position of th e p arshyticles (organic inorganic)

The idea of estim ating op tim al filtra tion vo lum e from tu r shyb id ity (or an o th er su itab ly chosen optical proxy) an d of checkshyin g tu rb id ity before an d after all filtra tion opera tions has been illu stra ted specifically for th e m ass co n c en tra tio n of [SPM] in th is article However th is idea cou ld have m ore general app lishyca tion to im prov ing th e q uality an d th e quality co n tro l for o th e r physical or chem ical properties of [SPM] (eg G ro u n d shyw ater e t al 2012)

ReferencesB ooth B C 1987 Cell breakage in n a n o p h y to p la n k to n d u rshy

ing filtra tion of liv ing organism s Eos 68(50)1723Boss E an d others 2009 C om parison of in h e re n t op tical

properties as a surrogate for particu la te m atte r co n c en tra shy

tio n in coastal w aters L im nol Oceanogr M ethods 7803- 810 [doi104319lom 20097803]

Chavez F P an d o thers 1995 O n th e ch lo rophy ll-a re te n tio n properties of glass-fiber GFF filters F im nol Oceanogr 40428-433 [doi104319lo 19954020428]

Feely R A J H Trefry an d B M onger 1991 Particle sam shyp ling an d preservation p 5 -22 In D C H eard an d D W Spencer [eds] M arine particles analysis an d characterizashytion A m erican G eophysical U n ion

G oldm an J C an d M R D enne tt 1985 Susceptibility of som e m arine p h y to p la n k to n species to cell breakage du rin g filtra tion an d post-filtra tion rinsing J Exp Mar Biol Ecol 8647-58 [doi1010160022-0981 (85)90041-3]

G roundw ater H M S Twardowski H Dierssen A Sciendra an d S Freem an 2012 D eterm in ing size d istribu tions an d com position of particles suspended in w ater a new SEM- EDS p ro toco l w ith va lida tion an d com parison to o the r m e th o d s J A tm os O cean T echno l 29433-449 [doi101175JTECH-D-l 1-000261]

ICES 2004 C hem ical m easurem ents in th e Baltic Sea G uideshylines o n q uality assurance In te rn a tio n a l C ouncil for the

1021

Neukermans et al Optimizing [SPM] Measurement

sample CL sample WGAB sample 0924A12 7 88+050

10WD=800(plusmn076)V+-03 K Iacute0 71 )

87 50+028

6

47 36+052

26 90plusmn 152

00 05 1 15

9

2 71+0398

7

6 W D=266(plusmn065)V+005itll3)

OD rP 5

42 47+033

3107+075

2

1 2 73+064

00 1 2 3

12

1048+07810

WD=1065(plusmn198)V+-001(+gtfU4)

8

6 136+043

4

1056+0672

60plusmn089

00 02 04 06 08 1 12

Qamp

W D=26171+056) V+0

47+099

WD=6048(plusmn595)VWD= 10461+157)V+012(plusmnCK91)

1080+049

131+ 177

5856+092

sample MOD sample T sample MH5

Fig 9 S catterp lo ts o f particu la te d ry m ass (WD = w a - w]j versus filtrate vo lum e V The erro r bars d e n o te th e s ta n d a rd erro r on W D o b ta in ed from 5 replicates The m ean an d s ta n d a rd erro r of [SPM] are also show n for each filtration vo lum e Show n in red are th e regression line an d its eq u a tio n w ith 95 confid en ce intervals of th e coeffic ient estim ates

E xploration of th e Sea ICES T echniques in M arine Envishyro n m en ta l Sciences 35 E Lysiak-Pastuszak an d M Krysell [Eds] lth ttp w w w ic e s d k p u b s t im e s tim e s3 5 T IM E S 35 pdfgt

ISO 1995 G uide to th e expression of u n ce rta in ty in m eashysu rem e n t In te rn a tio n a l S tan d a rd O rg a n isa tio n ISO 1995101

1997 W ater qualitymdashd ete rm in a tio n of suspendedsolids by filtra tion th ro u g h glass-fibre filters In te rn a tio n a l S tandard O rganisation ISO 11923

1999 W ater qualifymdashd ete rm in a tio n of turbid ity In te rshyn a tio n a l S tandard O rganisation ISO 70271999(E)

Kiene R P an d L J L inn 1999 F ilter-type an d sam ple h a n shyd ling affect d e te rm in a tio n of o rganic substrate up take by b a c te r io p la n k to n A quat M icrob Ecol 17311-321 [doi103354am e017311]

Kirst G O 1990 Salinity to lerance of eukaryotic m arine algae A nnu Rev P lan t Physiol P lan t M ol Biol 4121-53

[doi10 1146 annurev pp 41060190000321]Logan B E 1993 Theoretical analysis o f size d istribu tions

de term in ed w ith screens an d filters L im nol Oceanogr 38372-381 [doi104319lo 19933820372]

Lovegrove T 1966 The d e te rm in a tio n of th e d ry w eigh t of p lan k to n an d th e effect of various factors o n th e values ob ta ined p 429-467 In Som e con tem p o rary studies in m arine science H afner Publ C om p

M ueller J L an d others 2003 O cean optics p ro toco ls for satellite ocean color sensor validation In J L M ueller G S Fargion an d C R M cClain [Eds] Technical M em orandum TM -2003-21621R evision 5 Vol 5 N ational A eronautical an d Space ad m in istra tio n (NASA)

N eukerm ans G 2012 O ptical in situ an d geosta tionary satelshylite-borne observations of suspended particles in coastal w aters PhD d issertation U niversiteacute d u Littoral - Cocircte d O pale W im ereux France A cadem ic an d Scientific Pubshylishers Ravensteingalerij 28 1000 Brussels Belgium ISBN

1022

Neukermans et al Optimizing [SPM] Measurement

978 90 7028 949 2 Perm a-links lth ttp w w w 2m um m ac b e d o w n lo a d s p u b lic a tio n s neukerm an s_ p h d _ co v erp d f gt lth t tp w w w 2 m u m m a c b e d o w n lo a d s p u b l i c a t io n s n eu kerm ans_phd_m anuscrip t_ l 7x24pdfgt

G H Loisel X M eriaux R Astoreca an d D McKee2012 In situ variab ility of mass-specific beam a tten u a tio n an d backscattering of m arine particles w ith respect to p a rshyticle size density an d com position Lim nol Oceanogr 57124-144 [doi104319lo 20125710124]

Pearlm an S R H S Costa R A Jung J J M cKeown an d H E Pearson 1995 Solids (sec 2540) p 2-53-52-64 In A D Eaton L S Clesceri an d A E G reenberg [eds] S tandard m e th o d s for th e ex am in a tio n of w ater an d w astew ater A m erican Public H ealth Association

PML an d ICES 2004 ECASA (Ecosystem A pproach for Susshyta inab le A quaculture) bo o k of protocols Particulate m atte r in seawater P lym outh M arine Laboratory an d In te rn a tio n a l C ouncil for th e E xploration of th e Sea lth ttp w w w ecasa to o lb o x o rg u k th e - to o lb o x e ia -c o u n try b o o k -o f -p ro to - co lsparticu la te-m atter-in -seaw atergt

Sheldon R W 1972 Size separation of m arine seston by m e m b ra n e a n d glass-fiber filte rs L im nol O ceanogr 17494-498 [doi10 4319lo l972 17 3 0494]

an d W H J Sutcliffe 1969 R eten tion of m arine p a rtishycles by screens an d filters L im nol Oceanogr 14441-444 [doi10 4319lo 19691430441]

Stavn R H H J Rick an d A V Falster 2009 C orrecting th e

errors from variable sea salt re te n tio n an d w ater of h y d ra shytio n in loss o n ig n itio n analysis Im plications for studies of estuarine an d coastal w aters Estuar Coast Shelf Sei 81575-582 [doi101016jecss200812017]

Stram ski D E Boss D Bogucki an d K J Voss 2004 The role o f seaw ater co n s titu en ts in ligh t backscattering in the ocean Prog Oceanogr 61 27-56

Strickland J D H an d T R Parsons 1968 A practical h a n d shybook of seaw ater analysis B ulletin 167 Fisheries Research Board of C anada

Tilstone G an d others 2002 REVAMP Regional V alidation of MERIS C h lo rophy ll p roducts in N o rth Sea coastal waters Protocols d ocum en t REVAMP m ethodo log ies - EVG1 - CT - 2001 - 00049 lth ttp en v isa te sa in tw o rk sh o p sm av t_ 2003M AVT-2003_802_REVAM Pprotocols3pdfgt

Trees C C 1978 A nalytical analysis o f effect of dissolved solids o n suspended solids d e term in a tio n J W ater Poll C on tro l Fed 502370-2373

van der Linde D W 1998 P rotocol for th e d e te rm in a tio n of to ta l suspended m a tte r in oceans an d coastal zones Jo in t Research C entre Ispra Technical n o te 198182

York D 1966 Least-squares f ittin g of a straigh t line Can J Phys 441079-1086 [doi101139p66-090]

Submitted 26 May 2012 Revised 5 October 2012

Accepted 18 November 2012

1023

Page 9: LIMNOLOGY and OCEANOGRAPHY: METHODS - vliz.be · Neukermans et al. Optimizing [SPM] Measurement Table 1 . Overview of types of [SPM] procedural control filters and treatments. Filter

Neukermans et al Optimizing [SPM] Measurement

Table 3 Example of a lookup tab le for reco m m en d ed filtration vo lum e as function of tu rb id ity so th a t relative uncerta in ty on [SPM] replicates Is w ithin 15 In 50 of th e cases [R(150)] and In 90 of th e cases [R(Vpo)]

T (FNU) [SPM]50 (m gL ) V50 (mL) V90 (mL) R(V50) (mL) R(V90) (mL)

05 050 2673 12027 3000 120001 098 1364 6140 1000 60002 191 697 3134 500 30003 284 470 2115 500 20004 375 356 1600 350 15005 466 286 1289 250 12506 556 240 1080 250 10007 645 207 930 200 10008 735 182 817 200 8009 823 162 729 150 75010 912 146 658 150 60011 1000 133 600 150 60013 1176 113 510 100 50014 1264 105 475 100 50015 1351 99 444 100 40016 1439 93 417 100 40018 1613 83 372 100 40019 1700 78 353 75 37521 1873 71 320 75 30022 1960 68 306 75 30026 2304 58 260 50 25027 2390 56 251 50 25032 2818 47 213 50 20033 2904 46 207 50 20037 3245 41 185 50 20038 3330 40 180 50 20040 3499 38 171 50 17545 3923 34 153 25 15050 4345 31 138 25 15055 4766 28 126 25 12565 5604 24 107 20 11070 6022 22 100 20 10075 6439 21 93 20 9080 6855 19 88 20 9085 7270 18 83 20 8095 8098 16 74 20 70100 8511 16 70 20 70110 9336 14 64 10 60115 9747 14 62 10 60140 11796 11 51 10 50

Table 4 O verview of turbidity T w ith standard deviation AT optim al filtration volum e ob ta ined from R(V ) In Table 3 and tim erequired to pass seaw ater th ro u g h five replicate filters

Filtration tim e (m in)

sam ple T (FNU) AT (FNU) Vopt (mL) 0 2 V ntopt 0 5 Vnntopt Vopt 2 Vopt

Cl 298 032 1500 17 20 29 94WGAB 683 014 1000 13 10 24 640924A 1093 018 500 19 12 15 78Mod 1218 042 500 10 11 16 48T 2553 031 250 20 12 30 25MH5 5330 159 150 6 8 21 18

1019

Neukermans et al Optimizing [SPM] Measurement

sample CL

S 20

05

sample WGAB sample 0924A

sample MOD

S 20

05VV

Opt

35

30

25

20

15

10

5

00 05 1 15 2

sample T

VV

35

30

25

20

15

10

5

00 05 15 21

35

30

25

20

15

10

5

00 05 1 15 2

sample MH535

bull median n=310th-90th percentiles n=3

30

25

20

15

10

5

00 05 15 21

VV

Fig 7 Coefficient o f variation cv (in ) of [SPM] o b ta in ed from five rep licates versus filtration vo lum e norm alized to th e op tim al filtration volum e V Show n in g ray are th e m ed ian 10 th an d 9 0 th percen tiles o f cv o b ta in e d from 100 resam plings w ith o u t re p lacem en t of 3 [SPM] rep licates o u t of 5

w ashed out

ConclusionThis s tudy show s th a t sim ple fast an d low -cost m eashy

surem ents of turbid ity T can be used to op tim ize [SPM] m eashysurem ents M ore specifically tu rb id ity m easurem ents can be used to o p tim ally set th e filtra tion volum e to detec t p roblem s w ith th e m ix ing of th e sam ple du rin g subsam pling for filtrashytio n an d for th e quality co n tro l of [SPM] The re la tionsh ip b etw een T an d op tim al f iltra tion vo lum e is set up using estishym ates of [SPM] m easu rem en t procedural uncerta in ties from b la n k m easurem ents an d a value for m ax im u m allow able u n ce rta in ty o n [SPM] Procedural uncerta in ties w ere assessed from filter b lanks w here syn the tic seaw ater of a typical sa lin shyity is passed th ro u g h rep resen ting uncerta in ties due to filter p repara tion han d lin g an d rin sing of sea salt The use of varishyous types of filter b lanks subjected to d iffe ren t steps in the m easu rem en t procedure m ay help reveal sources of u n ce rshyta in ty In th is study for exam ple differences in w eights of d ry

an d w et filter b lanks suggest th a t friable fractions of glass fiber filters m ay have d islodged d u ring filtra tion This fiber loss m ay be m itigated in th e fu tu re by repeating th e pre-ashing w ashing an d d ry ing steps of filters in th e p rep ara tio n phase u n til co n s tan t w eigh t is achieved B lank filters an d regressions of residual w eight versus filtra tion vo lum e suggest th a t salts are p roperly flushed using a w ash vo lum e of 400-450 mL of M illiQ for w ater sam ples w ith salinities of 33-35 PSU w hile a w ash vo lum e of 300 m L has been show n to be insufficien t (Stavn e t al 2009)

We fu rthe r investigated th e role of filtra tion vo lum e o n th e precision of [SPM] m easu rem en t by filtering vo lum es of seashyw ater rang ing betw een one-fifth an d tw ice th e op tim al filtrashytio n volum e It is show n th a t if th e op tim al vo lum e is filtered [SPM] m easurem ents are m ost precise an d cost effective In m ost cases filtering tw ice th e op tim al vo lum e caused clogging an d trip led filtra tion tim es to over 1 h w h ich is im practical an d p rob lem atic in lim ited sh ip tim e

It is recom m ended th a t each research group establishes

1020

Neukermans et al Optimizing [SPM] M easurement

sample CL sample WGAB sample 0924A

95115

10535

7595

25

5575

020 0 5 0 100

sample MOD200 020 0 5 0 100

sample T150 020 0 5 0 100

sample MH5200

125

^ 115

^ 105

95

0 26 0 50 100 200 020VV

opt

0 60 100VV

opt

200

60

55

50

45

40020 0 53 100 167

VVopt

Fig 8 Boxplot of [SPM] o b ta in e d th ro u g h filtration o f d ifferen t vo lum es of sam p led seaw ate r a t six d ifferen t sta tions

th e ir ow n re la tionsh ip betw een tu rb id ity an d op tim al filtrashytio n vo lum e w h ich is specific to th e type of tu rb id ity in s tru shym e n t (w avelength an d angular response) th e uncerta in ties of th e [SPM] m easu rem en t p rocedure w h ich can be assessed from procedural co n tro l filters th e desired m ax im u m relative variab ility betw een replicates an d th e com position of th e p arshyticles (organic inorganic)

The idea of estim ating op tim al filtra tion vo lum e from tu r shyb id ity (or an o th er su itab ly chosen optical proxy) an d of checkshyin g tu rb id ity before an d after all filtra tion opera tions has been illu stra ted specifically for th e m ass co n c en tra tio n of [SPM] in th is article However th is idea cou ld have m ore general app lishyca tion to im prov ing th e q uality an d th e quality co n tro l for o th e r physical or chem ical properties of [SPM] (eg G ro u n d shyw ater e t al 2012)

ReferencesB ooth B C 1987 Cell breakage in n a n o p h y to p la n k to n d u rshy

ing filtra tion of liv ing organism s Eos 68(50)1723Boss E an d others 2009 C om parison of in h e re n t op tical

properties as a surrogate for particu la te m atte r co n c en tra shy

tio n in coastal w aters L im nol Oceanogr M ethods 7803- 810 [doi104319lom 20097803]

Chavez F P an d o thers 1995 O n th e ch lo rophy ll-a re te n tio n properties of glass-fiber GFF filters F im nol Oceanogr 40428-433 [doi104319lo 19954020428]

Feely R A J H Trefry an d B M onger 1991 Particle sam shyp ling an d preservation p 5 -22 In D C H eard an d D W Spencer [eds] M arine particles analysis an d characterizashytion A m erican G eophysical U n ion

G oldm an J C an d M R D enne tt 1985 Susceptibility of som e m arine p h y to p la n k to n species to cell breakage du rin g filtra tion an d post-filtra tion rinsing J Exp Mar Biol Ecol 8647-58 [doi1010160022-0981 (85)90041-3]

G roundw ater H M S Twardowski H Dierssen A Sciendra an d S Freem an 2012 D eterm in ing size d istribu tions an d com position of particles suspended in w ater a new SEM- EDS p ro toco l w ith va lida tion an d com parison to o the r m e th o d s J A tm os O cean T echno l 29433-449 [doi101175JTECH-D-l 1-000261]

ICES 2004 C hem ical m easurem ents in th e Baltic Sea G uideshylines o n q uality assurance In te rn a tio n a l C ouncil for the

1021

Neukermans et al Optimizing [SPM] Measurement

sample CL sample WGAB sample 0924A12 7 88+050

10WD=800(plusmn076)V+-03 K Iacute0 71 )

87 50+028

6

47 36+052

26 90plusmn 152

00 05 1 15

9

2 71+0398

7

6 W D=266(plusmn065)V+005itll3)

OD rP 5

42 47+033

3107+075

2

1 2 73+064

00 1 2 3

12

1048+07810

WD=1065(plusmn198)V+-001(+gtfU4)

8

6 136+043

4

1056+0672

60plusmn089

00 02 04 06 08 1 12

Qamp

W D=26171+056) V+0

47+099

WD=6048(plusmn595)VWD= 10461+157)V+012(plusmnCK91)

1080+049

131+ 177

5856+092

sample MOD sample T sample MH5

Fig 9 S catterp lo ts o f particu la te d ry m ass (WD = w a - w]j versus filtrate vo lum e V The erro r bars d e n o te th e s ta n d a rd erro r on W D o b ta in ed from 5 replicates The m ean an d s ta n d a rd erro r of [SPM] are also show n for each filtration vo lum e Show n in red are th e regression line an d its eq u a tio n w ith 95 confid en ce intervals of th e coeffic ient estim ates

E xploration of th e Sea ICES T echniques in M arine Envishyro n m en ta l Sciences 35 E Lysiak-Pastuszak an d M Krysell [Eds] lth ttp w w w ic e s d k p u b s t im e s tim e s3 5 T IM E S 35 pdfgt

ISO 1995 G uide to th e expression of u n ce rta in ty in m eashysu rem e n t In te rn a tio n a l S tan d a rd O rg a n isa tio n ISO 1995101

1997 W ater qualitymdashd ete rm in a tio n of suspendedsolids by filtra tion th ro u g h glass-fibre filters In te rn a tio n a l S tandard O rganisation ISO 11923

1999 W ater qualifymdashd ete rm in a tio n of turbid ity In te rshyn a tio n a l S tandard O rganisation ISO 70271999(E)

Kiene R P an d L J L inn 1999 F ilter-type an d sam ple h a n shyd ling affect d e te rm in a tio n of o rganic substrate up take by b a c te r io p la n k to n A quat M icrob Ecol 17311-321 [doi103354am e017311]

Kirst G O 1990 Salinity to lerance of eukaryotic m arine algae A nnu Rev P lan t Physiol P lan t M ol Biol 4121-53

[doi10 1146 annurev pp 41060190000321]Logan B E 1993 Theoretical analysis o f size d istribu tions

de term in ed w ith screens an d filters L im nol Oceanogr 38372-381 [doi104319lo 19933820372]

Lovegrove T 1966 The d e te rm in a tio n of th e d ry w eigh t of p lan k to n an d th e effect of various factors o n th e values ob ta ined p 429-467 In Som e con tem p o rary studies in m arine science H afner Publ C om p

M ueller J L an d others 2003 O cean optics p ro toco ls for satellite ocean color sensor validation In J L M ueller G S Fargion an d C R M cClain [Eds] Technical M em orandum TM -2003-21621R evision 5 Vol 5 N ational A eronautical an d Space ad m in istra tio n (NASA)

N eukerm ans G 2012 O ptical in situ an d geosta tionary satelshylite-borne observations of suspended particles in coastal w aters PhD d issertation U niversiteacute d u Littoral - Cocircte d O pale W im ereux France A cadem ic an d Scientific Pubshylishers Ravensteingalerij 28 1000 Brussels Belgium ISBN

1022

Neukermans et al Optimizing [SPM] Measurement

978 90 7028 949 2 Perm a-links lth ttp w w w 2m um m ac b e d o w n lo a d s p u b lic a tio n s neukerm an s_ p h d _ co v erp d f gt lth t tp w w w 2 m u m m a c b e d o w n lo a d s p u b l i c a t io n s n eu kerm ans_phd_m anuscrip t_ l 7x24pdfgt

G H Loisel X M eriaux R Astoreca an d D McKee2012 In situ variab ility of mass-specific beam a tten u a tio n an d backscattering of m arine particles w ith respect to p a rshyticle size density an d com position Lim nol Oceanogr 57124-144 [doi104319lo 20125710124]

Pearlm an S R H S Costa R A Jung J J M cKeown an d H E Pearson 1995 Solids (sec 2540) p 2-53-52-64 In A D Eaton L S Clesceri an d A E G reenberg [eds] S tandard m e th o d s for th e ex am in a tio n of w ater an d w astew ater A m erican Public H ealth Association

PML an d ICES 2004 ECASA (Ecosystem A pproach for Susshyta inab le A quaculture) bo o k of protocols Particulate m atte r in seawater P lym outh M arine Laboratory an d In te rn a tio n a l C ouncil for th e E xploration of th e Sea lth ttp w w w ecasa to o lb o x o rg u k th e - to o lb o x e ia -c o u n try b o o k -o f -p ro to - co lsparticu la te-m atter-in -seaw atergt

Sheldon R W 1972 Size separation of m arine seston by m e m b ra n e a n d glass-fiber filte rs L im nol O ceanogr 17494-498 [doi10 4319lo l972 17 3 0494]

an d W H J Sutcliffe 1969 R eten tion of m arine p a rtishycles by screens an d filters L im nol Oceanogr 14441-444 [doi10 4319lo 19691430441]

Stavn R H H J Rick an d A V Falster 2009 C orrecting th e

errors from variable sea salt re te n tio n an d w ater of h y d ra shytio n in loss o n ig n itio n analysis Im plications for studies of estuarine an d coastal w aters Estuar Coast Shelf Sei 81575-582 [doi101016jecss200812017]

Stram ski D E Boss D Bogucki an d K J Voss 2004 The role o f seaw ater co n s titu en ts in ligh t backscattering in the ocean Prog Oceanogr 61 27-56

Strickland J D H an d T R Parsons 1968 A practical h a n d shybook of seaw ater analysis B ulletin 167 Fisheries Research Board of C anada

Tilstone G an d others 2002 REVAMP Regional V alidation of MERIS C h lo rophy ll p roducts in N o rth Sea coastal waters Protocols d ocum en t REVAMP m ethodo log ies - EVG1 - CT - 2001 - 00049 lth ttp en v isa te sa in tw o rk sh o p sm av t_ 2003M AVT-2003_802_REVAM Pprotocols3pdfgt

Trees C C 1978 A nalytical analysis o f effect of dissolved solids o n suspended solids d e term in a tio n J W ater Poll C on tro l Fed 502370-2373

van der Linde D W 1998 P rotocol for th e d e te rm in a tio n of to ta l suspended m a tte r in oceans an d coastal zones Jo in t Research C entre Ispra Technical n o te 198182

York D 1966 Least-squares f ittin g of a straigh t line Can J Phys 441079-1086 [doi101139p66-090]

Submitted 26 May 2012 Revised 5 October 2012

Accepted 18 November 2012

1023

Page 10: LIMNOLOGY and OCEANOGRAPHY: METHODS - vliz.be · Neukermans et al. Optimizing [SPM] Measurement Table 1 . Overview of types of [SPM] procedural control filters and treatments. Filter

Neukermans et al Optimizing [SPM] Measurement

sample CL

S 20

05

sample WGAB sample 0924A

sample MOD

S 20

05VV

Opt

35

30

25

20

15

10

5

00 05 1 15 2

sample T

VV

35

30

25

20

15

10

5

00 05 15 21

35

30

25

20

15

10

5

00 05 1 15 2

sample MH535

bull median n=310th-90th percentiles n=3

30

25

20

15

10

5

00 05 15 21

VV

Fig 7 Coefficient o f variation cv (in ) of [SPM] o b ta in ed from five rep licates versus filtration vo lum e norm alized to th e op tim al filtration volum e V Show n in g ray are th e m ed ian 10 th an d 9 0 th percen tiles o f cv o b ta in e d from 100 resam plings w ith o u t re p lacem en t of 3 [SPM] rep licates o u t of 5

w ashed out

ConclusionThis s tudy show s th a t sim ple fast an d low -cost m eashy

surem ents of turbid ity T can be used to op tim ize [SPM] m eashysurem ents M ore specifically tu rb id ity m easurem ents can be used to o p tim ally set th e filtra tion volum e to detec t p roblem s w ith th e m ix ing of th e sam ple du rin g subsam pling for filtrashytio n an d for th e quality co n tro l of [SPM] The re la tionsh ip b etw een T an d op tim al f iltra tion vo lum e is set up using estishym ates of [SPM] m easu rem en t procedural uncerta in ties from b la n k m easurem ents an d a value for m ax im u m allow able u n ce rta in ty o n [SPM] Procedural uncerta in ties w ere assessed from filter b lanks w here syn the tic seaw ater of a typical sa lin shyity is passed th ro u g h rep resen ting uncerta in ties due to filter p repara tion han d lin g an d rin sing of sea salt The use of varishyous types of filter b lanks subjected to d iffe ren t steps in the m easu rem en t procedure m ay help reveal sources of u n ce rshyta in ty In th is study for exam ple differences in w eights of d ry

an d w et filter b lanks suggest th a t friable fractions of glass fiber filters m ay have d islodged d u ring filtra tion This fiber loss m ay be m itigated in th e fu tu re by repeating th e pre-ashing w ashing an d d ry ing steps of filters in th e p rep ara tio n phase u n til co n s tan t w eigh t is achieved B lank filters an d regressions of residual w eight versus filtra tion vo lum e suggest th a t salts are p roperly flushed using a w ash vo lum e of 400-450 mL of M illiQ for w ater sam ples w ith salinities of 33-35 PSU w hile a w ash vo lum e of 300 m L has been show n to be insufficien t (Stavn e t al 2009)

We fu rthe r investigated th e role of filtra tion vo lum e o n th e precision of [SPM] m easu rem en t by filtering vo lum es of seashyw ater rang ing betw een one-fifth an d tw ice th e op tim al filtrashytio n volum e It is show n th a t if th e op tim al vo lum e is filtered [SPM] m easurem ents are m ost precise an d cost effective In m ost cases filtering tw ice th e op tim al vo lum e caused clogging an d trip led filtra tion tim es to over 1 h w h ich is im practical an d p rob lem atic in lim ited sh ip tim e

It is recom m ended th a t each research group establishes

1020

Neukermans et al Optimizing [SPM] M easurement

sample CL sample WGAB sample 0924A

95115

10535

7595

25

5575

020 0 5 0 100

sample MOD200 020 0 5 0 100

sample T150 020 0 5 0 100

sample MH5200

125

^ 115

^ 105

95

0 26 0 50 100 200 020VV

opt

0 60 100VV

opt

200

60

55

50

45

40020 0 53 100 167

VVopt

Fig 8 Boxplot of [SPM] o b ta in e d th ro u g h filtration o f d ifferen t vo lum es of sam p led seaw ate r a t six d ifferen t sta tions

th e ir ow n re la tionsh ip betw een tu rb id ity an d op tim al filtrashytio n vo lum e w h ich is specific to th e type of tu rb id ity in s tru shym e n t (w avelength an d angular response) th e uncerta in ties of th e [SPM] m easu rem en t p rocedure w h ich can be assessed from procedural co n tro l filters th e desired m ax im u m relative variab ility betw een replicates an d th e com position of th e p arshyticles (organic inorganic)

The idea of estim ating op tim al filtra tion vo lum e from tu r shyb id ity (or an o th er su itab ly chosen optical proxy) an d of checkshyin g tu rb id ity before an d after all filtra tion opera tions has been illu stra ted specifically for th e m ass co n c en tra tio n of [SPM] in th is article However th is idea cou ld have m ore general app lishyca tion to im prov ing th e q uality an d th e quality co n tro l for o th e r physical or chem ical properties of [SPM] (eg G ro u n d shyw ater e t al 2012)

ReferencesB ooth B C 1987 Cell breakage in n a n o p h y to p la n k to n d u rshy

ing filtra tion of liv ing organism s Eos 68(50)1723Boss E an d others 2009 C om parison of in h e re n t op tical

properties as a surrogate for particu la te m atte r co n c en tra shy

tio n in coastal w aters L im nol Oceanogr M ethods 7803- 810 [doi104319lom 20097803]

Chavez F P an d o thers 1995 O n th e ch lo rophy ll-a re te n tio n properties of glass-fiber GFF filters F im nol Oceanogr 40428-433 [doi104319lo 19954020428]

Feely R A J H Trefry an d B M onger 1991 Particle sam shyp ling an d preservation p 5 -22 In D C H eard an d D W Spencer [eds] M arine particles analysis an d characterizashytion A m erican G eophysical U n ion

G oldm an J C an d M R D enne tt 1985 Susceptibility of som e m arine p h y to p la n k to n species to cell breakage du rin g filtra tion an d post-filtra tion rinsing J Exp Mar Biol Ecol 8647-58 [doi1010160022-0981 (85)90041-3]

G roundw ater H M S Twardowski H Dierssen A Sciendra an d S Freem an 2012 D eterm in ing size d istribu tions an d com position of particles suspended in w ater a new SEM- EDS p ro toco l w ith va lida tion an d com parison to o the r m e th o d s J A tm os O cean T echno l 29433-449 [doi101175JTECH-D-l 1-000261]

ICES 2004 C hem ical m easurem ents in th e Baltic Sea G uideshylines o n q uality assurance In te rn a tio n a l C ouncil for the

1021

Neukermans et al Optimizing [SPM] Measurement

sample CL sample WGAB sample 0924A12 7 88+050

10WD=800(plusmn076)V+-03 K Iacute0 71 )

87 50+028

6

47 36+052

26 90plusmn 152

00 05 1 15

9

2 71+0398

7

6 W D=266(plusmn065)V+005itll3)

OD rP 5

42 47+033

3107+075

2

1 2 73+064

00 1 2 3

12

1048+07810

WD=1065(plusmn198)V+-001(+gtfU4)

8

6 136+043

4

1056+0672

60plusmn089

00 02 04 06 08 1 12

Qamp

W D=26171+056) V+0

47+099

WD=6048(plusmn595)VWD= 10461+157)V+012(plusmnCK91)

1080+049

131+ 177

5856+092

sample MOD sample T sample MH5

Fig 9 S catterp lo ts o f particu la te d ry m ass (WD = w a - w]j versus filtrate vo lum e V The erro r bars d e n o te th e s ta n d a rd erro r on W D o b ta in ed from 5 replicates The m ean an d s ta n d a rd erro r of [SPM] are also show n for each filtration vo lum e Show n in red are th e regression line an d its eq u a tio n w ith 95 confid en ce intervals of th e coeffic ient estim ates

E xploration of th e Sea ICES T echniques in M arine Envishyro n m en ta l Sciences 35 E Lysiak-Pastuszak an d M Krysell [Eds] lth ttp w w w ic e s d k p u b s t im e s tim e s3 5 T IM E S 35 pdfgt

ISO 1995 G uide to th e expression of u n ce rta in ty in m eashysu rem e n t In te rn a tio n a l S tan d a rd O rg a n isa tio n ISO 1995101

1997 W ater qualitymdashd ete rm in a tio n of suspendedsolids by filtra tion th ro u g h glass-fibre filters In te rn a tio n a l S tandard O rganisation ISO 11923

1999 W ater qualifymdashd ete rm in a tio n of turbid ity In te rshyn a tio n a l S tandard O rganisation ISO 70271999(E)

Kiene R P an d L J L inn 1999 F ilter-type an d sam ple h a n shyd ling affect d e te rm in a tio n of o rganic substrate up take by b a c te r io p la n k to n A quat M icrob Ecol 17311-321 [doi103354am e017311]

Kirst G O 1990 Salinity to lerance of eukaryotic m arine algae A nnu Rev P lan t Physiol P lan t M ol Biol 4121-53

[doi10 1146 annurev pp 41060190000321]Logan B E 1993 Theoretical analysis o f size d istribu tions

de term in ed w ith screens an d filters L im nol Oceanogr 38372-381 [doi104319lo 19933820372]

Lovegrove T 1966 The d e te rm in a tio n of th e d ry w eigh t of p lan k to n an d th e effect of various factors o n th e values ob ta ined p 429-467 In Som e con tem p o rary studies in m arine science H afner Publ C om p

M ueller J L an d others 2003 O cean optics p ro toco ls for satellite ocean color sensor validation In J L M ueller G S Fargion an d C R M cClain [Eds] Technical M em orandum TM -2003-21621R evision 5 Vol 5 N ational A eronautical an d Space ad m in istra tio n (NASA)

N eukerm ans G 2012 O ptical in situ an d geosta tionary satelshylite-borne observations of suspended particles in coastal w aters PhD d issertation U niversiteacute d u Littoral - Cocircte d O pale W im ereux France A cadem ic an d Scientific Pubshylishers Ravensteingalerij 28 1000 Brussels Belgium ISBN

1022

Neukermans et al Optimizing [SPM] Measurement

978 90 7028 949 2 Perm a-links lth ttp w w w 2m um m ac b e d o w n lo a d s p u b lic a tio n s neukerm an s_ p h d _ co v erp d f gt lth t tp w w w 2 m u m m a c b e d o w n lo a d s p u b l i c a t io n s n eu kerm ans_phd_m anuscrip t_ l 7x24pdfgt

G H Loisel X M eriaux R Astoreca an d D McKee2012 In situ variab ility of mass-specific beam a tten u a tio n an d backscattering of m arine particles w ith respect to p a rshyticle size density an d com position Lim nol Oceanogr 57124-144 [doi104319lo 20125710124]

Pearlm an S R H S Costa R A Jung J J M cKeown an d H E Pearson 1995 Solids (sec 2540) p 2-53-52-64 In A D Eaton L S Clesceri an d A E G reenberg [eds] S tandard m e th o d s for th e ex am in a tio n of w ater an d w astew ater A m erican Public H ealth Association

PML an d ICES 2004 ECASA (Ecosystem A pproach for Susshyta inab le A quaculture) bo o k of protocols Particulate m atte r in seawater P lym outh M arine Laboratory an d In te rn a tio n a l C ouncil for th e E xploration of th e Sea lth ttp w w w ecasa to o lb o x o rg u k th e - to o lb o x e ia -c o u n try b o o k -o f -p ro to - co lsparticu la te-m atter-in -seaw atergt

Sheldon R W 1972 Size separation of m arine seston by m e m b ra n e a n d glass-fiber filte rs L im nol O ceanogr 17494-498 [doi10 4319lo l972 17 3 0494]

an d W H J Sutcliffe 1969 R eten tion of m arine p a rtishycles by screens an d filters L im nol Oceanogr 14441-444 [doi10 4319lo 19691430441]

Stavn R H H J Rick an d A V Falster 2009 C orrecting th e

errors from variable sea salt re te n tio n an d w ater of h y d ra shytio n in loss o n ig n itio n analysis Im plications for studies of estuarine an d coastal w aters Estuar Coast Shelf Sei 81575-582 [doi101016jecss200812017]

Stram ski D E Boss D Bogucki an d K J Voss 2004 The role o f seaw ater co n s titu en ts in ligh t backscattering in the ocean Prog Oceanogr 61 27-56

Strickland J D H an d T R Parsons 1968 A practical h a n d shybook of seaw ater analysis B ulletin 167 Fisheries Research Board of C anada

Tilstone G an d others 2002 REVAMP Regional V alidation of MERIS C h lo rophy ll p roducts in N o rth Sea coastal waters Protocols d ocum en t REVAMP m ethodo log ies - EVG1 - CT - 2001 - 00049 lth ttp en v isa te sa in tw o rk sh o p sm av t_ 2003M AVT-2003_802_REVAM Pprotocols3pdfgt

Trees C C 1978 A nalytical analysis o f effect of dissolved solids o n suspended solids d e term in a tio n J W ater Poll C on tro l Fed 502370-2373

van der Linde D W 1998 P rotocol for th e d e te rm in a tio n of to ta l suspended m a tte r in oceans an d coastal zones Jo in t Research C entre Ispra Technical n o te 198182

York D 1966 Least-squares f ittin g of a straigh t line Can J Phys 441079-1086 [doi101139p66-090]

Submitted 26 May 2012 Revised 5 October 2012

Accepted 18 November 2012

1023

Page 11: LIMNOLOGY and OCEANOGRAPHY: METHODS - vliz.be · Neukermans et al. Optimizing [SPM] Measurement Table 1 . Overview of types of [SPM] procedural control filters and treatments. Filter

Neukermans et al Optimizing [SPM] M easurement

sample CL sample WGAB sample 0924A

95115

10535

7595

25

5575

020 0 5 0 100

sample MOD200 020 0 5 0 100

sample T150 020 0 5 0 100

sample MH5200

125

^ 115

^ 105

95

0 26 0 50 100 200 020VV

opt

0 60 100VV

opt

200

60

55

50

45

40020 0 53 100 167

VVopt

Fig 8 Boxplot of [SPM] o b ta in e d th ro u g h filtration o f d ifferen t vo lum es of sam p led seaw ate r a t six d ifferen t sta tions

th e ir ow n re la tionsh ip betw een tu rb id ity an d op tim al filtrashytio n vo lum e w h ich is specific to th e type of tu rb id ity in s tru shym e n t (w avelength an d angular response) th e uncerta in ties of th e [SPM] m easu rem en t p rocedure w h ich can be assessed from procedural co n tro l filters th e desired m ax im u m relative variab ility betw een replicates an d th e com position of th e p arshyticles (organic inorganic)

The idea of estim ating op tim al filtra tion vo lum e from tu r shyb id ity (or an o th er su itab ly chosen optical proxy) an d of checkshyin g tu rb id ity before an d after all filtra tion opera tions has been illu stra ted specifically for th e m ass co n c en tra tio n of [SPM] in th is article However th is idea cou ld have m ore general app lishyca tion to im prov ing th e q uality an d th e quality co n tro l for o th e r physical or chem ical properties of [SPM] (eg G ro u n d shyw ater e t al 2012)

ReferencesB ooth B C 1987 Cell breakage in n a n o p h y to p la n k to n d u rshy

ing filtra tion of liv ing organism s Eos 68(50)1723Boss E an d others 2009 C om parison of in h e re n t op tical

properties as a surrogate for particu la te m atte r co n c en tra shy

tio n in coastal w aters L im nol Oceanogr M ethods 7803- 810 [doi104319lom 20097803]

Chavez F P an d o thers 1995 O n th e ch lo rophy ll-a re te n tio n properties of glass-fiber GFF filters F im nol Oceanogr 40428-433 [doi104319lo 19954020428]

Feely R A J H Trefry an d B M onger 1991 Particle sam shyp ling an d preservation p 5 -22 In D C H eard an d D W Spencer [eds] M arine particles analysis an d characterizashytion A m erican G eophysical U n ion

G oldm an J C an d M R D enne tt 1985 Susceptibility of som e m arine p h y to p la n k to n species to cell breakage du rin g filtra tion an d post-filtra tion rinsing J Exp Mar Biol Ecol 8647-58 [doi1010160022-0981 (85)90041-3]

G roundw ater H M S Twardowski H Dierssen A Sciendra an d S Freem an 2012 D eterm in ing size d istribu tions an d com position of particles suspended in w ater a new SEM- EDS p ro toco l w ith va lida tion an d com parison to o the r m e th o d s J A tm os O cean T echno l 29433-449 [doi101175JTECH-D-l 1-000261]

ICES 2004 C hem ical m easurem ents in th e Baltic Sea G uideshylines o n q uality assurance In te rn a tio n a l C ouncil for the

1021

Neukermans et al Optimizing [SPM] Measurement

sample CL sample WGAB sample 0924A12 7 88+050

10WD=800(plusmn076)V+-03 K Iacute0 71 )

87 50+028

6

47 36+052

26 90plusmn 152

00 05 1 15

9

2 71+0398

7

6 W D=266(plusmn065)V+005itll3)

OD rP 5

42 47+033

3107+075

2

1 2 73+064

00 1 2 3

12

1048+07810

WD=1065(plusmn198)V+-001(+gtfU4)

8

6 136+043

4

1056+0672

60plusmn089

00 02 04 06 08 1 12

Qamp

W D=26171+056) V+0

47+099

WD=6048(plusmn595)VWD= 10461+157)V+012(plusmnCK91)

1080+049

131+ 177

5856+092

sample MOD sample T sample MH5

Fig 9 S catterp lo ts o f particu la te d ry m ass (WD = w a - w]j versus filtrate vo lum e V The erro r bars d e n o te th e s ta n d a rd erro r on W D o b ta in ed from 5 replicates The m ean an d s ta n d a rd erro r of [SPM] are also show n for each filtration vo lum e Show n in red are th e regression line an d its eq u a tio n w ith 95 confid en ce intervals of th e coeffic ient estim ates

E xploration of th e Sea ICES T echniques in M arine Envishyro n m en ta l Sciences 35 E Lysiak-Pastuszak an d M Krysell [Eds] lth ttp w w w ic e s d k p u b s t im e s tim e s3 5 T IM E S 35 pdfgt

ISO 1995 G uide to th e expression of u n ce rta in ty in m eashysu rem e n t In te rn a tio n a l S tan d a rd O rg a n isa tio n ISO 1995101

1997 W ater qualitymdashd ete rm in a tio n of suspendedsolids by filtra tion th ro u g h glass-fibre filters In te rn a tio n a l S tandard O rganisation ISO 11923

1999 W ater qualifymdashd ete rm in a tio n of turbid ity In te rshyn a tio n a l S tandard O rganisation ISO 70271999(E)

Kiene R P an d L J L inn 1999 F ilter-type an d sam ple h a n shyd ling affect d e te rm in a tio n of o rganic substrate up take by b a c te r io p la n k to n A quat M icrob Ecol 17311-321 [doi103354am e017311]

Kirst G O 1990 Salinity to lerance of eukaryotic m arine algae A nnu Rev P lan t Physiol P lan t M ol Biol 4121-53

[doi10 1146 annurev pp 41060190000321]Logan B E 1993 Theoretical analysis o f size d istribu tions

de term in ed w ith screens an d filters L im nol Oceanogr 38372-381 [doi104319lo 19933820372]

Lovegrove T 1966 The d e te rm in a tio n of th e d ry w eigh t of p lan k to n an d th e effect of various factors o n th e values ob ta ined p 429-467 In Som e con tem p o rary studies in m arine science H afner Publ C om p

M ueller J L an d others 2003 O cean optics p ro toco ls for satellite ocean color sensor validation In J L M ueller G S Fargion an d C R M cClain [Eds] Technical M em orandum TM -2003-21621R evision 5 Vol 5 N ational A eronautical an d Space ad m in istra tio n (NASA)

N eukerm ans G 2012 O ptical in situ an d geosta tionary satelshylite-borne observations of suspended particles in coastal w aters PhD d issertation U niversiteacute d u Littoral - Cocircte d O pale W im ereux France A cadem ic an d Scientific Pubshylishers Ravensteingalerij 28 1000 Brussels Belgium ISBN

1022

Neukermans et al Optimizing [SPM] Measurement

978 90 7028 949 2 Perm a-links lth ttp w w w 2m um m ac b e d o w n lo a d s p u b lic a tio n s neukerm an s_ p h d _ co v erp d f gt lth t tp w w w 2 m u m m a c b e d o w n lo a d s p u b l i c a t io n s n eu kerm ans_phd_m anuscrip t_ l 7x24pdfgt

G H Loisel X M eriaux R Astoreca an d D McKee2012 In situ variab ility of mass-specific beam a tten u a tio n an d backscattering of m arine particles w ith respect to p a rshyticle size density an d com position Lim nol Oceanogr 57124-144 [doi104319lo 20125710124]

Pearlm an S R H S Costa R A Jung J J M cKeown an d H E Pearson 1995 Solids (sec 2540) p 2-53-52-64 In A D Eaton L S Clesceri an d A E G reenberg [eds] S tandard m e th o d s for th e ex am in a tio n of w ater an d w astew ater A m erican Public H ealth Association

PML an d ICES 2004 ECASA (Ecosystem A pproach for Susshyta inab le A quaculture) bo o k of protocols Particulate m atte r in seawater P lym outh M arine Laboratory an d In te rn a tio n a l C ouncil for th e E xploration of th e Sea lth ttp w w w ecasa to o lb o x o rg u k th e - to o lb o x e ia -c o u n try b o o k -o f -p ro to - co lsparticu la te-m atter-in -seaw atergt

Sheldon R W 1972 Size separation of m arine seston by m e m b ra n e a n d glass-fiber filte rs L im nol O ceanogr 17494-498 [doi10 4319lo l972 17 3 0494]

an d W H J Sutcliffe 1969 R eten tion of m arine p a rtishycles by screens an d filters L im nol Oceanogr 14441-444 [doi10 4319lo 19691430441]

Stavn R H H J Rick an d A V Falster 2009 C orrecting th e

errors from variable sea salt re te n tio n an d w ater of h y d ra shytio n in loss o n ig n itio n analysis Im plications for studies of estuarine an d coastal w aters Estuar Coast Shelf Sei 81575-582 [doi101016jecss200812017]

Stram ski D E Boss D Bogucki an d K J Voss 2004 The role o f seaw ater co n s titu en ts in ligh t backscattering in the ocean Prog Oceanogr 61 27-56

Strickland J D H an d T R Parsons 1968 A practical h a n d shybook of seaw ater analysis B ulletin 167 Fisheries Research Board of C anada

Tilstone G an d others 2002 REVAMP Regional V alidation of MERIS C h lo rophy ll p roducts in N o rth Sea coastal waters Protocols d ocum en t REVAMP m ethodo log ies - EVG1 - CT - 2001 - 00049 lth ttp en v isa te sa in tw o rk sh o p sm av t_ 2003M AVT-2003_802_REVAM Pprotocols3pdfgt

Trees C C 1978 A nalytical analysis o f effect of dissolved solids o n suspended solids d e term in a tio n J W ater Poll C on tro l Fed 502370-2373

van der Linde D W 1998 P rotocol for th e d e te rm in a tio n of to ta l suspended m a tte r in oceans an d coastal zones Jo in t Research C entre Ispra Technical n o te 198182

York D 1966 Least-squares f ittin g of a straigh t line Can J Phys 441079-1086 [doi101139p66-090]

Submitted 26 May 2012 Revised 5 October 2012

Accepted 18 November 2012

1023

Page 12: LIMNOLOGY and OCEANOGRAPHY: METHODS - vliz.be · Neukermans et al. Optimizing [SPM] Measurement Table 1 . Overview of types of [SPM] procedural control filters and treatments. Filter

Neukermans et al Optimizing [SPM] Measurement

sample CL sample WGAB sample 0924A12 7 88+050

10WD=800(plusmn076)V+-03 K Iacute0 71 )

87 50+028

6

47 36+052

26 90plusmn 152

00 05 1 15

9

2 71+0398

7

6 W D=266(plusmn065)V+005itll3)

OD rP 5

42 47+033

3107+075

2

1 2 73+064

00 1 2 3

12

1048+07810

WD=1065(plusmn198)V+-001(+gtfU4)

8

6 136+043

4

1056+0672

60plusmn089

00 02 04 06 08 1 12

Qamp

W D=26171+056) V+0

47+099

WD=6048(plusmn595)VWD= 10461+157)V+012(plusmnCK91)

1080+049

131+ 177

5856+092

sample MOD sample T sample MH5

Fig 9 S catterp lo ts o f particu la te d ry m ass (WD = w a - w]j versus filtrate vo lum e V The erro r bars d e n o te th e s ta n d a rd erro r on W D o b ta in ed from 5 replicates The m ean an d s ta n d a rd erro r of [SPM] are also show n for each filtration vo lum e Show n in red are th e regression line an d its eq u a tio n w ith 95 confid en ce intervals of th e coeffic ient estim ates

E xploration of th e Sea ICES T echniques in M arine Envishyro n m en ta l Sciences 35 E Lysiak-Pastuszak an d M Krysell [Eds] lth ttp w w w ic e s d k p u b s t im e s tim e s3 5 T IM E S 35 pdfgt

ISO 1995 G uide to th e expression of u n ce rta in ty in m eashysu rem e n t In te rn a tio n a l S tan d a rd O rg a n isa tio n ISO 1995101

1997 W ater qualitymdashd ete rm in a tio n of suspendedsolids by filtra tion th ro u g h glass-fibre filters In te rn a tio n a l S tandard O rganisation ISO 11923

1999 W ater qualifymdashd ete rm in a tio n of turbid ity In te rshyn a tio n a l S tandard O rganisation ISO 70271999(E)

Kiene R P an d L J L inn 1999 F ilter-type an d sam ple h a n shyd ling affect d e te rm in a tio n of o rganic substrate up take by b a c te r io p la n k to n A quat M icrob Ecol 17311-321 [doi103354am e017311]

Kirst G O 1990 Salinity to lerance of eukaryotic m arine algae A nnu Rev P lan t Physiol P lan t M ol Biol 4121-53

[doi10 1146 annurev pp 41060190000321]Logan B E 1993 Theoretical analysis o f size d istribu tions

de term in ed w ith screens an d filters L im nol Oceanogr 38372-381 [doi104319lo 19933820372]

Lovegrove T 1966 The d e te rm in a tio n of th e d ry w eigh t of p lan k to n an d th e effect of various factors o n th e values ob ta ined p 429-467 In Som e con tem p o rary studies in m arine science H afner Publ C om p

M ueller J L an d others 2003 O cean optics p ro toco ls for satellite ocean color sensor validation In J L M ueller G S Fargion an d C R M cClain [Eds] Technical M em orandum TM -2003-21621R evision 5 Vol 5 N ational A eronautical an d Space ad m in istra tio n (NASA)

N eukerm ans G 2012 O ptical in situ an d geosta tionary satelshylite-borne observations of suspended particles in coastal w aters PhD d issertation U niversiteacute d u Littoral - Cocircte d O pale W im ereux France A cadem ic an d Scientific Pubshylishers Ravensteingalerij 28 1000 Brussels Belgium ISBN

1022

Neukermans et al Optimizing [SPM] Measurement

978 90 7028 949 2 Perm a-links lth ttp w w w 2m um m ac b e d o w n lo a d s p u b lic a tio n s neukerm an s_ p h d _ co v erp d f gt lth t tp w w w 2 m u m m a c b e d o w n lo a d s p u b l i c a t io n s n eu kerm ans_phd_m anuscrip t_ l 7x24pdfgt

G H Loisel X M eriaux R Astoreca an d D McKee2012 In situ variab ility of mass-specific beam a tten u a tio n an d backscattering of m arine particles w ith respect to p a rshyticle size density an d com position Lim nol Oceanogr 57124-144 [doi104319lo 20125710124]

Pearlm an S R H S Costa R A Jung J J M cKeown an d H E Pearson 1995 Solids (sec 2540) p 2-53-52-64 In A D Eaton L S Clesceri an d A E G reenberg [eds] S tandard m e th o d s for th e ex am in a tio n of w ater an d w astew ater A m erican Public H ealth Association

PML an d ICES 2004 ECASA (Ecosystem A pproach for Susshyta inab le A quaculture) bo o k of protocols Particulate m atte r in seawater P lym outh M arine Laboratory an d In te rn a tio n a l C ouncil for th e E xploration of th e Sea lth ttp w w w ecasa to o lb o x o rg u k th e - to o lb o x e ia -c o u n try b o o k -o f -p ro to - co lsparticu la te-m atter-in -seaw atergt

Sheldon R W 1972 Size separation of m arine seston by m e m b ra n e a n d glass-fiber filte rs L im nol O ceanogr 17494-498 [doi10 4319lo l972 17 3 0494]

an d W H J Sutcliffe 1969 R eten tion of m arine p a rtishycles by screens an d filters L im nol Oceanogr 14441-444 [doi10 4319lo 19691430441]

Stavn R H H J Rick an d A V Falster 2009 C orrecting th e

errors from variable sea salt re te n tio n an d w ater of h y d ra shytio n in loss o n ig n itio n analysis Im plications for studies of estuarine an d coastal w aters Estuar Coast Shelf Sei 81575-582 [doi101016jecss200812017]

Stram ski D E Boss D Bogucki an d K J Voss 2004 The role o f seaw ater co n s titu en ts in ligh t backscattering in the ocean Prog Oceanogr 61 27-56

Strickland J D H an d T R Parsons 1968 A practical h a n d shybook of seaw ater analysis B ulletin 167 Fisheries Research Board of C anada

Tilstone G an d others 2002 REVAMP Regional V alidation of MERIS C h lo rophy ll p roducts in N o rth Sea coastal waters Protocols d ocum en t REVAMP m ethodo log ies - EVG1 - CT - 2001 - 00049 lth ttp en v isa te sa in tw o rk sh o p sm av t_ 2003M AVT-2003_802_REVAM Pprotocols3pdfgt

Trees C C 1978 A nalytical analysis o f effect of dissolved solids o n suspended solids d e term in a tio n J W ater Poll C on tro l Fed 502370-2373

van der Linde D W 1998 P rotocol for th e d e te rm in a tio n of to ta l suspended m a tte r in oceans an d coastal zones Jo in t Research C entre Ispra Technical n o te 198182

York D 1966 Least-squares f ittin g of a straigh t line Can J Phys 441079-1086 [doi101139p66-090]

Submitted 26 May 2012 Revised 5 October 2012

Accepted 18 November 2012

1023

Page 13: LIMNOLOGY and OCEANOGRAPHY: METHODS - vliz.be · Neukermans et al. Optimizing [SPM] Measurement Table 1 . Overview of types of [SPM] procedural control filters and treatments. Filter

Neukermans et al Optimizing [SPM] Measurement

978 90 7028 949 2 Perm a-links lth ttp w w w 2m um m ac b e d o w n lo a d s p u b lic a tio n s neukerm an s_ p h d _ co v erp d f gt lth t tp w w w 2 m u m m a c b e d o w n lo a d s p u b l i c a t io n s n eu kerm ans_phd_m anuscrip t_ l 7x24pdfgt

G H Loisel X M eriaux R Astoreca an d D McKee2012 In situ variab ility of mass-specific beam a tten u a tio n an d backscattering of m arine particles w ith respect to p a rshyticle size density an d com position Lim nol Oceanogr 57124-144 [doi104319lo 20125710124]

Pearlm an S R H S Costa R A Jung J J M cKeown an d H E Pearson 1995 Solids (sec 2540) p 2-53-52-64 In A D Eaton L S Clesceri an d A E G reenberg [eds] S tandard m e th o d s for th e ex am in a tio n of w ater an d w astew ater A m erican Public H ealth Association

PML an d ICES 2004 ECASA (Ecosystem A pproach for Susshyta inab le A quaculture) bo o k of protocols Particulate m atte r in seawater P lym outh M arine Laboratory an d In te rn a tio n a l C ouncil for th e E xploration of th e Sea lth ttp w w w ecasa to o lb o x o rg u k th e - to o lb o x e ia -c o u n try b o o k -o f -p ro to - co lsparticu la te-m atter-in -seaw atergt

Sheldon R W 1972 Size separation of m arine seston by m e m b ra n e a n d glass-fiber filte rs L im nol O ceanogr 17494-498 [doi10 4319lo l972 17 3 0494]

an d W H J Sutcliffe 1969 R eten tion of m arine p a rtishycles by screens an d filters L im nol Oceanogr 14441-444 [doi10 4319lo 19691430441]

Stavn R H H J Rick an d A V Falster 2009 C orrecting th e

errors from variable sea salt re te n tio n an d w ater of h y d ra shytio n in loss o n ig n itio n analysis Im plications for studies of estuarine an d coastal w aters Estuar Coast Shelf Sei 81575-582 [doi101016jecss200812017]

Stram ski D E Boss D Bogucki an d K J Voss 2004 The role o f seaw ater co n s titu en ts in ligh t backscattering in the ocean Prog Oceanogr 61 27-56

Strickland J D H an d T R Parsons 1968 A practical h a n d shybook of seaw ater analysis B ulletin 167 Fisheries Research Board of C anada

Tilstone G an d others 2002 REVAMP Regional V alidation of MERIS C h lo rophy ll p roducts in N o rth Sea coastal waters Protocols d ocum en t REVAMP m ethodo log ies - EVG1 - CT - 2001 - 00049 lth ttp en v isa te sa in tw o rk sh o p sm av t_ 2003M AVT-2003_802_REVAM Pprotocols3pdfgt

Trees C C 1978 A nalytical analysis o f effect of dissolved solids o n suspended solids d e term in a tio n J W ater Poll C on tro l Fed 502370-2373

van der Linde D W 1998 P rotocol for th e d e te rm in a tio n of to ta l suspended m a tte r in oceans an d coastal zones Jo in t Research C entre Ispra Technical n o te 198182

York D 1966 Least-squares f ittin g of a straigh t line Can J Phys 441079-1086 [doi101139p66-090]

Submitted 26 May 2012 Revised 5 October 2012

Accepted 18 November 2012

1023