Limits of randomly grown graph sequences Katalin Vesztergombi Eötvös University, Budapest With:...

23
Limits of randomly grown graph sequences Katalin Vesztergombi Eötvös University, Budapest With: Christian Borgs, Jennifer Chayes, László Lovász, Vera Sós

description

The limit object For every convergent graph sequence (G n ) there is a such that Lovász-Szegedy

Transcript of Limits of randomly grown graph sequences Katalin Vesztergombi Eötvös University, Budapest With:...

Page 1: Limits of randomly grown graph sequences Katalin Vesztergombi Eötvös University, Budapest With: Christian Borgs, Jennifer Chayes, László Lovász, Vera Sós.

Limits of randomly growngraph sequences

Katalin VesztergombiEötvös University, Budapest

With: Christian Borgs, Jennifer Chayes, László Lovász, Vera Sós

Page 2: Limits of randomly grown graph sequences Katalin Vesztergombi Eötvös University, Budapest With: Christian Borgs, Jennifer Chayes, László Lovász, Vera Sós.

Convergent graph sequences

1 2( , ,...) ( , )convergent: isconvergentnG G F t F G"

with probability 1

Example: random graphs

( )| ( )|12

12( , )( , )

E Fnt F ®Gt

| ( )|

hom( , )| ( ) |

( , ) V F

F GV G

t F G Probability that random mapV(F)V(G) is a hom

Page 3: Limits of randomly grown graph sequences Katalin Vesztergombi Eötvös University, Budapest With: Christian Borgs, Jennifer Chayes, László Lovász, Vera Sós.

The limit object

{ }20 : [0,1] [0,1] symmetric, measurableW= ®W

( ) ( )[0,1]

( , )( , )V F

i jij E F

W x x dxt F WÎ

= Õò( , ( ): ) ,nn F t F G WW tG F® " ®

For every convergent graph sequence (Gn)there is a such that0W Î W nG W®

Lovász-Szegedy

Page 4: Limits of randomly grown graph sequences Katalin Vesztergombi Eötvös University, Budapest With: Christian Borgs, Jennifer Chayes, László Lovász, Vera Sós.

0 0 1 0 0 1 1 0 0 0 1 0 0 10 0 1 0 1 0 1 0 0 0 0 0 1 01 1 0 1 0 1 1 1 1 0 1 0 1 10 0 1 0 1 0 1 0 1 0 1 1 0 00 1 0 1 0 1 1 0 0 0 1 0 0 11 0 1 0 1 0 1 1 0 1 1 1 0 11 1 1 1 1 1 0 1 0 1 1 1 1 00 0 1 0 0 1 1 0 1 0 1 0 1 10 0 1 1 0 0 0 1 1 1 0 1 0 00 0 0 0 0 1 1 0 1 0 1 0 1 01 0 1 1 1 1 1 1 0 1 0 1 1 10 0 0 1 0 1 1 0 1 0 1 0 1 00 1 1 0 0 0 1 1 0 1 1 1 0 11 0 1 0 1 1 0 1 0 0 1 0 1 0

Page 5: Limits of randomly grown graph sequences Katalin Vesztergombi Eötvös University, Budapest With: Christian Borgs, Jennifer Chayes, László Lovász, Vera Sós.

Half-graphs

Page 6: Limits of randomly grown graph sequences Katalin Vesztergombi Eötvös University, Budapest With: Christian Borgs, Jennifer Chayes, László Lovász, Vera Sós.

A random graph with

100 nodes and with edge density 1/2W1/2

Page 7: Limits of randomly grown graph sequences Katalin Vesztergombi Eötvös University, Budapest With: Christian Borgs, Jennifer Chayes, László Lovász, Vera Sós.

Rearranging the rows and columns

Page 8: Limits of randomly grown graph sequences Katalin Vesztergombi Eötvös University, Budapest With: Christian Borgs, Jennifer Chayes, László Lovász, Vera Sós.

A random graph with

100 nodes and with edge density 1/2W1/2

(no matter how you reorder the nodes)

Page 9: Limits of randomly grown graph sequences Katalin Vesztergombi Eötvös University, Budapest With: Christian Borgs, Jennifer Chayes, László Lovász, Vera Sós.

Randomly grown uniform attachment graph

At step n:- a new node is born;- any two nodes are connected with probability 1/n

Ignore multiplicity of edges

Page 10: Limits of randomly grown graph sequences Katalin Vesztergombi Eötvös University, Budapest With: Christian Borgs, Jennifer Chayes, László Lovász, Vera Sós.

A randomly grown

uniform attachment graph

with 200 nodes

Page 11: Limits of randomly grown graph sequences Katalin Vesztergombi Eötvös University, Budapest With: Christian Borgs, Jennifer Chayes, László Lovász, Vera Sós.

probability that nodes i < j are not connected:

1 1 11

j j n jj j n n- - -=+ L

expected degree of j:

1 ( 1)( 2)2 2

n j jn

- - --

expected number of edges:2 16

n -

After n steps:

Lovasz
One could compute many other parameters, but at least asymptotically, all these would follow from the following representation of the limit.
Page 12: Limits of randomly grown graph sequences Katalin Vesztergombi Eötvös University, Budapest With: Christian Borgs, Jennifer Chayes, László Lovász, Vera Sós.

probability that nodes i and j are connected:

max( , ) 11 i jn

--

The limit:

if i=xn and j=yn

1 max( , )x y» -

These are independent events for different i,j.

Lovasz
One could compute many other parameters, but at least asymptotically, all these would follow from the following representation of the limit.
Page 13: Limits of randomly grown graph sequences Katalin Vesztergombi Eötvös University, Budapest With: Christian Borgs, Jennifer Chayes, László Lovász, Vera Sós.

A randomly grown

uniform attachment graph

with 200 nodes

( , ) 1 max( , )W x y x y= -

Proof: By estimating the cut-distance.

Page 14: Limits of randomly grown graph sequences Katalin Vesztergombi Eötvös University, Budapest With: Christian Borgs, Jennifer Chayes, László Lovász, Vera Sós.

Randomly grown prefix attachment graph

At step n:- a new node is born;- connects to a random previous node and all its predecessors

Page 15: Limits of randomly grown graph sequences Katalin Vesztergombi Eötvös University, Budapest With: Christian Borgs, Jennifer Chayes, László Lovász, Vera Sós.

A randomly grown prefix attachment graph

with 200 nodes

Is this graph sequenceconvergent at all?

Yes, by computing subgraph densities!

This tends to some shades of gray; is that the limit?

No, by computing triangle densities!

Page 16: Limits of randomly grown graph sequences Katalin Vesztergombi Eötvös University, Budapest With: Christian Borgs, Jennifer Chayes, László Lovász, Vera Sós.

A randomly grown prefix attachment graph

with 200 nodes (ordered by degrees)

This also tends to some shades of gray; is that the limit?

No…

Page 17: Limits of randomly grown graph sequences Katalin Vesztergombi Eötvös University, Budapest With: Christian Borgs, Jennifer Chayes, László Lovász, Vera Sós.

Label node born in step k, connecting to {1,…,m}, by (k/n, m/k)

1 22

1 22

21 2 ork k m k m

kx y

n nx

æ ö÷ç ÷£ £ç ÷ç ÷çè ø£

- Nodes with label (x1, y1) and (x2, y2) (x1< x2) are connected iff

- Labels are uniformly distributed in the unit square

Limit can be represented as2 2

1 2 2

:[0,1] [0,1] [0,1]1 ,

( , )0,, if

otherwise

Wx x y

W x y

´ ®ì £ïï=íïïî

Lovasz
One could compute many other parameters, but at least asymptotically, all these would follow from the following representation of the limit.
Page 18: Limits of randomly grown graph sequences Katalin Vesztergombi Eötvös University, Budapest With: Christian Borgs, Jennifer Chayes, László Lovász, Vera Sós.

The limit of randomly grown prefix attachment graphs

(as a function on [0,1]2)

Page 19: Limits of randomly grown graph sequences Katalin Vesztergombi Eötvös University, Budapest With: Christian Borgs, Jennifer Chayes, László Lovász, Vera Sós.

Preferential attachment graph on n fixed nodes

At step m: any two nodes i and j are connected with probability (d(i)+1)(d(j)+1)/(2m+n)2

Allow multiple edges!!!

Repeat until we insert edges. 1

22n

mæö÷ç= ÷ç ÷ç ÷çè ø

Page 20: Limits of randomly grown graph sequences Katalin Vesztergombi Eötvös University, Budapest With: Christian Borgs, Jennifer Chayes, László Lovász, Vera Sós.

A preferential attachment graph

with 200 fixed nodes

and with 5,000 (multiple) edges

Page 21: Limits of randomly grown graph sequences Katalin Vesztergombi Eötvös University, Budapest With: Christian Borgs, Jennifer Chayes, László Lovász, Vera Sós.

( , ) ln( ) ln( )W x z x y=A randomly grown

preferential attachment graph

with 200 fixed nodes ordered by degrees

and with 5,000 (multiple) edges

Proof by computing t(F,Gn)

Page 22: Limits of randomly grown graph sequences Katalin Vesztergombi Eötvös University, Budapest With: Christian Borgs, Jennifer Chayes, László Lovász, Vera Sós.

Can we construct a sequence converging to 1-xy?

Method 1: W-random graph

x1,…,xn,…: independent points from [0,1]

connect xi and xj with probability 1-xi xj

Works for any W

Page 23: Limits of randomly grown graph sequences Katalin Vesztergombi Eötvös University, Budapest With: Christian Borgs, Jennifer Chayes, László Lovász, Vera Sós.

Method 2: growing in order

At step n: - a new node is born, and connected to i with prob (n-i)/n - any two old nodes are connected with probability 1/n

Ignore multiplicity of edges

Works for any monotone decreasing W