Limits and Fits

10
Need for different types of fit Limits of size and Tolerance Principal Terms Explained Definition of different types of Fit

description

Limits and Fits. Need for different types of fit Limits of size and Tolerance Principal Terms Explained Definition of different types of Fit. Need for Different Types of Fit. Machines and Plant such as lathes, compressors, etc. consist of many different components assembled together. - PowerPoint PPT Presentation

Transcript of Limits and Fits

Page 1: Limits and Fits

•Need for different types of fit •Limits of size and Tolerance•Principal Terms Explained•Definition of different types of Fit

Page 2: Limits and Fits

Machines and Plant such as lathes, compressors, etc. consist of many different components assembled together.

Some components need to rotate or slide whilst others need to be fixed, therefore the tightness with which they fit together varies.

The difference in size of the components determines the type of fit.

There are three types of fit sub-divided into different classes these are Clearance, Transition and Interference.

Page 3: Limits and Fits
Page 4: Limits and Fits

The largest acceptable size for a component is known as the Upper Limit of Size

The smallest acceptable size for a component is Known as the Lower Limit of Size

The difference between the Upper Limit of Size and the Lower Limit of Size is Known as the Tolerance or Tolerance Zone

Page 5: Limits and Fits

Nominal/Basic Size:- The size by which the component the component feature is known e.g. 20.00mm, it is the exact functional size by which the limit of size are developed (sometimes referred to as the line of zero deviation)

Unilateral Tolerance:- One where the tolerance zone is in one direction and lays to one side of the basic size e.g. 20 +0.01 /20 +002 (20.01 / 20.02)

Bilateral Tolerance:- One where the tolerance zone is in both directions and crosses the basic size e.g. 20 +0.01 / 20 – 0.01 (20.01 / 19.99)

Page 6: Limits and Fits
Page 7: Limits and Fits

With respect to shafts Maximum Material condition

(MMC) refers to the largest shaft (upper limit of size) i.e. least material removed

Least Material Condition (LMC) refers to the smallest shaft Lower limit of size) i.e. most material removed

With respect to holes Maximum Material condition

(MMC) refers to the smallest hole (lower limit of size) i.e. least material removed

Least Material Condition (LMC) refers to the largest hole (upper limit of size) i.e. most material removed

Page 8: Limits and Fits

Where movement is required between mating parts a clearance fit is necessary.

With a clearance fit the upper and lower limits of size for each component are set so that a clearance always exists between the two components (the upper limit of the shaft is equal to or less than the lower limit of the bearing

With a clearance fit assembly requires little or no effort

Clearance fits are sub-divided depending on the amount of clearance e.g. Free running clearance, close running clearance location clearance etc

Page 9: Limits and Fits

An Interference fit is required where movement between mating components is not permitted due to the function of the components e.g. a gear mounted on a shaft.

With an Interference fit the upper and lower limits of both component are set so that Interference always occurs

The amount of interference varies and assembly may require a press fit ,a force fit, or in extreme cases a shrink fit, This is where the bearing is heated and the shaft cooled, the two components are then assembled and returned to normal temperature resulting in a permanent fixture which is near impossible to dismantle e.g. railway wagon wheels fitted to axles.

Page 10: Limits and Fits

A Transition fit is required when two mating components are not required to rotate or slide but may need to be dismantled easily for example a pulley mounted on a shaft

With a transition fit the upper and lower limits of size for each component are set so that either a small clearance or a small interference could occur

If the shaft is at its lower limit and the bearing is at its upper limit a clearance is present

If the shaft is at its upper limit and the bearing at its lower limit then interference is present

Transition fits can be a light press or push fit