Lime Use For Soil & Base...

35
Lime Use For Soil & Base Improvement Application Design Testing P3 Symposium July 19, 2007 Eric Berger Appian Way

Transcript of Lime Use For Soil & Base...

Page 1: Lime Use For Soil & Base Improvementpetersenasphaltconference.org/download/2007/3-3EricBerger.pdfCBR, LTS (%) Ratio LTS: Subgrade 61N 15 200 33.3 82E 12 150 12.5 82W 4 47 11.8 45N

Lime Use For Soil & Base Improvement

ApplicationDesignTesting

P3 SymposiumJuly 19, 2007

Eric BergerAppian Way

Page 2: Lime Use For Soil & Base Improvementpetersenasphaltconference.org/download/2007/3-3EricBerger.pdfCBR, LTS (%) Ratio LTS: Subgrade 61N 15 200 33.3 82E 12 150 12.5 82W 4 47 11.8 45N

2

Common Additives for Soil Treatment

Clay Silt/ Sand Gravel

Lime

Asphalt

Portland Cement

Lime/ Fly Ash

Lime

Page 3: Lime Use For Soil & Base Improvementpetersenasphaltconference.org/download/2007/3-3EricBerger.pdfCBR, LTS (%) Ratio LTS: Subgrade 61N 15 200 33.3 82E 12 150 12.5 82W 4 47 11.8 45N

3

Many Uses of Lime

7 10 10.5 12.4

pH

Dry

Modify

Stabilize

Page 4: Lime Use For Soil & Base Improvementpetersenasphaltconference.org/download/2007/3-3EricBerger.pdfCBR, LTS (%) Ratio LTS: Subgrade 61N 15 200 33.3 82E 12 150 12.5 82W 4 47 11.8 45N

4

• Typically moisture sensitive– Expansion potential & swell pressure

• Exhibit poor pavement support– Low R-values, CBRs, & unconfined compressive

strengths• Constructibility problems

– Highly plastic - poor workability– Hard to compact– Yield or pump when wet

Clay Soils

Page 5: Lime Use For Soil & Base Improvementpetersenasphaltconference.org/download/2007/3-3EricBerger.pdfCBR, LTS (%) Ratio LTS: Subgrade 61N 15 200 33.3 82E 12 150 12.5 82W 4 47 11.8 45N

5

Structure of Clay Minerals (1)

>Basic units of silicate clay minerals are Silicon tetrahedrons and Aluminum (or Magnesium) octahedrons. Thousands of these basic units are connected to make up tetrahedral sheets (1) and octahedral sheets (2).

>Different combinations of tetrahedral and octahedral sheets are called layers (i.e. Kaolinite: 1:1; Smectite: 2:1).

>In some clays, these layers are separated by interlayers in which water and different adsorbed cations are found

(2)

(1)

Page 6: Lime Use For Soil & Base Improvementpetersenasphaltconference.org/download/2007/3-3EricBerger.pdfCBR, LTS (%) Ratio LTS: Subgrade 61N 15 200 33.3 82E 12 150 12.5 82W 4 47 11.8 45N

6

Structure of Clay Minerals (2)

Kaolinite:Hexagonal crystals

Size: 0.2 - 2 μm

Surface Area: 10 - 30 m2/g[Magn: 2000 x]

Montmorillonite:Flakes

Size: 0.01 - 1 μm

Surface Area: 650 - 800 m2/g[Magn: 20000 x]

Page 7: Lime Use For Soil & Base Improvementpetersenasphaltconference.org/download/2007/3-3EricBerger.pdfCBR, LTS (%) Ratio LTS: Subgrade 61N 15 200 33.3 82E 12 150 12.5 82W 4 47 11.8 45N

7

The System: Clay – Water - Calcium

Clay

Sur

face

Clay

Sur

face

Negatively charged clay surface attracts cations (+) & water molecules (dipole), causing formation of a ‘double diffused water layer’

Calcium cations (++) replace weaker bonds reducing clay affinity for water

Page 8: Lime Use For Soil & Base Improvementpetersenasphaltconference.org/download/2007/3-3EricBerger.pdfCBR, LTS (%) Ratio LTS: Subgrade 61N 15 200 33.3 82E 12 150 12.5 82W 4 47 11.8 45N

8

Effect of Cation Adsorption on Attracted Water Layer

Ca++ SaturationNa+ Saturation

Page 9: Lime Use For Soil & Base Improvementpetersenasphaltconference.org/download/2007/3-3EricBerger.pdfCBR, LTS (%) Ratio LTS: Subgrade 61N 15 200 33.3 82E 12 150 12.5 82W 4 47 11.8 45N

9

Lime - Soil Reactions:

Immediate Reactions (within hours)• Reduction in Water Content

chemical reaction (CaO + H2O → Ca(OH)2 + heat)* andmixing effect *: not for Hydrated Lime

• Flocculation / Agglomeration of Clay particlestextural change leads to decrease in PI & increase in workability

Medium & Long Term Reaction (days, weeks, months, years)• Pozzolanic reaction between lime and clay particlesRate of pozzolanic reaction depends on- amount and type (‘stability’) of clay minerals- temperature (increase by 100C/500F doubles speed of reaction)- high pH (> 12, “OH-”) and availability of Ca2+ and water

• Recarbonation of Limedecreases amount of Lime available for pozzolanic reaction

Page 10: Lime Use For Soil & Base Improvementpetersenasphaltconference.org/download/2007/3-3EricBerger.pdfCBR, LTS (%) Ratio LTS: Subgrade 61N 15 200 33.3 82E 12 150 12.5 82W 4 47 11.8 45N

10

Pozzolanic Reaction (1)

Hydrated lime (Ca(OH)2 pH > 12)+ water (H2O)

+ Clay (SiO2 & Al2O3 become soluble)= Cementicious material (CSH & CAH)

Natural Clay: 1500X With Ca(OH)2 & 28 day cure

Page 11: Lime Use For Soil & Base Improvementpetersenasphaltconference.org/download/2007/3-3EricBerger.pdfCBR, LTS (%) Ratio LTS: Subgrade 61N 15 200 33.3 82E 12 150 12.5 82W 4 47 11.8 45N

11

Influence of pH on solubility of Silica and Alumina

Pozzolanic Reaction (2)

Page 12: Lime Use For Soil & Base Improvementpetersenasphaltconference.org/download/2007/3-3EricBerger.pdfCBR, LTS (%) Ratio LTS: Subgrade 61N 15 200 33.3 82E 12 150 12.5 82W 4 47 11.8 45N

12

050

100150200250300350

0 2 4 6 8 10 12

% Hydrated Lime

UC

CS

[psi

] Georgia KaolinteVictoria ClayBeaumont ClayWyoming Smectite

Influence of clay-mineralogy on amount of Lime required to produce the pozzolanic reaction:

Ref: Thompson

Pozzolanic Reaction (3)

Page 13: Lime Use For Soil & Base Improvementpetersenasphaltconference.org/download/2007/3-3EricBerger.pdfCBR, LTS (%) Ratio LTS: Subgrade 61N 15 200 33.3 82E 12 150 12.5 82W 4 47 11.8 45N

13

01000200030004000500060007000

UCC

S [kP

a]

A-6(20) A-7-6(20) A-4(2)

Soil Classification

28-d180-d360-d

Effect of Curing Time on Strength Development:(unconfined compressive strength (UCCS) for different California soils)

1 PSI = 6.89 kPaRef: Doty

Strength Increase with Lime Stabilization

Page 14: Lime Use For Soil & Base Improvementpetersenasphaltconference.org/download/2007/3-3EricBerger.pdfCBR, LTS (%) Ratio LTS: Subgrade 61N 15 200 33.3 82E 12 150 12.5 82W 4 47 11.8 45N

14

Case Studies

Page 15: Lime Use For Soil & Base Improvementpetersenasphaltconference.org/download/2007/3-3EricBerger.pdfCBR, LTS (%) Ratio LTS: Subgrade 61N 15 200 33.3 82E 12 150 12.5 82W 4 47 11.8 45N

15

Mississippi Pavements Study

Highway HMA (in.) Yrs of Service

US 45 N 10 17

US 61 N 12 15

US 82W 13 20

US 82E 10 20

Page 16: Lime Use For Soil & Base Improvementpetersenasphaltconference.org/download/2007/3-3EricBerger.pdfCBR, LTS (%) Ratio LTS: Subgrade 61N 15 200 33.3 82E 12 150 12.5 82W 4 47 11.8 45N

16

Comparative Swell

After 12 hrs. of Capillary Rise

Ref: Little

Page 17: Lime Use For Soil & Base Improvementpetersenasphaltconference.org/download/2007/3-3EricBerger.pdfCBR, LTS (%) Ratio LTS: Subgrade 61N 15 200 33.3 82E 12 150 12.5 82W 4 47 11.8 45N

17

Unconfined Compressive Strength (psi)Lime Stabilized Soil

0

100

200

300

400

500

600

61N 82E 82W 45N

Dry

Soak

M.R. Thompsoncriteria, 1970

Ref: Little

Page 18: Lime Use For Soil & Base Improvementpetersenasphaltconference.org/download/2007/3-3EricBerger.pdfCBR, LTS (%) Ratio LTS: Subgrade 61N 15 200 33.3 82E 12 150 12.5 82W 4 47 11.8 45N

18

Pavement

CBR, Subgrade (%)

CBR, LTS (%)

Ratio LTS: Subgrade

61N 15 200 33.3

82E 12 150 12.5

82W 4 47 11.8

45N 10 133 13.3

Field Data with DCP

Ref: Little

Page 19: Lime Use For Soil & Base Improvementpetersenasphaltconference.org/download/2007/3-3EricBerger.pdfCBR, LTS (%) Ratio LTS: Subgrade 61N 15 200 33.3 82E 12 150 12.5 82W 4 47 11.8 45N

19

Pavement Modulus, Subgrade (psi)

Modulus, LTS (psi)

Ratio LTS: Subgrade

61N 13,000 61,000 4.38

82E 17,000 352,000 20.72

82W 17,600 193,000 10.98

45N 17,900 211,000 11.86

Field Data with FWD

Ref: Little

Page 20: Lime Use For Soil & Base Improvementpetersenasphaltconference.org/download/2007/3-3EricBerger.pdfCBR, LTS (%) Ratio LTS: Subgrade 61N 15 200 33.3 82E 12 150 12.5 82W 4 47 11.8 45N

20

Comparison of Design Values

Pavement Lab UCCS,

psi

Lab MR,psi

FieldCBR, %

Fielda2

US 61N 285 50,000 200 0.13

US 82E 264 28,500 150 0.16

US 82 W 235 38,600 47 0.12

US 45N 271 53,000 133 0.14

Ref: Little

Page 21: Lime Use For Soil & Base Improvementpetersenasphaltconference.org/download/2007/3-3EricBerger.pdfCBR, LTS (%) Ratio LTS: Subgrade 61N 15 200 33.3 82E 12 150 12.5 82W 4 47 11.8 45N

21

Pavement Design - Added Strength

A structural value is given to the stabilized subgrade

AASHTO Equation:-SN=a1D1+a2D2+a3D3

where a3=0.11-0.17

Benefits:

e.g. Figure 2.8, AASHTO Guide for e.g. Figure 2.8, AASHTO Guide for Design of Pavement StructuresDesign of Pavement Structures

Page 22: Lime Use For Soil & Base Improvementpetersenasphaltconference.org/download/2007/3-3EricBerger.pdfCBR, LTS (%) Ratio LTS: Subgrade 61N 15 200 33.3 82E 12 150 12.5 82W 4 47 11.8 45N

22

Dougherty Valley

Consideration for Lime Stabilization of the Native Subgrade Soils

• Engineering

• Environmental

• Economics

Ref: ENGEO, Inc.

Page 23: Lime Use For Soil & Base Improvementpetersenasphaltconference.org/download/2007/3-3EricBerger.pdfCBR, LTS (%) Ratio LTS: Subgrade 61N 15 200 33.3 82E 12 150 12.5 82W 4 47 11.8 45N

23

Engineering Benefits

• Reduction of shrink/swell potential of the native clay soils

• Increase load bearing capabilities of the subgrade

• Increase of subgrade R-Value from native 5 to treated +70

• Increased longevity of roadway by continued strength gains of the treated soil, creating a permanent pavement foundation

Page 24: Lime Use For Soil & Base Improvementpetersenasphaltconference.org/download/2007/3-3EricBerger.pdfCBR, LTS (%) Ratio LTS: Subgrade 61N 15 200 33.3 82E 12 150 12.5 82W 4 47 11.8 45N

24

Environmental Benefits

• Reduction in the amount of trucking from approximately 6,000 Truck loads of aggregate base to 2,300.

• Reduction in the amount of wear and tear of existing roadways leading into the site.

• Reduction in the maintenance cost of the existing roadways

• Reduction in further quarry depletions and less air pollution due to trucking requirements

Page 25: Lime Use For Soil & Base Improvementpetersenasphaltconference.org/download/2007/3-3EricBerger.pdfCBR, LTS (%) Ratio LTS: Subgrade 61N 15 200 33.3 82E 12 150 12.5 82W 4 47 11.8 45N

25

Economic Benefits

• Reduction of the pavement section

• Initial design section for a TI 8 required 4.8 inches of AC, 20.4 inches of AB, over compacted subgrade

• Treated section for a TI 8 required 4.8 inches of AC, 8.4 inches AB, over 15 inches of 4 percent lime treated subgrade soils.

• Total reduction of 12 inches of Class 2 Aggregate Base.

• Reduction in the amount of grading required for roadway construction.

• A schedule savings of up to 30 percent during the winter months.

Page 26: Lime Use For Soil & Base Improvementpetersenasphaltconference.org/download/2007/3-3EricBerger.pdfCBR, LTS (%) Ratio LTS: Subgrade 61N 15 200 33.3 82E 12 150 12.5 82W 4 47 11.8 45N

26

• Classify Soil & determine Lime Demand– 25 % passing #200 & PI ≥ 10– Organics < 1 %– Eades & Grim pH test (ASTM D 6276) to determine Lime

demand– Establish moisture-density relationship

• Determine Strength & Stiffness– Unconfined Compressive Strength (ASTM D 5102)

• Fabricate, Cure & Soak Samples– mimic field conditions– normal curing at 720F (210C) for 28 days; accelerated curing

at 1200F (490C) for 48 hours– critical for freeze-thaw zones: time to first winter

Mixture Design & Testing Protocol:

Tests for Lime Stabilization

Page 27: Lime Use For Soil & Base Improvementpetersenasphaltconference.org/download/2007/3-3EricBerger.pdfCBR, LTS (%) Ratio LTS: Subgrade 61N 15 200 33.3 82E 12 150 12.5 82W 4 47 11.8 45N

27

Rapid Change in Soil Texture

Native Clay Lime Treated Clay

Page 28: Lime Use For Soil & Base Improvementpetersenasphaltconference.org/download/2007/3-3EricBerger.pdfCBR, LTS (%) Ratio LTS: Subgrade 61N 15 200 33.3 82E 12 150 12.5 82W 4 47 11.8 45N

28

Influence on Moisture-Density Relation:

Lime treated Soil:- Lower ρdOP at higher

moisture contents

- Proctor-Curve gets“flatter”

1.55

1.60

1.65

1.70

1.75

13 14 15 16 17 18 19 20 21 22 23 24 25

Moisture Content [%]

Com

pact

ed D

ry D

ensi

ty ρ

dOPN

[t/m

3]

97

100

103

106

109

Com

pact

ed D

ry D

ensi

ty ρ

dOPN

[pcf

]No Lime

4% Lime

ρdOP

Page 29: Lime Use For Soil & Base Improvementpetersenasphaltconference.org/download/2007/3-3EricBerger.pdfCBR, LTS (%) Ratio LTS: Subgrade 61N 15 200 33.3 82E 12 150 12.5 82W 4 47 11.8 45N

29

Aggregate Base Modification

Page 30: Lime Use For Soil & Base Improvementpetersenasphaltconference.org/download/2007/3-3EricBerger.pdfCBR, LTS (%) Ratio LTS: Subgrade 61N 15 200 33.3 82E 12 150 12.5 82W 4 47 11.8 45N

30

Why Modify Aggregate Base Material?

Improves engineering properties of marginal or unstable aggregates

Enhances performance of aggregate as a structural material in pavements

Increases source utilization and improves economics of aggregate operation

Page 31: Lime Use For Soil & Base Improvementpetersenasphaltconference.org/download/2007/3-3EricBerger.pdfCBR, LTS (%) Ratio LTS: Subgrade 61N 15 200 33.3 82E 12 150 12.5 82W 4 47 11.8 45N

31

Aggregate Base Modification

• Plasticity or excess fines of treated aggregate are reduced to non-plastic or “acceptable” level

• Clay content is stabilized and particle size increased to become important, marketable part of aggregate

• Strength is gained through pozzolanic reactivity or particle cementation (particularly notable in caliches)

• Production life of pits and quarries can be extended for years by better utilization of marginal materials

Page 32: Lime Use For Soil & Base Improvementpetersenasphaltconference.org/download/2007/3-3EricBerger.pdfCBR, LTS (%) Ratio LTS: Subgrade 61N 15 200 33.3 82E 12 150 12.5 82W 4 47 11.8 45N

32

Aggregate Modification Testing

• Amount of lime will vary by the amount of clay or fines in the material and their plasticity

• Obtain a representative sample of the material to be modified

• Identify material problems– Recommended tests: Plasticity Index, Sand

Equivalent• Determine quantity of lime needed to reduce

plasticity/ increase particle size of fine fraction– Eades Grim pH Test– 1-2% commonly needed

Page 33: Lime Use For Soil & Base Improvementpetersenasphaltconference.org/download/2007/3-3EricBerger.pdfCBR, LTS (%) Ratio LTS: Subgrade 61N 15 200 33.3 82E 12 150 12.5 82W 4 47 11.8 45N

33

Modify Aggregate Plant

• Simple process - components often on hand

• Silo and vane feeder to apply lime to belt– 1-2% commonly needed – quicklime, hydrate,

slurry

• Water spray to hydrate lime so that it reacts with clay or other fines

• Pug mill or belt plows to mix lime and aggregate insuring complete reaction

Page 34: Lime Use For Soil & Base Improvementpetersenasphaltconference.org/download/2007/3-3EricBerger.pdfCBR, LTS (%) Ratio LTS: Subgrade 61N 15 200 33.3 82E 12 150 12.5 82W 4 47 11.8 45N

34

• Eliminates excavation & export costs

• Provides a stable & impermeable layer below base or paving section

• Expansion or swell is decreased & foundation support is increased

• A structural value can be assigned to stabilized subgrade: a3 = 0.11 – 0.17

• Long term strength & performance is achieved

Benefits of Soil Stabilization

Page 35: Lime Use For Soil & Base Improvementpetersenasphaltconference.org/download/2007/3-3EricBerger.pdfCBR, LTS (%) Ratio LTS: Subgrade 61N 15 200 33.3 82E 12 150 12.5 82W 4 47 11.8 45N

35

National Lime Association Publications

• Available for download from: www.lime.org– Lime Stabilization & Mechanistic-Empirical Pavement

Design – Mallela, et al– Mixture Design & Testing Procedures for Lime

Stabilized Soil– Lime-Treated Soil Construction Manual: Lime

Stabilization & Lime Modification– Evaluation of Structural Properties of Lime Stabilized

Soils & Aggregates - Little• Volume I - Structural Performance of Lime Stabilized

Layers• Volume III - Mixture Design