Libro PathogenCombat (2)

130
¿Cómo puedo aumentar la seguridad alimentaria de mis productos? How to improve the food safety of my products?

description

PATOGENOS

Transcript of Libro PathogenCombat (2)

  • Cm

    opu

    edo

    aum

    enta

    rla

    segu

    rida

    dal

    imen

    tari

    ade

    mis

    prod

    ucto

    s?H

    owto

    impr

    ove

    the

    food

    safe

    tyof

    my

    prod

    ucts

    ?

    Cmo puedo aumentar la seguridad alimentaria de mis productos?

    How to improve the food safety of my products?

  • Coordinacin editorial:

    Alberto Alcocer, 13, 1 D. 28036 MadridTel.: 91 353 33 70. Fax: 91 353 33 73. [email protected]

    Reservados todos los derechos. Ninguna parte de esta publicacin puede ser reprodu-cida, transmitida en ninguna forma o medio alguno, electrnico o mecnico, incluyendolas fotocopias, grabaciones o cualquier sistema de recuperacin de almacenaje de in-formacin, sin permiso escrito del titular del copyright.

    ISBN: 978-84-7867-054-3ISBN: 978-84-92681-13-6Depsito Legal: M-20018-2010

    Universidad de BurgosHospital del Rey s/n. 09001 Burgos

    INSTITUTO TOMS PASCUAL SANZpara la nutricin y la salud

    P de la Castellana 178 - 3 Dcha. 28046 MadridTel.: 91 703 04 97. Fax: 91 350 92 [email protected] www.institutotomaspascual.es

  • Cmo puedo aumentar la seguridadalimentaria de mis productos?

    How to improve the food safety of my products?

    Autores/Authors

    B. BiavatiUniversity of Bologna. Italy.

    S. BraunDepartment of Economic Policy. University of Stuttgart. Germany.

    N. CarliniProbiotical S.p.A., Novara, Italy.

    B. CarpentierAFSSA, Research Laboratory on Food Quality and Processes. Maisons-Alfort Cedex, France.

    R. CockerCocker Consulting Ltd. Ireland.

    F. DevlieghereDepartment of Food Safety and Food Quality, Laboratory of Food Preservation

    and Food Microbiology, Faculty of Bioscience Engineering, Ghent University. Belgium.A. Friis

    National Food Institute, Technical University of Denmark. Lyngby, Denmark.F. Gagga

    University of Bologna. Italy.L. Gram

    DTU Aqua. Lyngby, Denmark.K. Hadwiger

    Department for Economic Policy. University of Stuttgart. Germany.K. Hruska

    Veterinary Research Institute, Brno, Czech Republic.L. Jacxsens

    Department of Food Safety and Food Quality, Laboratory of Food Preservationand Food Microbiology, Faculty of Bioscience Engineering, Ghent University. Belgium.

    V. JassonDepartment of Food Safety and Food Quality, Laboratory of Food Preservation

    and Food Microbiology, Faculty of Bioscience Engineering, Ghent University. Belgium.RA. Juste

    NEIKER-Tecnalia, Bizkaia. Spain.M. Kousta

    Agricultural University of Athens, Department of Food Science and Technology,Laboratory of Food Quality Control and Hygiene. Athens, Greece.

    J. KussagaProduct Design and Quality Management Group, Department of Agrotechnology and Food Sciences,

    Wageningen University. The Netherlands.

  • H. LjeNational Food Institute, Technical University of Denmark. Lyngby, Denmark.

    PA. LuningProduct Design and Quality Management Group, Department of Agrotechnology and Food Sciences,

    Wageningen University. The Netherlands.M. I. Llorca

    AINIA Centro Tecnolgico. Spain.WJ. Marcelis

    Management Studies Group, Department of Social Sciences, Wageningen University. The Netherlands.V. Martnez

    AINIA Centro Tecnolgico. Spain.A. Martnez-Lpez

    Instituto de Agroqumica y Tecnologa de Alimentos, CSIC. Burjassot, Valencia. Spain.L. Mogna

    Probiotical S.p.A., Novara, Italy.S. Oss

    Department of Biotechnology and Food Science. University of Burgos. Spain.I. Pavlik

    Veterinary Research Institute, Brno, Czech Republic.MC. Pina-Prez

    Instituto de Agroqumica y Tecnologa de Alimentos, CSIC. Burjassot, Valencia. Spain.A. Rajkovic

    Laboratory of Food Microbiology and Food Preservation, Department of Food Safety and Food Quality, Faculty ofBioscience Engineering, Ghent University, Ghent, Belgium.

    D. RodrigoInstituto de Agroqumica y Tecnologa de Alimentos, CSIC. Burjassot, Valencia. Spain.

    J. RoviraDepartment of Biotechnology and Food Science. University of Burgos. Spain.

    AB. Silva-AnguloInstituto de Agroqumica y Tecnologa de Alimentos, CSIC. Burjassot, Valencia. Spain.

    N. SmigicLaboratory of Food Microbiology and Food Preservation, Department of Food Safety and Food Quality, Faculty of

    Bioscience Engineering, Ghent University, Ghent, Belgium.GP. Strozzi

    Probiotical S.p.A., Novara, Italy.M. Uyttendaele

    Laboratory of Food Microbiology and Food Preservation, Department of Food Safety and Food Quality, Faculty ofBioscience Engineering, Ghent University, Ghent, Belgium.

    M. Van der SpiegelProduct Design and Quality Management Group, Department of Agrotechnology and Food Sciences,

    Wageningen University. The Netherlands.J. Verran

    Manchester Metropolitan University, School of Biology, Chemistry and Health Science. United Kingdom.

    Cmo puedo aumentar la seguridadalimentaria de mis productos?

    How to improve the food safety of my products?

  • ndice/Index7 Prlogo

    D. Ricardo Mart Flux

    9 PrologueProf. Mogens Jakobsen

    15 Obstacles and solutions for the knowledge transfer betweenscience and industry

    S. Braun, K. Hadwiger

    23 La seguridad alimentaria en el siglo XXIMC. Pina-Prez, AB. Silva-Angulo, D. Rodrigo, A. Martnez-Lpez

    31 Tools to support the self assessment of the performance of FoodSafety Management Systems

    PA. Luning, L. Jacxsens, V. Jasson, WJ. Marcelis, J. Kussaga,M. Van der Spiegel, M. Kousta, S. Oss, J. Rovira,F. Devlieghere, M. Uyttendaele

    45 Prevention of biofilm formation and foodborne infections by con-trol of moisture management

    R. Cocker

    55 How can the food industry contribute to decrease the risk ofcontamination by mycobacteria: a hypothetical case discussion

    K. Hruska, I. Pavlik, RA. Juste

    63 New processing technologies that can reduce the presence ofpathogens in foods

    A. Rajkovic, M. Uyttendaele, N. Smigic, F. Devlieghere

    73 Reducing foodborne pathogens in the food chain by the use ofprotective and probiotic cultures

    N. Carlini, L. Mogna, GP. Strozzi

    89 The application of PathogenCombat research results in practiceF. Gagga, B. Biavati

  • 93 EHEDG: mtodo para la comprobacin de la evaluacin de lalimpieza in situ de los equipos para el procesado de los alimentos

    M. I. Llorca

    103 New cleaning and disinfection methods and summary of methodsapplied for verification of their efficiency

    H. Lje, A. Friis, L. Gram, B. Carpentier, J. Verran

    117 Aplicacin de nuevas tcnicas eco eficientes de limpieza ydesinfeccin en sistemas CIP, basadas en el uso del ozono.Proyecto OZONECIP

    V. Martnez

  • PathogenCombat es la abreviatura del proyecto Control y prevencin a nivelescelulares y moleculares de patgenos emergentes y futuros dentro de la cadenaalimentaria. El ttulo es bien expresivo y demuestra la importancia que la UninEuropea concede a la seguridad alimentaria.

    Las nuevas tcnicas de procesado y los envases con atmsfera modificada pro-curan conservar al mximo las propiedades sensoriales y nutritivas de los ali-mentos pero, al mismo tiempo, posibilitan la generacin de nuevos nichos eco-lgicos donde especies que antes no eran deterioradoras o patgenas van aserlo en esas circunstancias. La ciencia debe abrir caminos a la industria ali-mentaria, describiendo estos fenmenos y enseando como detectarlos y con-trolarlos.

    Esta publicacin recoge las actas del Seminario Cmo puedo aumentar la se-guridad alimentaria de mis productos?, una de las actividades acadmicas pro-gramadas en la Ctedra Toms Pascual Sanz, Universidad de Burgos, aprove-chando la reunin en Burgos de cientficos participantes en el proyecto queexpusieron sus investigaciones y resultados. Organizado por la Universidad deBurgos y dirigido por su Vicerrector de Investigacin, el Dr. Jordi Rovira, en esteseminario se trataron temas relacionados con la desinfeccin y limpieza deplantas, mejora del nivel de calidad de los alimentos y equipos agroalimenta-rios y sistemas de gestin de la seguridad alimentaria, todo ello desde un en-foque multidisciplinar y colaborativo entre los centros europeos que formanparte del Proyecto PathogenCombat.

    Quizs sorprenda al lector que publiquemos este libro en el idioma ingls. Perola naturaleza cientfica del proyecto y lo plural de sus participantes nos acon-sejan esta decisin. Este es un libro para todos los participantes del proyectoy su trascendencia va ms all del mbito nacional.

    Para nuestro Instituto es un orgullo contribuir a la difusin de los resultadosde este proyecto, interesante para la ciencia y para la empresa, abriendo ca-minos a la ciencia espaola y en particular a los equipos de la Universidad deBurgos, cuyo trabajo merece todo nuestro apoyo.

    D. Ricardo Mart FluxPresidente Instituto Toms Pascual Sanzpara la nutricin y la salud

    Prlogo

  • OverviewThe PathogenCombat-project is an integrated project under the 6th FrameworkProgram of the European Union. It started in 2005 and will run till April 2010. The ove-rall objectives are summarised in table 1.

    The Pathogen Combatproject deal with the issue of food safety, which becomesmore and more important for consumers and industry. With the media coverage of foodborn diseases and consistently occurring food scandals, the public becomes more awareand interested in these problems. So, while the investment in research in this broad spec-trum is rising, the problem still doesnt seem to fade. The PathogenCombatprojectincluding the problem of food pathogens by a multidisciplinary approach, dealing withknown and upcoming food borne pathogens making use of a variety of methods throug-hout the entire food chain.

    The project developed a several of platforms to investigate the occurrence, virulence andsurvival of pathogens in the food chain, from primary production to the consumer. Theplatforms rest upon fluorescent ratio imaging microscopy (FRIM), laser tweezers, phagedisplay, functional cell models, functional genomics and microarrays. Emerging food

    Prologue

    Table 1. Overall, the objetives of PathogenCombat can be describeb as follows:

    1. Production of safe food with none or acceptably low levels of pathogens.

    2. Determination of factors in the food chain, which enable the viability, persistence andvirulence of pathogens.

    3. Detection and prediction of the occurrence and virulence of pathogens in the food chainwith molecular biology based culture independent techniques and microarrays.

    4. Determination of host-pathogen interaction with functional cell model replacing the use ofexperimental animals.

    5. Prevention of pathogen transmission along the food chain by new processing technologiesand systems, protective cultures and new information on host-pathogen interaction.

    6. Application in the food chain/SMEs of PathogenCombat deliverables.

    7. Pathogen control throughout the food chain by new mathematical models.

    8. Food Safety Management System, which incorporates the deliverables of PathogenCombat.

    9. SME Network including dissemination of knowledge and dissemination of results.

    10. Training of SMEs.

    11. Promoting consumer awareness of food safety.

  • Cmo puedo aumentar la seguridad alimentaria de mis productos?

    10

    borne bacteria, yeast, fungi and viruses are targeted for milk and dairy products, rumi-nants, poultry and pigs and their meat products.

    The pillars of RTD (Research, Technology and Development) and NTC (Network, Trainingand Consumer) are the two supporting legs of the project.

    In overal terms the RTD Pillars are dealing with basic research, scientific developmentand invention of new techniques. In details they can be described as follows.

    RTD I Discovery and development

    This pillar addresses pathogen-matrix interaction. Measurements were carried out to in-vestigate the factors that enable a pathogen to establish itself in food and on feed ma-trices and food, feed and water contact surfaces. Microbial surface molecules respon-sible for microbial adhesion to matrices and surfaces were determined and subsequentlyused as target for prevention of adhesion. PCR techniques and microarrays were deve-loped for determination and prediction of microbial expression of virulence, expressionof stress and for expression of genes responsible for adhesion. Microarrays for gene ex-pressions have been developed to study the behaviour of pathogens in the food chainat the molecular level i.e. pork, poultry and ruminants and enable host pathogen inte-

    Coordinator

    Consortium meetings

    External Advisory Board

    RTD team

    Effiue Tskalidou AUA

    Larry Beuchat, USAGrahame Gould, UKKarel Hruska, CZWihelm Holzapfel, DENiels Skovgaard, DKServ Notermans, NL

    Francois Lefvre, INRAJrn D. Mikkelsen, DANISCOLuca Cocoln, UNIUDBruno Biavati, UNIBO

    NTC teamSusanne Braun, STUITTClare HALL, SAC

    Mogens Jakobsen, LIFE

    Knowledgemanagement& IPR

    Administration

    Finance

    Reporting& communication

    Knowledgemanagement& IPR

    Project Management GroupMember of External Advisory Board (Larry Beuchat)

    Coordinator (Mogens Jakobsen)

    Deputy Coordinator

    RTD Pillars

    I II I

    Control a

    nd p

    reve

    ntion

    Lead

    er: L

    uca CXoc

    olin, U

    NIU

    DW

    P: 8, 9

    , 10, 11 an

    d 12

    I

    Applic

    atio

    n and m

    anag

    emen

    tLe

    ader: B

    runo

    Biava

    ti, BU

    WP: 13, 14 an

    d 15

    NTC Pillars

    I II III

    Consu

    mer

    awar

    enes

    s

    Project managerVicki Lei, LIFE

    Project managerVicki Lei, LIFE

    Disco

    very

    and d

    evelopm

    ent

    Lead

    er: F

    ran

    ois Le

    fevre, IN

    RAW

    P: 1, 2

    and

    3

    Det

    ection and virulence

    tra

    its

    Lead

    er:Jr

    n D.M

    ikke

    lsen

    , Dan

    isco

    WP: 4, 5

    , 6 and

    7

    SME net

    work

    Lead

    er: S

    usan

    ne Braun

    , STU

    TT

    Trainin

    g activities

    Lead

    er: S

    usan

    ne Braun

    , STU

    TT

    Lead

    er:C

    lare H

    all, SA

    C

    Figure 1. Organizational chart of the PathogenCombat-project.

  • Prologue

    11

    ractions to be studied at the molecular level. Functional cell models were established forpork, poultry and ruminants to be used in studies of host-pathogen interactions.

    RTD II Detection and Virulence traits

    PathogenCombat developed reliable and cost-effective sampling schemes as well as rapidand specific methods methods for detecting new and emerging pathogens. This is im-portant in relation to developments in the food industry in which raw materials and in-gredients originate from many different countries and different production systems. Suchexternal sources of new and emerging pathogens are also a likely source of pathogenswith unknown patterns of resistance towards control methods and with unknown viru-lence traits. Stress adaptation and new virulence traits may develop within the particularfood chain and in both situations call for appropriate control and detection methods tobe applicable throughout the chain.

    Based upon the functional genomics studies, culture independent techniques to detectnew and emerging pathogens were developed. DNA-arrays for detection of pathogenswere developed to predict the occurrence of pathogens as well as their virulence at agiven time in the food chain and at the time of consumption. The methods developednot only report numbers of pathogens, but most importantly they give information ontheir virulence and relevance in the food chain.

    RTD III Control and Prevention

    Attachment and establishment of viable and virulent pathogens in or on solid matricesis considered the most important route of transmission along the food chain. Detachmente.g. by cleaning or exposure to various food processing stresses leading to inactivationas well as loss of virulence will break this transmission.

    Studies to determine and improve the hygienic design and close the present gap bet-ween hygiene and technology were conducted. The optimal characteristics of food con-tact surfaces and efficient cleaning and desinfection procedures have been addressed.Protective and probiotic bacteria, which can prevent attachment by competitive exclu-sion or inactive pathogens in the food chain including the intestinal tract of pigs, chickenand ruminants as estimated by use of the functional cell model, were identified. Finallyinactivation of pathogens by mild processing techniques, e.g. intense UV light pulsesand hydro-static pressure was included.

    RTD IV Application and Management

    The food processing SME Partners and the food chain they belong to were the targetsand collaborators in application of the results obtained in RTD I, II and III and for the de-velopment of the generic and specific Food Safety Management Systems. This is the tran-sition of research and development into practical application in the food industry fullyintegrated with networking of SMEs and the training activities described in NTC I andNTC II respectively. The SMEs involved were dealing with milk and dairy products, poultry,

  • Cmo puedo aumentar la seguridad alimentaria de mis productos?

    12

    pigs, beef and lamb and their meat products. Modelling of microbial food safety risk es-timation played a major role in the development of the Food Safety Management Systemby identification of CCPs of the HACCP based system developed.

    The NTC Pillars are dealing with the tasks of transferring the new information and techno-logies to the users. This is done by creating a network of enterprises that would profit fromthese findings, providing, processing and distributing knowledge in appropriate form, offe-ring training courses and increasing consumer awareness to food borne pathogens.

    The tasks are in detail:

    NTC I SME Network

    The integration of all SMEs and industrial Partners in PathogenCombat from the very be-ginning and the continuous exchange of knowledge and experiences gained are essen-tial for the project.

    Through contacts to SMEs having experience from participating in EU projects in depthinformation are obtained on the optimal method to integrate SMEs in PathogenCombat.The network is operational through a net-based system of communication. The func-tion of the network is supported by the training activities and the dissemination of Projectresults is described in NTC II. The network is permanently expanded with new partners,government agencies and associations.

    NTC II Training

    It is the main objective of training to ensure the transition from research to practical appli-cation. Transition from research to practical application is carried out to allow a Europeanwide production of food with no or acceptably low level of pathogens. This training is or-ganized in three levels. Level one addresses the food producing SME Partners ofPathogenCombat. At Level two SMEs outside PathogenCombat are included in several re-gional workshops to teach the participants how to apply the deliverables ofPathogenCombat including the Food Safety management System developed. Level threeis pan-European and based upon the SME network created in NTC I including national andEuropean SME organizations as well as regulatory agencies.

    NTC III Consumer Awareness

    This activity involves the participation of consumers and consumer groups and organiza-tions. It establishes methods for effectively communicating accurate information regardingfood safety issues to European consumers. It seeks to strengthen our understanding of therole of food safety in consumer behavior and thereby develop best practice in communica-ting with consumers to enhance their awareness of food safety issues. It is an objective ofthis activity to raise awareness of food safety issues throughout Europe and to strengthenthe activities in NTC Pillars I and II.

    The unique achievements of PathogenCombat can be summarised as shown in table 2.

  • Prologue

    13

    Table 2. Achievements: examples.

    I. New biotechnological platformsNovel approaches to analyse the interactions at cellular and molecular level between pathogensand food and feed matrices and contact surfaces in the food chain including the intestinal tractof farm animals. To understand the mechanisms, by which pathogens enter, adapt, persist andexpress virulence in the food chain: Fluorescence Ratio Imaging Microscopy, atomic force microscopy and bio-imaging. Laser tweezer technology. Convergent evolution. Functional genomics. Functional mammalian cell models.

    II. Novel information on emerging pathogensListeria monocytogenes, Mycobacterium avium subsp. paratuberculosis, Campylobacter jejuni,Escherichia coli (STEC), Saccharomyces cerevisiae, Penicillium nordicum, Hepatitis E (HEV) &tickborne encephalitis (TBEV) virus and Staphylococcus aureus.

    III. Rapid and meaningful detection methodsMicroarrays and molecular biology culture-independent techniques, have been developed forpathogens included in PathogenCombat. The methods will not only report numbers, but includea new approach to estimate viability and virulence of pathogens throughout the food chain.

    IV. Virulence expression in matricesA novel strategy for food formulation, food preservation and quantitative risk assessment.

    V. Methods for breaking the transmission of pathogens along the food chain Prevention of cross contamination by hygienic design and development of cleaning and

    disinfection procedures to remove bio-films in the food chain. Inactivation of pathogens by mild processing techniques (organic acids, chlorine dioxide, intense

    UV light pulses, and hydrostatic pressure). New protective and probiotic cultures for elimination of pathogens in the food chain.

    VI. Mammalian functional cell modelsModels developed for pigs, chicken and ruminants. Applied in host-pathogen interactions andselection of protective and probiotic cultures. A new opportunity has been made available fordeterminations of dose-response and risk assessment.

    VII. Food Safety ManagementDiagnostic instruments and tools have been developed for SMEs for identification of technologicaland managerial interventions which can improve food safety management systems (FSMS) andlead to integration of the new knowledge and methods developed in PathogenCombat. Conceptof web-based FSMS support systems for SMEs has been developed.

    VIII. Interaction with food producing SMEsFor new knowledge obtained and methods and tools developed, validation and testing ofapplicability in SMEs are in progress.

    IX. The consumer, the food industry and the regulatory bodies in EuropeThe consumers understanding for key food safety issues has been evaluated and the most effectiveways of communicating results is being assessed. A strategy for interaction and exchange ofinformation with the food industry and regulatory agencies has been established.

    Prof. Mogens JakobsenCoordinator of PathogenCombat. Faculty of Life Sciences, University of Copenhagen, Denmark

  • Obstacles and solutions for the knowledgetransfer between science and industry S. Braun, K. Hadwiger

    Overview

    Knowledge transfer

    Knowledge transfer is defined as the pro-blem of transferring knowledge betweendifferent organizations or from one partof an organization to another part of thesame organization. In other words, know-ledge transfer is the gateway for thetransfer of knowledge between donatingand receiving entities. In most cases, thedonor is a public organization, like a uni-versity or research institute, while the re-ceiving entity, which often has interest incommercializing the knowledge, is a com-pany. Furthermore, knowledge transfercan be seen as a more general term, des-cribing the distribution of knowledge th-rough human beings. This approach fo-cuses on characteristics of communicationbetween experts and the person that re-ceive the knowledge.

    Despite the different views, knowledgetransfer is often hindered by a variety ofissues. Nowadays, removal of these ba-rriers and the improvement of knowledgetransfer are seen as a main driver of eco-nomic growth. The present society hasbeen defined as a knowledge society. Dueto increasing importance of knowledge,a close relationship between science andtechnology became more important.Generally, the increased competition on aglobal scale led to an increasing rate of

    technology changes, shorter product lifecycles and increasing product quality. Thefinding and utilization of advanced know-ledge and new technologies is more thanever substantial for the survival and pros-perity of any firm.

    Many large enterprises have their ownscientific department. Therefore, the im-portance of distribution of knowledgecreated by public bodies has becamemore important, especially, for small andmedium enterprises (SMEs) that cannotafford the cost of research and are depen-dent on external knowledge to improvetheir production processes. Although it isan important advantage for large enter-prises that they are able to conduct rese-arch, it has become increasingly difficultto rely solely on internal knowledge pro-duction.

    Companies are classified as small and me-dium-sized enterprises (SMEs) by theEuropean Union if the number of theiremployees does not exceed 250 and ifthey are independent from large compa-nies. In addition, their annual turnovermay not be beyond 50 million, or theirannual balance sheet beyond 43 mi-llion. SMEs are divided into three subca-tegories: micro-enterprises with 10 or lessemployees, small enterprises with 10 to49 employees and medium enterpriseswith 50 to 249 employees.

  • Cmo puedo aumentar la seguridad alimentaria de mis productos?

    16

    The importance of technology transfer isobvious when one takes into account that98.8% of all European enterprises are infact SMEs and they provide 67% of alljobs in the private sector. Moreover,91.5% of SMEs are in fact micro-enter-prises with less than 10 employees.

    For a successful knowledge transfer fromany knowledge donor to a SME, it is notsufficient to provide knowledge or tech-nology, considering their limited possibi-lities, also the financial support of theSME is necessary to make the implemen-tation of new technology possible.

    The different industrial branches dependon this external knowledge on a varyingdegree. The food industry in the EuropeanUnion, which consists mainly of SMEswith 10 or less employees, is heavily de-pendent on this knowledge due to a lackof resources to carry out any research anddevelopment activity. It is estimated that70% of all SMEs of the food sector donot carry out any kind of research activity.In addition to that, this industry has todeal with the demand for safer productsand higher quality, as well as a high com-petition. To cope with these challenges,new technologies have to be introduced.

    In this context, the distribution of know-ledge transfer has become an importantsubject of scientific research, as well as ineconomic and public policy. An importantrole of the PathogenCombat project is thesupport of SMEs of the food sector in thisprocess and helps with the implementa-tion of new technologies.

    The food sector is the largest manufactu-ring sector in the European Union, withan annual turnover of 910 Billions in2008. Its importance is also shown in itshigh level of legal regulation. Many na-tional and international regulations deter-mine the form of production and foodhandling as well as food quality itself.New regulations are added at a regularbasis and the demand is still increasing.SMEs have to survive in an overregulatedmarked, with high requirement andstrong competition. The implementationof new knowledge in the food industry isnot only optional, but necessary for allcompanies. Its assistance should be con-sidered as highest priority.

    The task of supporting innovation in foodproducing SMEs becomes even more im-portant when taking into consideration

    29,69

    Micro

    Small

    Medium

    Large

    32,9

    16,8 20,6

    Figure 1. Classification of enterprises based onnumber of employees, non-financial business sector(Source: Eurostat).

    0

    2

    4

    6

    8

    10

    12

    14

    %

    16

    E le c

    t ro n

    i ca l

    an d

    o pt i

    c al e

    q ui p

    me n

    t

    C he m

    i ca l

    s

    I CT

    Au t

    o mo b

    i l e

    C om

    p ut e

    r s e

    r vi c

    e s

    Al l

    NA

    C E b

    r an c

    h es

    F oo d

    an d

    dr i

    n k

    T ex t

    i l es

    P ul p

    an d

    pa p

    e r

    Wo o

    d p r

    o du c

    t s

    Figure 2. Research activity as percentage of addedvalue by industrial sector.

  • Obstacles and solutions for the knowledge transfer between science and industry

    17

    that exports of the food industry have sh-runken in the last years. The market shareof world food and drink exports of theEuropean Union diminished from 24.8%in 1998 to 19.2% in 2008. New innova-tions in the food sector could help aver-ting a further decline and improve com-petitiveness on the world market.

    The focus of knowledge transfer to SMEsis on the distribution of knowledge cre-ated at universities, which is mostly des-cribed as being largely underexploited.However, recent studies indicate a posi-tive trend in university-industry interac-tion. The reasons for this improvementare changes in public policies and institu-tional environment and a strong encou-ragement of commercialization of scien-tific discoveries. Prior to this improvement,scientific discoveries arose directly fromthe ivory tower of science, and therewas no specific aim to utilize and com-mercialize them. At present, academic re-search is more focused on future indus-trialization and exploitation of theirdiscoveries.

    Universities and other public research ins-titutions are not comparable with enter-

    prises regarding their research potential.Contrary to the knowledge transfer bet-ween two enterprises, knowledge createdby universities is widely available.Moreover, there are many advantages forenterprises and universities to collaborate.The enterprise can benefit from the highlytrained staff of a public institution, andcan also improve their corporate imagedue to this joint venture. The universitycan benefit from additional fund for rese-arch, the opportunity to research close tothe market and an increased opportunityof employment for students and gra-duates.

    The cooperation of public research bodieslike universities and private enterprisescan work in a variety of ways. The mostcommon way is the support of research,mostly by financial contributions. This fun-ding was often unspecific and unres-tricted in the past, but nowadays it isbound to specific research areas and ac-tivities that presumably will benefit the fi-nancer by bringing in new knowledgeand technology. Another possibility of co-operation is cooperative research. Thispostulates a close teamwork in the fieldof research. The research teams, consti-tuted by scientists of both partners, haveto work together on a topic to maximizeefficiency and prevent interference of re-search fields.

    There is also a possibility of direct know-ledge or technology transfer in both di-rections. With this method both teamsneed also to have a broad understandingof the particular research field and full in-sight in each others work. However, theimplementation of new technology has tobe conducted with full support of the do-nating partner.

    01996 1997 1998 1999 2000 2002 2003 2004

    USAEU15Japan

    2001

    0,2

    0,4

    0,6

    0,8

    1

    %

    1,2

    1,4

    Figure 3. Business expenditure on research by foodindustries in different countries (percentage of in-dustry output).

  • Cmo puedo aumentar la seguridad alimentaria de mis productos?

    18

    The formerly low levels of knowledge dis-tribution of universities were attributed toa lack of knowledge structures at the en-terprise side and a lack of stimulant gra-tification for the distribution of scientificknowledge by the academic side.Different approaches have been tried toeliminate this problems. Universities haveaccumulated a lot of experience in the lastyears on transfer of technologies, and pu-blic organizations which focus on the dis-tribution and transfer of knowledge bet-ween science and industry have beenfounded.

    PathogenCombat tries to contribute tothe knowledge transfer in the area offood safety. Later in this article, the pro-blems concerning knowledge transferbetween science and industry will be des-cribed, and the role of PathogenCombatwill be presented in the interaction bet-ween science and industry and its contri-bution to technology and knowledgetransfer.

    Obstacles in knowledge transfer

    Some problems concerning knowledgetransfer have already been mentioned inthis article (see overview). The mostcommon problems are:

    The lack of willingness to share know-ledge by the donor, due to:

    Mistrust.

    Assumed benefits of possessingknowledge exclusively.

    Absence of ability to transfer know-ledge to a non-specialist.

    Language and culture barriers.

    Lacking of rewards for knowledgetransfer.

    The lack of willingness to accept know-ledge by the receiving entity, due to:

    Lack of structures for knowledge pro-cessing.

    Missing contacts to knowledge pro-ducers.

    Lack of knowledge concerning theknow-how transfer process.

    Lack of ability to understand and im-plement knowledge.

    Language and culture barriers.

    Knowledge transfer is hampered by a va-riety of ways. Both donors and receivingentities of knowledge can be the reasonfor stopping the transfer and implemen-tation of knowledge and technology.

    Firstly, the knowledge donor should havethe willingness to share his knowledge toa third party. Knowledge, as a property ofsome worth, is nothing to give away ea-sily because it is often perceived as earnedby hard work and years of research. Ascientist who publishes his findings inscientific papers will clearly receive a re-ward in form of reputation. In the processof technology transfer, the benefits canbe less evident. Whichever form of coo-peration is chosen, important research re-sults have to be given away, often, beforepublishing. As a consequence, it is veryimportant to provide an appropriate re-ward for sharing knowledge. It has to bevery clear that the receiving entity and theknowledge donor will equally benefitfrom this process. It is important that bothpartners build up their relationship basedon trust. Knowledge has a considerablevalue and, unlike other goods, it can begiven away quite easily, even unkno-wingly. Consequently, the partners in a

  • Obstacles and solutions for the knowledge transfer between science and industry

    19

    knowledge transfer process should havea high degree of reliance.

    Another important problem arises whenboth partners are on a different level ofinsight to the matter in hand.

    Scientific information is easily available,often for free. While some scientists payto the scientific journals for publishingtheir scientific articles, the author him-self provides these papers willingly forfree. Despite this, research results willnot find its way to the enterprises thatmay need them; especially small andmedium enterprises (SMEs) that cannotafford to conduct research on their own.The reason for this is the barrier bet-ween entrepreneur and specialists. Letstake a look at the food sector, forexample, which consists mainly of SMEsof five to ten employees. Most of entre-preneurs and managers of these SMEsdo not have an academic degree andmost of them would not have theknowledge on how to obtain scientificinformation. Even if they know how toobtain new scientific findings, either byscientific articles or personal communi-cation, it is unlikely that a non-specialistcan understand and digest this informa-tion - partly due to the fact that scien-tific language is very hard to compre-hend without appropriate training. Inaddition, to comprehend a scientific ar-ticle, good background knowledge is re-quired that only a specialist in this fieldof activity can have.

    While many large enterprises have dedi-cated structures that deal with knowledgetransfer, like scientific trained employeesor research departments, most SMEs lackemployees which have an understanding

    of the process of knowledge transfer, aswell as knowledge processing. In fact, en-terprises relying mostly on external know-ledge have many problems receiving andprocessing it. This disadvantage can becounteracted by choosing the right pre-sentation form.

    For a successful knowledge transfer, in-formation has to be processed into a formthat is understandable for anyone. It hasto be easily readable and understandableand, at best, easy to implement into theexisting production process. Nevertheless,it still has to contain all the critical infor-mation needed for the full and successfulknow-how transfer. While this is easilymanageable with small efforts in someareas, this can be almost impossible inother fields of science with state of theart developments or very specialized rese-arch. Here, the only possibility is theknowledge transfer through extensiveworkshops and intensive assistance to thereceiving partner.

    An additional problem is the language ba-rrier, which often represents the main ba-rrier of knowledge transfer. Currently,English is the language for science andbusiness, and most of scientific articles,

    0,00

    Food pro

    ducts

    Elec

    trical and optica

    leq

    uipmen

    t

    Computer services and

    related activities

    ICT

    Moto

    r ve

    hicles, traile

    rs and

    semi-trailers

    Products of wood and cork;

    man

    ufacture of articles of

    straw and plaiting m

    aterials

    Man

    ufacture of pulp pap

    eran

    d pap

    er pro

    ducts;

    publishing and printing

    Man

    ufactur of textile

    s an

    dtextile

    pro

    ducts

    Man

    ufacture of ch

    emicals an

    dch

    emical pro

    ducts

    50,00100,00150,00200,00250,00300,00350,00400,00450,00

    Employees with higher education

    Figure 4. Number of employees with higher educa-tion per sector (Source: Hollanders & Arundel 2005).

  • Cmo puedo aumentar la seguridad alimentaria de mis productos?

    20

    workshops or meetings are either writtenor hold in English. The English languageis widespread across the world; however,only people with a relatively high level ofeducation are able to read and fluentlycommunicate in English. This ability is al-most absent in less well educated people,except for those with English is theirmother tongue. The first step to ease andstimulate the knowledge transfer processwould be the translation of the Englishworks into the local language. This wouldgive the possibility for many SMEs withemployees of lower educational back-ground to obtain critical knowledge.

    Both partners share the responsibility fora successful knowledge transfer. On onehand, the donor entity has to process theknowledge to make it understandable fornon-specialists. On the other hand, the re-ceiving entity has to be willing to acceptto work with a new process, to be opento new circumstances, and to have acommitment to the project.

    The contribution ofPathogenCombat to theknowledge transferPathogenCombat has made a variety ofcontributions to the transfer of knowledgeand technology to SMEs throughout theEuropean Union and beyond its borderline.The implementation and transfer of newscientific findings during the project hasbeen a priority task from the beginning.The distribution of knowledge was accom-plished through different approaches.

    A widespread network of contacts th-roughout the European Union was esta-blished, consisting of SMEs, industry, re-search institutions, government agencies

    and associations related to the foodsector. A database with several thousandsof addresses is created, maintained, andconstantly extended during the course ofthe project.

    The PathogenCombat-Newsflash was cre-ated and published throughout theNetwork as a source of up-to-date infor-mation for the food industry. This includesresults of state of the art research, currentnational and Pan-European developmentsand upcoming events like workshops andmeetings.

    In addition, a web portal was establishedas contact point for SMEs. The webpageoffers a wide range of useful information.Amongst others, visitors can find the latestresearch results and publications in thefield of food quality and safety from thePathogenCombat consortium members,information about upcoming workshopsas well as outcomes of the previous ones,and information about PathogenCombatproject and its partners.

    Workshops organized by PathogenCombatare greatly contributing to the process ofknowledge transfer. These are open toSMEs, scientists and organizations inte-rested in the topics of food safety, foodquality and food processing. They allow forpersonal contact and communication bet-ween knowledge donors and receiving en-tities. Special attention was paid to the pro-blem of the language barrier and thespecific requirements of SMEs in the foodsector. The collaboration with local part-ners and associations provided valuable in-sight in the hot topics for the local SMEsand their expectations. Workshops heldentirely in the local language added to asuccessful transfer of research.

  • Obstacles and solutions for the knowledge transfer between science and industry

    21

    With more than 40%, the PathogenCombat project consortium has a very highproportion of members that are SMEs.Though not all results are immediately ap-plicable for the industry, especially at thebeginning of the project where funda-mental research has been conducted, theproject SMEs were able to transform manynew findings into countable results.

    A good example of a successful knowledgetransfer to a PathogenCombat SME is PittasDairy Industries, based in Cyprus. The com-pany was founded in 1939 and producesover 100 different dairy products, fromcheese to yogurt. Pittas is a small but inter-national operating company, and theyknow that innovation is an important factorif one wants to stay ahead of competitors.Therefore, when the Agricultural Universityof Athens contacted Pittas and asked fortheir participation in the project, they didnot hesitate to join it. The role of Pittas,along with other SMEs, was to apply newresearch results in their production process.This included developing a predictive modelfor the shelf life of yoghurt, using probioticstrains in animal feed, developing new pro-ducts with protective cultures and compa-ring their own food safety systems againstnational and international standards.

    For Andreas Hadjipetrou of Pittas, the coo-peration was a full success. In the five yearsof participation in the project, the companywas able to gain new insight in the processof food production. Additionally, they wereable to meet experts from different fields ofexpertise, like microbiology, food safety andnutritional science. In cooperation withPathogenCombat, Pittas was able to in-crease food quality and safety, while laun-ching new products and gaining new cus-tomers European-wide.

    Further information about knowledgetransfer and PathogenCombat can be ob-tained by visiting www.pathogen-combat.com

    BibliographyBaardseth P, Dalen GA, Tandberg A.Innovation/technology transfer to food SMEs;Trends in food science & technology, 1999;10:234-8.

    Debackere K, Veugelers R. The role of aca-demic technology transfer organizations in im-proving industry science links; Research Policy,Number of Employees with higher educationper sector (Source: Hollanders & Arundel2005; 34 (3):321-42.

    European Commission, SME Success Storiesin the area of Food Agriculture and Fisheriesand Biotechnology (EUR 23612EN), 2008;14-5.

    Feller I. Universities as engines of R&D basedeconomic growth: they think they can,Research Policy, 1990; 19:349-55.

    Kaufmann A, Tdling F. Science-industry inte-raction in the process of innovation: the im-portance of boundary-crossing between sys-tems. Research Policy; 30:791-04.

    Kingsley G, Bozeman B, Coker K. Technologytransfer and absorption: an R&D value map-ping approach. Research Policy, 1996;25:967-95.

    Mansfield E, Lee JY. The modern university:contributor to industrial innovation and reci-pient of industrial R&D support. ResearchPolicy, 1996; 25:1047-58.

    Mansfield E. Academic research and industrialinnovations, Research Policy, 1991; 26:773-6.

    Meyer-Krahmer F, Schmoch U. Science-based technologies: universityindustry in-teractions in four fields. Research Policy,1998; 27:835-51.

    Mowery DC, Sampat BN. Universities in na-tional innovation systems, The OxfordHandbook of Innovation, Oxford UniversityPress, Oxford, 2005; 209-39.

  • Cmo puedo aumentar la seguridad alimentaria de mis productos?

    22

    Paula E. Stephan. Educational Implications ofUniversity-Industry Technology Transfer. TheJournal of Technology Transfer, 2001; 26(3):199-205.

    Rothwell R. Successful industrial innovation -Critical factors for the 1990s, R&D Management,1992; 22:221-39.

    Santoro and Chakrabarti. Firm size and techno-logy centrality in industry-university interactions,Research Policy, 2002; 31:1163-80.

    Traill W, Meulenberg M. Innovation in the foodindustry. Agribusiness, 2002; 18 (1):1-21.

    Von Hippel E. The Sources of Innovation; OxfordUniversity Press, Oxford. 1988.

  • IntroduccinDada la magnitud y el alcance de la ca-dena de suministro de alimentos en lassociedades modernas, es muy complejogarantizar que todos los alimentos dis-tribuidos y consumidos estarn alejadosde fuentes de contaminacin poten-ciales. En su lugar, la seguridad alimen-taria se debe incrementar concentrandolos esfuerzos de forma sistemtica demanera que se minimicen las oportuni-dades de contaminacin en cada puntode la cadena de produccin, procesadoy distribucin hasta su preparacin yconsumo. A pesar de que ha habido im-portantes avances en la conservacin ycontrol de alimentos, las enfermedadestransmitidas por los mismos perma-necen como la principal causa de enfer-medad y mortalidad en el mundo. Enconsecuencia, las polticas de la UninEuropea y de los Estados miembro,debe enfocarse para alcanzar el nivelms alto de seguridad alimentaria conobjeto de reducir la incidencia de lasenfermedades producidas por el con-sumo de alimentos. Para alcanzar esteobjetivo, el anlisis de riesgos debe serel pilar en el cual se base la poltica deseguridad alimentaria, complemen-tando esta herramienta con la creacinde la Autoridad Europea para laSeguridad Alimentaria y las distintasagencias nacionales de los Estadosmiembro (AESAN, por ejemplo). Todas

    estas estructuras deben trabajar deforma cercana de manera que el es-fuerzo vaya en la misma direccin y seaeficaz en el control de los alimentos yen reducir la incidencia de enferme-dades transmitidas por los mismos.

    Contaminacin microbianaLos alimentos, dada su naturaleza biol-gica, proporcionan a los consumidores losnutrientes necesarios para cubrir sus ne-cesidades; a la vez, son sustratos en losque el crecimiento de microorganismos esposible en un amplio rango de condi-ciones. Desde que un alimento se pro-duce (agrcolas, ganaderos, pesqueros,etc.) o fabrica (cualquier alimento manu-facturado: pan, queso, entre otros), tieneriesgos de contaminarse.

    La presencia de microorganismos pat-genos potenciales en nuestro ambiente,la habilidad de algunos de ellos para so-brevivir, crear resistencias o proliferar encondiciones de refrigeracin y a bajasconcentraciones de oxgeno, y en ciertoscasos, las bajas concentraciones necesa-rias para producir enfermedad, agravan elproblema al que nos enfrentamos encuanto a seguridad alimentaria (de Swarteand Donker, 2005).

    El proceso de infeccin por patgenos ali-mentarios se produce de acuerdo a la re-lacin alimento-patgeno-consumo:

    La seguridad alimentaria en el siglo XXIMC. Pina-Prez, AB. Silva-Angulo, D. Rodrigo, A. Martnez-Lpez

  • Cmo puedo aumentar la seguridad alimentaria de mis productos?

    24

    Las enfermedades de origen alimentarioprovocadas por los microorganismos sonde tres tipos:

    Intoxicaciones.

    Infecciones.

    Toxicoinfecciones.

    Entre los principales microorganismos pa-tgenos presentes en alimentos, destacanpor la gravedad de los sntomas y altastasas de incidencia, los siguientes:

    Salmonella spp

    Salmonella spp es una de las causas mscomunes de enfermedades transmitidaspor los alimentos en los seres humanos, laduplicacin de la incidencia de los casos desalmonelosis en las dos ltimas dcadas haacompaado la modernizacin de las in-dustrias alimentarias (Altekruse et al,1997).

    Este grupo se puede dividir en dos grandescategoras: los que causan la fiebre ti-foidea y los que no: S. typhy, S. paratyphiy S. enteritidis, sta ltima como causantede gastroenteritis por consumo de huevos,leche, alimentos que contienen huevoscrudos, carne, aves de corral y productosfrescos (Acheson, 2003).

    Campylobacter jejuni

    Campylobacter jejuni es un patgenonuevo transmitido por los alimentos, ac-

    tualmente se considera la principal causade ETA en Estados Unidos. Hay dos prin-cipales especies de Campylobacter queson responsables de la mayora de las en-fermedades en seres humanos. C. jejunirepresenta a la mayora (90%) y C. coli re-presenta slo el 10%, estos pertenecen ala flora natural de los intestinos de mu-chos animales, incluyendo aves y animalesdomsticos. La mayora de estas infec-ciones estn asociadas con el consumo deaves de corral mal preparadas o en malestado, el consumo de leche cruda y aguano clorada.

    Escherichia coli O157:H7

    E. coli O157:H7 es una de las principalescausas de diarrea sanguinolenta en todoel mundo, adems es la causa del sn-drome urmico hemoltico, la principalcausa de insuficiencia renal aguda ennios de Estados Unidos con una tasa demuerte del 5%. Este microorganismo seha asociado con el consumo de carne deres molida, lechuga, leche cruda y aguano tratada, y tambin se han documen-tado casos de transmisin persona a per-sona (McCabe and Beattie, 2004).

    Listeria monocytogenes

    L. monocytogenes es un microorganismocomn. Se sabe que entre 1 a 10% dela poblacin mundial son portadores deL. monocytogenes. Los alimentos dondefrecuentemente se encuentra incluyenleches contaminadas despus de su pas-teurizacin, pat, quesos, vegetalescrudos y carne mal cocida. Aunque es unmicroorganismo que fcilmente muerecon el calor, la recontaminacin de ali-mentos es muy frecuente, adems de so-portar y ser capaz de crecer a tempera-

    Microorganismo Consumo

    Alimento

  • La seguridad alimentaria en el siglo XXI

    25

    turas de refrigeracin. Las mujeres em-barazadas son un grupo altamente sus-ceptible a este microorganismo, debidoa que tiene la capacidad de llegar al feto,provocando aborto espontneo, naci-miento prematuro, sepsis neonatal y me-ningitis. Adems, la listeriosis puedecausar muertes, meningitis o sepsis enpersonas inmunocomprometidas; te-niendo una tasa de letalidad del 40%.

    Clostridium perfringensy Bacillus cereus

    Estos dos microorganismos son las princi-pales causas de brotes alimentarios enbanquetes, debido a su fcil proliferacincuando los alimentos se mantienen a unatemperatura ambiente por un largo pe-riodo de tiempo, causando gastroenteritismuy leve. Adems, comparten caracters-ticas comunes: formacin de esporas,produccin de enterotoxinas que causangastroenteritis, estn presentes en ali-mentos previamente sometidos a trata-mientos trmicos como salsas y arroz.

    Los alimentos ms susceptibles de estarimplicados en los brotes con B. cereus in-cluyen carnes y verduras cocidas, pro-ductos lcteos pasteurizados, cereales yarroz cocido.

    Yersinia spp

    De los tres miembros de este genero, Y.enterocolitica y Y. pseudotuberculosis sonconsiderados como patgenos transmi-tidos por alimentos. No es un microorga-nismo comnmente causante de enfer-medades transmitidas por los alimentoscomparado con Salmonella spp oCampylobacter spp; sin embargo, se sabeque es transmitido por los alimentos a los

    seres humanos en los que causa unagrave enfermedad gastrointestinal; el ali-mento comnmente implicado en estosbrotes es el cerdo. La leche es otra fuentefrecuentemente asociada con este micro-organismo.

    Control y reduccin del riesgo El control y reduccin del riesgo causadopor el consumo de alimentos contami-nados puede llevarse a cabo actuandosobre tres factores: el patgeno, el con-sumidor, o el vehculo de transmisin, eneste caso, los alimentos en los cuales vivee interacta (Havelaar et al, 2002).

    Estos tres factores son necesarios paraque ocurra la enfermedad transmitida porlos alimentos y existen interacciones com-plejas entre ellos. Cambios producidos enestos tres factores pueden reducir la pro-babilidad de adquirir una enfermedad porconsumo de alimentos, por ejemplo la es-terilizacin comercial de un alimento des-truye a los microorganismos patgenoseliminando el factor exposicin, lo quehace al alimento ms seguro. Por el con-trario, los cambios en estos tres factorespueden favorecer que emerjan nuevospatgenos, este es el caso de individuosinmuno-comprometidos por haber sufridoun transplante. Microorganismos que ha-bitualmente no producen enfermedadespueden colonizar el tracto intestinal de losbebes prematuros, personas mayores, etc.Se pueden producir cambios de virulenciacomo consecuencia de los tratamientosde conservacin, en este caso el patgenoadquiere caractersticas que le ayudan ainvadir el cuerpo humano. Estos tres fac-tores son una pieza clave en la reduccinde la enfermedad de origen alimentario.

  • Cmo puedo aumentar la seguridad alimentaria de mis productos?

    26

    Como se ver ms adelante, la industriay agricultura han introducido una seriede medidas de control efectivas enfo-cadas a limitar alguno de los factoresclaves de la enfermedad por consumo dealimentos.

    En 1896, el U.S. Public Health Service(USDA/FSIS, 1996) comenz a investigarla calidad sanitaria de la leche, y medianteestudios epidemiolgicos sobre enferme-dades humanas relacionadas con la po-blacin consumidora de leche, estableciel primer criterio especfico para pasteu-rizacin de leche a 161 F y 15 s, con elobjetivo de eliminar los microorganismosms resistentes al calor, no formadores deesporas.

    Tambin en la dcada de los 90 se esta-blece una regulacin en lo referente a con-servas de productos de baja acidez, exi-giendo en las conserveras el alcance de laesterilidad comercial con el objetivo de des-truir Clostridium botulinum. La esterilidadcomercial puede ser definida como laaplicacin de un tratamiento trmico su-ficientemente intenso como para que elproducto esterilizado est libre de micro-organismos capaces de reproducirse en lascondiciones normales de almacenamientosin refrigeracin y libre de microorganismosincluyendo esporas, que puedan compro-meter la salud del consumidor.

    Actualmente existe una amplia gama deopciones para prevenir y controlar lasenfermedades transmitidas por ali-mentos; a nivel de produccin, lasBuenas Prcticas Agroalimentarias (BPA)pueden aplicarse y reforzarse, mejo-rando la explotacin y el saneamiento,la adopcin del sistema HazardAnalysis and Critical Control Points

    (HACCP) durante toda la cadena de pro-duccin y el control de la contaminaciny temperatura durante el transporte y al-macenamiento deben ser capaces degarantizar la inocuidad de los alimentos;a nivel de los manipuladores de ali-mentos se deben mantener las condi-ciones de higiene adecuadas, BuenasPrcticas Higinicas (BPH). Por otraparte, las tecnologas de control micro-biolgico como la pasteurizacin y tec-nologas emergentes se ha confirmadoque pueden evitar muchas enferme-dades. Su objetivo final es claro: ayudara producir alimentos ms seguros y enconsecuencia, reducir el nmero debrotes de las enfermedades transmitidaspor ellos (Tauxe, 2002; Panisello, 2000;Pina, 2006).

    El sistema y concepto del HACCP se de-sarroll hace 30 aos pero slo hace unadcada que se ha incluido en el programade control de los alimentos de las autori-dades de Salud Pblica, en la UninEuropea el trmino HACCP se presentpor primera vez en la Directiva 93/43/CE(1993); reconocindose como un mtodode referencia para el aseguramiento de lainocuidad de los alimentos y un sistemade regulacin en los sistemas de controlde los alimentos. El sistema HACCP sebasa en siete principios: 1) anlisis deriesgos, identificar los peligros y especi-ficar las medidas de control; 2) identificarlos puntos crticos de control (PCC); 3) es-tablecer lmites crticos; 4) establecer pro-cedimientos de vigilancia; 5) establecermedidas correctivas; 6) establecer los pro-cedimientos de verificacin y; 7) docu-mentar los procedimientos (Motarjemi,1996; Motarjemi, 1999).

  • La seguridad alimentaria en el siglo XXI

    27

    Control dentro de la UninEuropeaDe acuerdo con el Libro Blanco para la se-guridad alimentaria (Comisin of theEuropean Communities 2000), los consu-midores deben disponer de una oferta am-plia de alimentos seguros y de alta calidadprocedentes de los Estados miembro. Estoes esencial en el mercado interno de laUnin Europea y significa que cada Estadomiembro tiene una responsabilidad no slohacia sus propios ciudadanos sino tambinhacia todos los ciudadanos de la Unin yterceros pases por los alimentos producidosen su territorio. Las acciones estratgicas atomar para reducir los peligros deben porlo tanto comenzar a nivel nacional en cadaEstado miembro incluyendo una implica-cin a nivel regional, local e internacional.

    Para garantizar la seguridad de los ali-mentos procesados se debe aplicar el an-lisis de riesgos, cuya misin es mejorar losactuales sistemas de control de alimentos(HACCP).

    El anlisis de riesgos es un proceso com-plejo, exige un enfoque multidisciplinar eincluye tres componentes bsicos: la eva-luacin, la gestin y la comunicacin delriesgo (Hugas et al, 2007). La evaluacinde riesgos es una evaluacin cientfica delos efectos adversos, potenciales o efec-tivos, resultantes de la exposicin a unconsumo de alimentos en los que se en-cuentran presentes agentes patgenos; lagestin es el proceso que comprende lavaloracin de las posibles alternativas paraminimizar o reducir el riesgo o mejorar lasalternativas en aplicacin; y la comunica-cin es el proceso interactivo de inter-cambio de informacin y opinin entreasesores y evaluadores del riesgo.

    Durante la pasada dcada, el anlisis deriesgos en seguridad alimentaria fue mejo-rado, llevado a cabo en gran cantidad de es-tudios (EFSA, 2009) e integrado dentro delproceso de vigilancia de la seguridad a nivelnacional, internacional y comunitario, comouna herramienta basada en el conocimientocientfico, herramienta en la que se apoyael proceso de toma de decisin, para me-jorar los sistemas de control de alimentos, ypara fijar prioridades sobre los diferentesproblemas en seguridad alimentaria.

    Para asegurar la salud del consumidor, enel proceso de anlisis se proponen unaserie de objetivos o criterios de seguridad,as aparece el concepto de nivel de pro-teccin apropiado (ALOP), el conceptode objetivo de seguridad o Food SafetyObjective (FSO). Adicionalmente, elComit de Higiene Alimentaria (CodexAlimentarius Commission, 2003b) definecriterios microbiolgicos especficos,desde el procesado de alimentos hasta elmomento del consumo, como sigue:

    El nivel apropiado de proteccin (ALOP)puede ser definido como la expresincuantitativa de que se produzca un efectoadverso sobre la salud de los consumi-dores o la probabilidad de incidencia deenfermedad.

    Objetivos de seguridad (FSO): la fre-cuencia o concentracin mxima de lapresencia de un riesgo en un producto enel momento de consumo que contribuyea establecer un adecuado nivel de protec-cin (Appropiate Level of Protection,ALOP).

    Objetivo de consecucin (Perfor-manceObjective, PO): la frecuencia mxima y/oconcentracin de un riesgo en un pro-ducto en un momento especfico de la

  • Cmo puedo aumentar la seguridad alimentaria de mis productos?

    28

    cadena de produccin antes del mo-mento de consumo y que contribuye alestablecimiento de un FSO, ALOP comoaplicable.

    Criterio de realizacin (Perfor-manceCriteria, PC): el efecto en frecuencia y/oconcentracin de un riesgo en un ali-mento que debe ser conseguido por laaplicacin de una o ms medidas decontrol para asegurar o contribuir a unPO o a un FSO.

    Criterio microbiolgico (Microbiolo-gical Criteria, MC): define la aceptabilidadde un producto o un lote de productos,basada en la ausencia o presencia, o n-mero de microorganismos, incluidos porunidad de masa, volumen o lote.

    En ciertos casos, y para microorganismosde gran virulencia, como el caso de E. coli0157:H7 se establecen criterios de tole-rancia zero. En 1996, el FISIS (USDA/FISIS,1996) desarroll un criterio estndar parala carne de vaca cruda, a consecuencia deun brote por E. coli 0157:H7 en el que sedieron 700 casos de enfermedad y 4muertes, por consumo de comida rpidaen un restaurante (Bell et al, 1994). Estecriterio es nico y reconoce la prctica fre-cuente de consumidores de este tipo deproducto de cocinar insuficientemente elproducto crudo no destruyendo as los pa-tgenos presentes. Esta prctica aplicatemperaturas que son inadecuadas paradestruir los microorganismos patgenosdel interior del producto, siendo el calen-tamiento superficial, y por ello puedecausar enfermedad, colitis hemorrgica ysndrome urmico hemoltico, por lo queFISIS estableci el nivel zero de toleranciaen 1994.

    ConclusionesSe aplicarn criterios de control de micro-organismos en la fuente y en la seleccinde la materia prima, a continuacin en eldiseo y ejecucin de proceso, mediante laaplicacin de buenas prcticas higinicas, yla mejora de los sistemas de anlisis y con-trol de puntos crticos a lo largo de la ca-dena de produccin/consumo (FAO/WHO,2001; ICMSF, 2002).

    Las autoridades de Salud Pblica debenpromover la seguridad alimentaria en lasociedad y, en particular, entre los con-sumidores, para que stos no sloadopten prcticas seguras de manipula-cin de los alimentos en sus hogares,sino que tambin sean capaces de de-mandar Buenas Prcticas Higinicas(BPH) y aprecien los esfuerzos de las em-presas alimentarias por ofrecer ali-mentos inocuos, siendo estos esfuerzosinnovadores y continuos por parte delas industrias alimentarias de todo elmundo (Motarjemi, 1999). Al mismotiempo deben impulsar el desarrollo delas agencias o autoridades de seguridadalimentaria con la misin de llevar acavo una evaluacin de riesgos que per-mita a las autoridades sanitarias llevar acabo polticas de seguridad alimentariaeficaces en Espaa y en los distintosEstados miembro de la Unin Europea.

    BibliografaAltekruse S, Cohen M, Swerdlow D. Perspectives.Emerging foodborne diseases. Centers for di-sease control and prevention, 3. 1997.

    Bell BP, Goldoft M, Griffin PM, Davis MA, GordonDC, Tarr PI, Bartleson CA, Lewis JH, Barrett TJ,Wells JG, et al. A multistate outbreak ofEscherichia coli O157:H7 associated with bloodydiarrhea and hemolytic uremic syndrome. 1994.

  • La seguridad alimentaria en el siglo XXI

    29

    Bertolini M, Rizzi A, Bevilacqua M. An alterna-tive approach to HACCP system implementa-tion. Journal of Food Engineering, 2007;79:1322-8.

    Codex Alimentarius Commission. Report of the35th session of the Codex Committee on foodhygiene. ALINORM 03/13A, Secretariat of theJoint FAO/WHO Food Standards Programme,FAO, Rome. Available from ftp://ftp.fao.org/codex/alinorm03/ al0313ae.pdf (2003b).

    De Swarte C, Donker RA. Towards an FSO/ALOPbased food safety policy. Food Control, 2005;16:825-30.

    European Food Safety Authority. Quantitativeestimation of the impact of setting a new targetfor the reduction of Salmonella in breeding hensof Gallus gallus 1. Scientific Opinion of the Panelon Biological Hazards (Question No EFSA-Q-2008-291) 2009.

    European Food Safety Authority. Assessment ofthe Public Health significance of meticillin resis-tant Staphylococcus aureus (MRSA) in animalsand foods1. Scientific Opinion of the Panel onBiological Hazards (Question No EFSA-Q-2008-300) 2009.

    FAO/WHO. Principles for the establishmentand application of microbiological criteria forfoods. General Requirements. CAC/GL 21-1997. Joint FAO/WHO Food StandardsProgramme, Codex Alimentarius Commission.Food and Agriculture Organization of theUnited Nations/World Health Organization,Rome, Italy. 2001.

    Havelaar A, Takumi K, Teunis P, de Jonge R,Garsen J. Modeling the interactions betweenpathogens, their hosts and their environment.Dose-response modelling. Maryland. ArieHavellar. 2002.

    Hugas M, Tsigarida E, Robinson T, Calistri P. Riskassessment of biological hazards in the

    European Union. International Journal of FoodMicrobiology, 2007; 120:131-5.

    ICMSF. Microorganisms in Foods 7.International Commission on MicrobiologicalSpecifications for Foods. Kluwer Academic/Plenum Publishers, New York, N.Y. 2002.

    Motarjemi Y, Kferstein F, Moy G, Miyagawa S,Miyagishima K. Importance of HACCP for pu-blic Elath and development. The role of theWorld Health Organization. Food Control, 1996;7:77-85.

    Motarjemi Y, Kferstein F. Food safety, Hazardanalisis and critical control point and the increasein foodborne diseases: a paradox? Food Control,1999; 10:325-33.

    Panisello P, Rooney R, Quantick P, Smith R.Application of foodborne diasease outbreakdata in the development and maintenance ofHACCP systems. International Journal of FoodMicrobiology, 2000; 59:221-34.

    Pina M, Ferrer C, Rodrigo M, Klein G, MartnezA. Organization of risk analysis in the EU and thenew EU food regulation. 2006; XX,113:401-32.

    Tauxe R. Surveillance and investigation of food-borne diseases; roles for public health in mee-ting objetives for food safety. Food Control,2002; 13:363-9.

    Stringer M. Summary report: Food safety objec-tives-role in microbiological food safety mana-gement. Food Control, 2005; 16:775-94.

    USDA/FISIS. Pathogen reduction; hazard analysisand critical control point (HACCP) systems. FinalRule. Fed. Reg. 1996; 61(144): 38805-989.

    Walls I, Buchanan RL. Use of food safety objec-tives as a tool for reducing foodborne listeriosis.Food Control, 2005; 16:795-9.

    Zwietering M. Practical considerations onfood safety objectives. Food Control, 2005;16:817-23.

  • IntroductionChanges in food supply chains, health anddemographic situations, lifestyle and socialsituations, environmental conditions, and in-creased legislative requirements have led tosignificant efforts in the development ofquality and safety management systems inagribusiness and food industry worldwide(Ropkins and Beck, 2000; Efstratiadis, Karirti,and Arvanitoyannis, 2000; Jacxsens, et al,2009a, Luning and Marcelis, 2009a).Nowadays, companies have implementedvarious quality assurance (QA) guidelinesand standards, such as GMP and HACCPguidelines (like General Principles of foodhygiene (Codex Alimentarius 2003), GFSIguidance document (GFSI (2007), and qua-lity assurance standards (like ISO 9001:2008(2008), ISO22000:2005 (2005), BRC (2008),and IFS (2007) into their company own foodsafety management system. The perfor-mance of such systems in practice is, ho-wever, still variable. Moreover, the conti-nuous pressure on food safety managementsystem (FSMS) performance and the dy-namic environment wherein the systemsoperate (such as emerging pathogens,changing consumer demands, develop-ments in preservation techniques) requirethat they can be systematically analysed to

    determine opportunities for improvement(Wallace, et al, 2005; Manning et al, 2006;Van der Spiegel et al, 2006; Cornier et al,2007; Luning et al, 2009a). Within theEuropean project entitled PathogenCombat-EU FOOD-CT-2005-007081 various toolshave been developed to support food com-panies and establishments in systematicallyanalysing and judging their food safety ma-nagement system and its microbiologicalperformance as basis for strategic choiceson interventions to improve the FSMS per-formance. This chapter describes brieflyprinciples of the major tools that have beendeveloped and some others, which are stillunder still under construction.

    Quality assurance evaluationgridsThe wide range of quality assurance stan-dards and guidelines commonly leads to dif-ficulties for small and medium enterprises(SME) to select and implement them intotheir company specific Quality ManagementSystem (QMS) and or Food SafetyManagement System (FSMS). It is often hardfor SMEs to understand the detailed diffe-rences between various QA standards andguidelines and to judge the possible conse-quences of implementation, because they

    Tools to support the self assessment of theperformance of Food Safety ManagementSystemsPA. Luning, L. Jacxsens, V. Jasson, WJ. Marcelis, J. Kussaga, M. Van der Spiegel,M. Kousta, S. Oss, J. Rovira, F. Devlieghere, M. Uyttendaele

  • Cmo puedo aumentar la seguridad alimentaria de mis productos?

    32

    not always have the necessary expertise, ex-perience, and resources (e.g. financial, staf-fing capabilities) (Yapp and Fairman, 2006;Aggelogiannopoulos et al, 2007; Karipidis,et al, 2009). Therefore, quality assuranceevaluation grids have been developed,which show the major differences betweenacknowledged QA standards and guidelineson distinct features. The QA evaluation gridsmay support companies in the agri-foodchain to balance the benefits of implemen-ting certain QA standards (and guidelines)against the efforts that are required.Moreover, it might serve as a compact over-view of possibilities and consequences ofimplementing QA standards and guidelineswhen supporting companies to improvetheir own FSMS. The features that havebeen included in the grids are in table 1

    summarised. For details the reader is refe-rred to Kussaga and co-authors (2009).

    Food Safety ManagementSystem Diagnostic Instrument(FSMS-DI)

    Stakeholders (like government, branch or-ganisations, customers, retail, etc) put de-mands on the design of a companys FSMSby requiring the implementation of certain(sets) of quality assurance (QA) standardsand or guidelines. However, each companyor establishment has a unique company-specific FSMS depending on how standardsand guidelines have been translated intothe own situation (Jacxsens, et al, 2009a;Luning and Marcelis, 2009a). Recently, a

    Table 1. Features on which acknowledged QA standards and guidelines have beenevaluated (modified from Kussaga et al, 2009b).

    Features related to position of QA Standards and GuidelinesFocus QA standards and guidelines have been (are being) developed for

    different purposes, they may have a different focus (like, safety, quality,organisation).

    Scope Scope refers to the range and applicability of the standard or guideline,which can be restricted or broad.

    Legislative Status Legislative status refers to being compulsory or voluntary.Combined The feature combined implies if a standard or guideline is a primary one

    or is typically a combination of more standards/guidelines.GFSI status GFSI status refers to the benchmarking position of the Global Food

    Safety Initiative of the QA standard/guideline.Acknowledgement Acknowledgement of QA standards and guidelines indicates whether

    they are nationally (e.g. one country), regionally (e.g., the wholeregion/continent like Europe, Middle East), or worldwide recognized.

    Features related to type of requirements of QA Standards and Guidelines

    Comprehensiveness Comprehensiveness refers to the extent of detail of the requirements,requirements and to how they are in the document formatted.

    Extent validity Extent of validity requirements refers to what degree demands are putrequirements on assuring that the system is really effective in practice.Degree of Degree of organisational demands refers to what extent QA standardorganisational and guideline set requirements on typical organisational issuesdemands (like training of personnel, setting procedures).

  • Tools to support the self assessment of the performance of Food Safety Management Systems

    33

    diagnostic tool has been developed usinga techno-managerial research approach toconsider both technological factors andpeople behaviour in the performance offood safety management systems (Luningand Marcelis, 2006, 2007, 2009b). The toolis called food safety management systemdiagnostic instrument (FSMS-DI). TheFSMS-DI is a tool that enables a systematicanalysis and assessment of a companysunique food safety management system in-dependent of the QA standards and or gui-delines that have been implemented(Luning et al, 2008, 2009a, b, c; Jacxsenset al, 2009c). The instrument consists ofcomprehensive lists with sets of indicatorsto analyse respectively which core controland core assurance activities are addressedin the company specific FSMS, which majorcontextual factors could affect FSMS per-formance, and to analyse the microbiolo-gical safety performance of the system.Moreover, the FSMS-DI encompasses gridsto assess respectively levels of control andassurance activities (i.e. more or less ad-vanced), contextual situations (i.e. more orless risky) wherein the FSMS has to ope-rate, and the microbiological safety level.For each indicator, to assess core control orassurance activities or food safety perfor-mance, four different levels have been des-cribed (i.e. 0, 1, 2, and 3 representing a low,

    basic, average, and advanced level respec-tively). Similarly, for each indicator, to assesscontextual factors, three different risk levelshave been described (i.e. 1, 2, and 3 repre-senting low, moderate and high-risk con-text respectively).

    The elements of the FSMS-DI are summa-rised in figure 1, it starts with introductoryquestions followed by defining a represen-tative production unit for which a QA ma-nager can do the self assessment (part I).Part II includes the indicators and grids toassess the major contextual factors productcharacteristics, process characteristics, or-ganisational characteristics, and chain en-vironment characteristics. Part III is for as-sessment of the core control activitiesdesign of preventive measures, design ofintervention measures, design of monito-ring systems, and actual operation of con-trol measures, whereas the core assuranceactivities setting system requirements, va-lidation, verification, and documentationand record-keeping are covered in part IV.Part V includes the indicators (called theFood Safety Performance Indicators FSPI)and grids to assess internal and externalfood safety performance (Jacxsens et al,2009c). The assumption behind the FSMS-DI is that companies operating in a high-risk context (due to highly risky product and

    Table 1. Features on which acknowledged QA standards and guidelines have beenevaluated (modified from Kussaga et al, 2009b) (continuation).

    Features related to Certification of QA standardsScope of certification Certification scope refers to what the certification process covers.Gradation in Differences in gradation refers to fact that QA standards vary in the waycertification certification requirements can be fulfilled.Frequency Frequency of certification refers to how often certification audits must

    be by third parties carried out.

  • Cmo puedo aumentar la seguridad alimentaria de mis productos?

    34

    processes, less supporting organisationalconditions, highly vulnerable and dependchain position) need to have an advancedFSMS (i.e. based on precise information,scientifically underpinned, criticallyanalysed, procedure-based, systematic, andindependent) to realise a predictable andcontrollable food safety performance. In amoderate-risk context an average FSMS isexpected to be sufficient to realise a goodFS performance, while in a low-risk contexteven a basic FSMS would be adequate to

    realise a good FS performance (Luning et

    al, 2009c). At the other hand, a good FS

    performance is an indication for a well

    functioning FSMS (Jacxsens, et al, 2009c).

    Figure 2 illustrates this assumption. The FS

    performance can be analysed by using the

    food safety performance indicators

    (Jacxsens et al, 2009c) and can be mea-

    sured by experiments using the microbial

    Assessment Scheme (MAS) of Jacxsens and

    co-authors (2009b) (Section 4).

    Figure 1. Overview of elements of food safety management system diagnostic instrument.

    PART I: introductory section for Food Safety Management System (FSMS)A. Introduction questions (1 -11)B. Selection of Representative Production Unit (RPU) for self-assessment (12-20)

    PART II: assessment of contextual factorsA. Assessment of product characteristics (A1-3)B. Assessment of process characteristics (B4-6)C. Assessment of organisation characteristics (C7-13)D. Assessment of chain environment characteristics (D14-17)

    PART III: assessment of core safety control activitiesE. Assessment of preventive measures design (E18-23)F. Assessment of intervention processes design (F24-27)G. Assessment monitoring system design (G28-34)H. Assessment of operation of preventive measures, intervention process and (H35-41)

    monitoring systems

    PART IV: assessment of core assurance activitiesI. Assessment of setting system requirements activities (I42-43)J. Assessment validation activities (J44-46)K Assessment of verification activities (K47-48)L Assessment of documentation and record-keeping to support food (L49-50)

    assurance

    PART V: assessment of food safety performanceM. EXTERNAL Food Safety Performance (M51-54)N. INTERNAL Food Safety Performance (N55-57)

  • Tools to support the self assessment of the performance of Food Safety Management Systems

    35

    The FSMS-DI has been tested and vali-dated in pre-tests and a pilot study with15 food producing companies in the areaof dairy, pork, beef & lamb, and poultryproducts. Moreover, the instrument hasbeen slightly adapted and applied in thecatering sector (50 food service establish-ments) in Spain (Chinchilla, 2009).Recently, the paper based instrumenthas been transformed to a web basedapplication, i.e. the FSMS self assess-ment tool. This self assessment tool isnow used for a quantitative study to as-sess food safety management systems indairy, pork, beef & lamb, and poultrycompanies in Europe. For details aboutthe diagnostic tool, the reader is referredto Luning and co-authors (2008, 2009 a,b, c), Jacxsens and co-authors (2009c),and the Pathogen Combat website(www.pathogencombat.com).

    Microbiological AssessmentScheme (MAS)

    As previously stated, the actual microbiolo-gical performance of FSMS in practice is stillvariable (e.g. Cormier et al, 2007; Manninget al, 2006; Tsalo et al, 2007). In fact, atten-tion has been shifted from implementingQA standards to better understanding theperformance of an FSMS (Domnech et al,2008; Luning et al, 2008; Stringer and Hall,2007) and various audit tools have beendeveloped to determine performance to-wards certain QA standards (e.g. Wallaceet al, 2005; CIES, 2007; Cormier et al,2007). However, these audit tools basicallycheck on compliance to the set require-ments, for instance, during internal or ex-ternal auditing (Van der Spiegel et al, 2005),whereas the FSMS-DI focuses on crucialcontrol and assurance activities (not linkedto specific QA standards). Although, theFSMS-DI can give an indication about themicrobiological safety performance, it givesrestricted insight in the actual microbiolo-gical performance.

    In practice, food processing companiescommonly use microbial testing of finalproducts to assess if their products meetfood safety criteria (e.g. ICMSF, 2002;Legan, 2001). These criteria are set by dif-ferent stakeholders or regulatory bodies(like EU and/or country regulations and/orcustomers requirements), but can also beused to guide the evaluation of a manu-facturing process to define preventive ac-tions (Kvenberg and Schwalm, 2000;Martins and Germano, 2008). However,no procedure to systematically evaluatethe microbiological performance of aFSMS was yet available. Therefore, theMicrobial Assessment Scheme (MAS)

    Figure 2. Principle assumption behind the researchwork of tools to measure the performance of FoodSafety Management Systems.

    FS

    3

    2

    1

    Context FSMS

    3=bestperformance

    3=mostdangerous

    3=highestlevel

    3

    2

    1

    3

    1

    2

  • Cmo puedo aumentar la seguridad alimentaria de mis productos?

    36

    tool has been developed to support a sys-tematic analysis of microbial counts to as-sess the current microbial performance ofan implemented FSMS.

    The MAS tool is a procedure that definesthe identification of critical sampling loca-tions (CSL), the selection of microbiologicalparameters, the assessment of sampling fre-quency, the selection of sampling methodand method of analysis, and finally dataprocessing and interpretation (figure 3).

    Based on the MAS assessment, microbialsafety level profiles can be derived, indi-cating which microorganisms and to whatextent they contribute to microbiologicalsafety for a specific food processing com-pany. A microbial safety level can be clas-sified from 1 to 3, where level 3 reflects a

    good performance (legal criteria or guide-lines are respected, no improvements areneeded current level of FSMS is highenough to cover this hazard), level 2 co-rresponds with a moderate performance(legal criteria or guidelines are exceeded,improvements need to be made on asingle control activity of the FSMS) andlevel 1 represents a poor performance(legal criteria or guidelines are exceeded,improvements need to be made on mul-tiple control activities of the FSMS). Thesum of the levels is resulting in the micro-bial food safety level profile. The principlebehind the MAS tool is that low numbersof microorganisms and small variations inmicrobiological counts imply a well func-tioning FSMS (Jacxsens et al, 2009b).

    Identification CriticalSampling locations CSL)

    Locations provide info about microbial performance of product flow(e.g. raw materials, intermediated food products and final foodproducts) and core control strategies (e.g. contact surfaces, hands ofpersonnel, after pasteurisation as intervention method)

    Relevant pathogens (e.g. Listeria, Salmonella) Hygiene indicators (e.g. E. coli, S. aureus) Utility parameter (total mesophilic count)

    Obtain picture of actual microbial performance e.g. Three months, 3times (days), 3 times a day

    Product sampling & surface sampling per CSLUse of ISO methods for sampling & analysis (reliable, accurate,robust) or via acknowledged and validated alternative methods

    Show variability in raw dataUse legal (available) criteria to judge outcome Development food safety level profiles

    Selection microbiologicalparameters

    Assessment sampling frequency

    Selection sampling method& method of analysis

    Data processing& interpretation of data

    Figure 3. Steps of the MAS scheme (modified from Jacxsens et al, 2009b).

  • Tools to support the self assessment of the performance of Food Safety Management Systems

    37

    A MAS scheme will differ depending on theproduction processes and food type thatare addressed in the specific company.MAS-schemes have been specified for mi-crobiological analyses in respectively poultry,dairy, beef & lamb, and pork companies.Depending on the product and productionprocesses, specific microorganisms havebeen selected to indicate respectively safety(e.g. Listeria monocytogenes, Salmonellaspp, Campylobacter), hygiene indicators(e.g. E. coli and Enterobacteriaceae, Staphy-loccocus aureus), and overall performance(total aerobic count). Data provided in-depth insight in microbiological counts inproduct flows (both raw materials, interme-diate, and final products), contact surfaceareas (like at critical cutting areas, knives,conveyor belts, etc), and people (hands andgloves).

    The detailed MAS data provide insight inwhich indicator microorganisms exceed li-mits and at which critical locations, but alsoreveals the extent of variation in microbio-logical counts. The microbial safety levelprofiles give an immediate insight in theroom o improvement and or which micro-biological parameters. These profiles canalso be used to compare the microbiolo-gical performance of different companieswith the same type of production processesand food products as benchmarking tool.As such, microbiological problems in asector can be identified, independent of thetype of company. The food safety perfor-mance indicators (FSPI) have been analysedon their indicative value by comparing datawith the extensive MAS data for nineEuropean companies. (Jacxsens et al,2009c). The food safety performance diag-nosis can be a useful tool to have a first in-dication about the microbiological perfor-

    mance of an operational food safety ma-nagement system.

    For more details the reader is referred toJacxsens and co-authors (2009a, 2009c),and Sampers and co-authors (2009), andKussaga and co-authors (2009b).

    MAS analysis methodselection toolDifferent authors recommended the use ofmicrobial testing to evaluate critical controlpoints (e.g.), to evaluate procedures forGood Hygienic practices (GHPs) andStandard Operating Procedures (SOPs) (e.g.Brown et al, 2000; Swanson andAnderson, 2000; Kvenberg and Schwalm,2000; Gonzalez-Miret et al, 2001; Cormieret al, 2007; Martins and Germano, 2008).The MAS-scheme can support food safetyexperts in systematically designing a tai-lored scheme to asses the microbiologicalperformance of implement ted food safetymanagement systems (Jacxsens et al,2009b). According to the MAS protocolappropriate methods for sampling andanalyses of pathogens and other micro-or-ganisms (to indicate hygiene or total per-formance) need to be selected. In the cu-rrent MAS protocol, the authors refer tothe use of internationally acknowledgedsampling and analysis methods accordingto ISO standards. However, nowadays awide range of methods to sample and oranalyse micro-organisms (and specificallypathogens) are existing or have been re-cently developed. Each method has its ownspecific characteristics, which may affectthe choice of a certain method.

    Therefore a MAS analysis method selec-tion tool has been developed, which canaid in the process of decision-making regar-

  • Cmo puedo aumentar la seguridad alimentaria de mis productos?

    38

    ding selection of microbial analysing met-hods in specific situations. A comprehen-sive review of literature regarding differentenumeration and detection method wasperformed. Based on this review specificmethod characteristics were determinedthat have used as a parameter in the selec-tion tool. The major characteristics onwhich the methods have been analysed areshown in table 2. Moreover, a decision treewas made that allows classifying the MA

    Regarding the selection tool it should benoticed that no method exist that is a100% sensitive, 100% specific, that can beperformed in real-time and that is comple-tely without costs. All methods have advan-tages and disadvantages. The challenge isto select the method that fulfils the most ofthe characteristics of the ideal method in aspecific situation. Advantages of a methodshould be optimally exploited and the di-sadvantages should be recognized. The se-

    that needs to be performed. The decisiontree is based on a techno-managerial pointof view.

    lection tool can aid in finding the most ap-propriate method for a specific situation inneed of microbial analysis.

    Table 2. Some examples of characteristics on which microbiological methods have beenevaluated as basis of the MAS method analysis selection tool (modified from Jasson etal, 2009).

    Characteristics Brief descriptionAlternative method An alterative method is a method of analysis that demonstrates or

    estimates, for a given category of products, the same analyte as ismeasured by using the corresponding reference method. Thisalternative method can be proprietary or non-commercial and coversan entire analysis procedure, that is, from the preparation of samplesto the