LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University...

121
LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle , APC, University Paris Diderot [email protected]

Transcript of LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University...

Page 1: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.

LHC-Collider Physics and

Simulation for High Energy Cosmic

Rays

J. N. Capdevielle, APC, University Paris [email protected]

Page 2: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.

OutlineOutline General properties of giant EASGeneral properties of giant EAS The extrapolation at UHEThe extrapolation at UHE The treatment of inclined GAS in AGASAThe treatment of inclined GAS in AGASA The treatment of the vertical energy The treatment of the vertical energy

estimatorestimator Amendments of experimental data and Amendments of experimental data and

general convergence to GZK predictiongeneral convergence to GZK prediction Mass composition at UHEMass composition at UHE

Page 3: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.

Hybrid approach to Hybrid approach to the the primaryprimary cosmic cosmic

ray compositionray composition

R. AttallahR. Attallah11 and J.N. and J.N. CapdevielleCapdevielle22

11Physics Department, Univ. of Annaba, Physics Department, Univ. of Annaba, AlgeriaAlgeria

22APC, Univ. of Paris 7, FranceAPC, Univ. of Paris 7, France

Page 4: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.

IntroductionIntroduction

The chemical composition of primary The chemical composition of primary cosmic rays furnishes crucial clues on cosmic rays furnishes crucial clues on their sources;their sources;

A direct measurement of their high A direct measurement of their high energy component runs out of statistics;energy component runs out of statistics;

Above 10Above 101414 eV, observation must resort eV, observation must resort to indirect method (air shower to indirect method (air shower measurements);measurements);

Page 5: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.

Chemical compositionChemical composition

Air shower interpretation is hampered by Air shower interpretation is hampered by our lack of knowledge of the particle our lack of knowledge of the particle interaction physics;interaction physics;

Air showers present very large fluctuations;Air showers present very large fluctuations;

Classic air shower experiments only sample Classic air shower experiments only sample the air shower at one depth.the air shower at one depth.

Extensive fitting and interpolation are Extensive fitting and interpolation are needed.needed.

Page 6: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.

A novel technique by A novel technique by IACTIACT

Ground-based detection of the Direct Ground-based detection of the Direct Cherenkov (DC) light emitted by the primary Cherenkov (DC) light emitted by the primary particle;particle;

The intensity of this light is proportional to The intensity of this light is proportional to ZZ 2 2;;

Measurement of the energy spectrum for Measurement of the energy spectrum for cosmic ray nuclei in the range 13-200 TeV cosmic ray nuclei in the range 13-200 TeV (H.E.S.S.);(H.E.S.S.);

Limited energy window.Limited energy window.

Page 7: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.

(http://www.mpi-hd.mpg.de/hfm/HESS)

Page 8: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.

Hybrid detectorHybrid detector DC-light detection can be combined with a DC-light detection can be combined with a

classic air shower experiment in order to classic air shower experiment in order to measure on an event-by-event basis:measure on an event-by-event basis:

11. the mass and energy of the primary . the mass and energy of the primary particle;particle;

22. the particle content of the shower;. the particle content of the shower;

to test experimentally the different critera to test experimentally the different critera used for the identification of primary cosmic used for the identification of primary cosmic rays.rays.

to approach the elemental composition to approach the elemental composition around the knee with validated criteria.around the knee with validated criteria.

Page 9: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.

Monte Carlo calculationsMonte Carlo calculations

CORSIKA package v. 6.617 (Heck CORSIKA package v. 6.617 (Heck et alet al. 1998).. 1998).

Two independant high energy hadronic Two independant high energy hadronic interaction models: interaction models:

11. QGSJET v. II-03 (Ostapchenko . QGSJET v. II-03 (Ostapchenko 2006)2006)

22. SIBYLL v. 2.3 (Engel . SIBYLL v. 2.3 (Engel et alet al. 1999).. 1999).

Fluka model v. 2005 at low energy (Ferrari Fluka model v. 2005 at low energy (Ferrari et et alal. 2005).. 2005).

Page 10: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.

Experimental conditionsExperimental conditions

Primary particles considered: p, N, Fe Primary particles considered: p, N, Fe (vertical).(vertical).

Primary energy: 50 TeV and 200 TeVPrimary energy: 50 TeV and 200 TeV

Observation level at H.E.S.S. altitudeObservation level at H.E.S.S. altitude

(1830 m; 830.5 g/cm2).(1830 m; 830.5 g/cm2).

Detection energy thresholds: Detection energy thresholds:

EE 300 MeV, 300 MeV, EEee 2 MeV 2 MeV

100 showers per run.100 showers per run.

Page 11: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.

Electron lateral Electron lateral distributiondistribution

Page 12: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.

Muon lateral distributionMuon lateral distribution

Page 13: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.

Hadron lateral Hadron lateral distributiondistribution

Page 14: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.

Number of particles (50 Number of particles (50 TeV)TeV)

MuonsMuons HadronsHadrons

10 m10 m 20 m20 m 10 m10 m 20 m20 m

ProtonProton 8.88.8(8.3)(8.3)

24.324.3(23.2)(23.2)

6.56.5(4.9)(4.9)

11.111.1(8.5)(8.5)

NitrogNitrogenen

6.9 6.9 (6.9)(6.9)

21.921.9(21.5)(21.5)

2.52.5(2.6)(2.6)

5.55.5(5.3)(5.3)

IronIron 4.9 4.9 (4.5)(4.5)

16.616.6(14.7)(14.7)

1.01.0(0.8)(0.8)

2.52.52.32.3

Page 15: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.

Number of particles (200 Number of particles (200 TeV)TeV)

MuonsMuons HadronsHadrons

10 m10 m 20 m20 m 10 m10 m 20 m20 m

ProtonProton 40.040.0(37.2)(37.2)

105.4105.4(97.8)(97.8)

38.238.2(35.4)(35.4)

62.862.8(56.5)(56.5)

NitrogNitrogenen

38.0 38.0 (33.1)(33.1)

104.7 104.7 (94.7)(94.7)

20.720.7(18.1)(18.1)

37.637.6(32.1)(32.1)

IronIron 29.5 29.5 (26.0)(26.0)

89.189.1(82.6)(82.6)

13.013.0(9.7)(9.7)

25.425.4(19.8)(19.8)

Page 16: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.

Electrons vs. positronsElectrons vs. positrons

Page 17: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.

Electron sizeElectron size

Page 18: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.

Muon sizeMuon size

Page 19: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.

Primary EnergyPrimary Energy

5.2

0

)m15(

)m15(eln0.16088.15

)m30(e

N

E

Page 20: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.

ConclusionConclusion

DC-light detection can be combined DC-light detection can be combined with a classic air shower experiment.with a classic air shower experiment.

Such a hybrid detector is able to test Such a hybrid detector is able to test the different criteria used for primary the different criteria used for primary cosmic ray identification. cosmic ray identification.

Validated criteria can be used to study Validated criteria can be used to study the cosmic ray compostion around the the cosmic ray compostion around the knee.knee.

Page 21: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.
Page 22: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.
Page 23: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.
Page 24: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.

• Current models predictions: 90-130 mb

• Aim of TOTEM: ~1% accuracy

Total p-p Cross-Section

mb 1.41.2

2.1 5.111 totLHC:

COMPETE Collaboration fits all available hadronic data and predicts:

[PRL 89 201801 (2002)]

~ ln2 s

Page 25: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.
Page 26: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.

Acceptance

All detectors with trigger capability

Trigger acceptance > 95%

for all inelastic events

non-diffractive minimum bias eventsd

NdN

chch/d/d

[

1/[1/

un

it]

un

it]

Charged particlesper event

single-diffractive events

Energy(GeV) per event

= - ln tg

Page 27: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.
Page 28: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.
Page 29: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.
Page 30: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.
Page 31: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.
Page 32: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.

Concorde Fox Charlie, Roissy, Octobre 78 Une centaine d’AR Paris New York pour exposer à 17000m d’altitude deux chambres à émulsion (pendant 270H).

Page 33: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.

Chambers for Balloon and Airborne Experiments

• Evis=E(h)+E

• Energy threshold• Stratospheric 200 GeV• Mountain altitude 2-4 TeV• Particle physics observed in XREC

• - n, E, <r>, < E r>• nch, EH, <rH>, < EH rH>• - Energy and PT distributions• - pseudorapidity distributions• - dN/d=f()• - correlations <PT>, dN/d • (more or less completely)• - direct interaction in the chambers• - near direct interactions with • localized origin

Page 34: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.

CERN CourierOctobre 1981

Début des expériences Octobre 1978

Une collision de 106 GeV (forte multiplicité, spikes dans la distribution de pseudo-rapidité)

Page 35: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.
Page 36: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.

Chambres à émulsion sur Chambres à émulsion sur ConcordeConcorde

Impact d ’un photon Impact d ’un photon de 200 TeV, l ’un des de 200 TeV, l ’un des 211211 d ’une collision d ’une collision de 10de 107 7 GeV.GeV.

Evènement à émission Evènement à émission coplanaire.coplanaire.

50ch sur A80 5000H 50ch sur A80 5000H 500 p 1PeV, 7 10 PeV500 p 1PeV, 7 10 PeV 250 familles 250 familles 10 10

PeV , 3 au LHC (100 PeV , 3 au LHC (100 PeV)PeV)

Page 37: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.

CERN CourrierCERN CourrierAvril 1997Avril 1997

Emission coplanaire dansEmission coplanaire dansune collision de 10une collision de 1077 GeV GeV

Page 38: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.

JF2af2 (Concorde)JF2af2 (Concorde) Xray film under 8 Xray film under 8

c.u.c.u. Lego plot with the Lego plot with the

4 most energetic 4 most energetic Gamma ’sGamma ’s

Page 39: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.

Jf2af2 (Concorde)Jf2af2 (Concorde) 34 34  ’s aligned ’s aligned about 50% of the about 50% of the

visible energyvisible energy

Page 40: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.

String Model and di-quark breaking

Valence quark

Valence diquark

2

Slope Regge :

/fmGeV 12

1Tension

Tp

L

qq21qq

3q

The pair is created when thedistance L exceeds a threshold value.

Above a threshold energy, the di-quarkis broken excluding recombinationof the leading cluster.

qq

Page 41: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.

Very large tension for the diquark partners ?Very large tension for the diquark partners ?

1q

3q

2q

Maximal tensionwhen the 3

valence quarksare at the largestdistance fromeach other, then

aligned.

Diquark separation

Page 42: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.

3 most energetic clusters 3 most energetic clusters in JF2af2in JF2af2

J F2af2 X,Y(mm)

E(TeV)

N <R><ER>

A 81.3,7.014

331. 60 8.6235.8

Ap 81.3,7.014

455.4 10 0.4913.1

B 114.21.97

610.6 77 10.2675.6

Page 43: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.

One possible One possible configurationconfiguration

External ’s and total <ER> factors External ’s and total <ER> factors indicate a common origin under indicate a common origin under 2.2km above the chamber2.2km above the chamber

Like in Strana, we need pLike in Strana, we need pt t ‘ s > 10 ‘ s > 10 GeV/c for the emission of 3 high GeV/c for the emission of 3 high energy hadrons generating A, Ap, Benergy hadrons generating A, Ap, B

Threshold energy for valence quarks Threshold energy for valence quarks in alignment ~200 GeV in c.m.s.in alignment ~200 GeV in c.m.s.(proton of 10(proton of 101616 eV in Lab) eV in Lab)

Page 44: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.
Page 45: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.

Most energetic events Most energetic events above LHC energyabove LHC energy

TadjikistanTadjikistan AndromedaAndromeda FianitFianit normal hadron and normal hadron and  ’s content  ’s content

reproduced with CORSIKA (1500 reproduced with CORSIKA (1500  ’s  ’s in Fianit, but few chances to in Fianit, but few chances to reproduce the 10 PeV reproduce the 10 PeV  ’s in the  ’s in the halo)halo)

Page 46: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.

ANDROMEDA

Page 47: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.
Page 48: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.

TADJIKISTAN

Page 49: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.

CommentComment Coplanar emission , even if partly explained Coplanar emission , even if partly explained

by fluctuations, needs more attentionby fluctuations, needs more attention p-A and A-A collisions have to be considered, p-A and A-A collisions have to be considered,

for peripheral collisions (RHIC results) to for peripheral collisions (RHIC results) to point out QGP signatures in spikes or very point out QGP signatures in spikes or very large Pt .Semi inclusive data consequences large Pt .Semi inclusive data consequences may be importantmay be important

New experiements(LHC energy, forward New experiements(LHC energy, forward region) with emulsion bricks can be region) with emulsion bricks can be performed with air cargo liners and at performed with air cargo liners and at mountain altitudemountain altitude

Page 50: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.
Page 51: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.
Page 52: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.
Page 53: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.

Xmax (g/cm2) and Nmax Xmax (g/cm2) and Nmax for p, Fe initiated showersfor p, Fe initiated showers

Page 54: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.
Page 55: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.

Propagation : coupure GZKGreisen, Zatsepin, Kuzmin

Interaction des hadrons avec le fond de photons à 3K (CMB)

Eseuil = 70 EeV

protons

Les sources doivent être proches !

Page 56: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.

Treatment of inclined EAS data from surface arrays and GZK prediction

Jean Noël CAPDEVIELLE, F.COHEN, B.SZABELSKA, J.SZABELSKI

Georgi Timofeevich Zatsepin (2006)

Vadim Alekseyevich Kuzmin (2006)

Page 57: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.

Individual showersIndividual showers

Page 58: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.

Fonction Gaussienne hypergéométrique

f(x) = Ne x s-a (1+x) s-b(1+d.x)-c

À angle fixe, il va falloir ajuster les paramètres :a, b, c, r0, r1, , , , r’0 et r’1

Ne , N et “s” sont donnés par la simulation

Avec x = r / r0 et d = r0 / r1Électrons

Muons f(x) = N x - (1+x)-(-)(1+.x)-

Avec x = r / r’0 et = r’

0 / r’1

Page 59: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.

Résultats des Résultats des ajustementsajustements

Page 60: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.

Résultats des Résultats des ajustementsajustements

Page 61: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.
Page 62: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.
Page 63: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.

Differential Primary Energy Spectrum of Cosmic Rays

Isotropic distribution of sources

Page 64: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.
Page 65: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.

1 = 500 g/cm2 2 = 594 g/cm2

AGASA conversion 600 600

Treatment of inclined EAS data from surface arrays and GZK prediction

Jean Noël CAPDEVIELLE, F.COHEN, B.SZABELSKA, J.SZABELSKI

Measured: lateral distribution + direction (θ, φ)

Density (600m, θ) Density(600m, 0) Energy

That conversion is energy/size independent

Page 66: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.
Page 67: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.

Treatment of inclined EAS data from surface arrays and GZK prediction

Jean Noël CAPDEVIELLE, F.COHEN, B.SZABELSKA, J.SZABELSKI

Results of CORSIKAsimulations showcomplicatedand energy dependentform

example:

Conversion to ''vertical density''

Page 68: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.

Treatment of inclined EAS data from surface arrays and GZK prediction

Jean Noël CAPDEVIELLE, F.COHEN, B.SZABELSKA, J.SZABELSKI

Cascade theory and CORSIKA simulations

results for the highest energies depend on interaction model,but suggest overestimation of energy at AGASA

Page 69: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.
Page 70: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.

Treatment of inclined EAS data from surface arrays and GZK prediction

Jean Noël CAPDEVIELLE, F.COHEN, B.SZABELSKA, J.SZABELSKI

From Bergman spectrum to AGASA spectrumusing AGASA conversion

Grey area: D.R.Bergman et al. (HiRes Collaboration) 29th ICRC, Pune, India, 2005

Red points: AGASA energy spectrum

histograms:MC generated spectrum following Bergman approximately recalculated spectrum using AGASA conversion

Page 71: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.

Treatment of inclined EAS data from surface arrays and GZK prediction

Jean Noël CAPDEVIELLE, F.COHEN, B.SZABELSKA, J.SZABELSKI

How does the conversion to ''vertical density'' work ?

Page 72: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.
Page 73: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.
Page 74: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.
Page 75: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.
Page 76: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.

Treatment of inclined EAS data from surface arrays and GZK prediction

• The spectrum from surface array has to be corrected from the overestimation of the primary energy between 10°-35° in the last decade

• the amended spectrum of AGASA (ISVHECRI aug. 06) is progressing in this direction

• GZK after 4 decades is going to be confirmed by HIRES, AUGER, AGASA…

• The overestimation in AGASA data was mainly coming of the special properties of 3D Electromagnetic cascade near maximum

Page 77: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.
Page 78: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.
Page 79: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.
Page 80: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.
Page 81: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.
Page 82: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.
Page 83: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.
Page 84: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.
Page 85: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.
Page 86: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.
Page 87: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.
Page 88: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.
Page 89: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.
Page 90: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.
Page 91: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.
Page 92: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.
Page 93: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.
Page 94: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.
Page 95: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.
Page 96: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.
Page 97: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.
Page 98: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.
Page 99: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.
Page 100: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.
Page 101: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.
Page 102: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.

EUSO ~ 1000 x AGASA ~ 30 x AugerEUSO (Instantaneous) ~ 5000 x AGASA ~ 150 x Auger

AGASA

JEM-EUSO tilt-mode

JEM-EUSO FoVJEM-EUSO FoV

Page 103: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.

Principle of EUSOPrinciple of EUSO- first - first remote-sensingremote-sensing from space, opening a new from space, opening a new

window for the highest energy regimewindow for the highest energy regime

From College de France: better data now

TPC-likenaturalchamber

Cf: Ground-based arrays < 100 EUSO(1) Scintillator array,(2)Fluorescence telescope array

1020 eV

Page 104: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.

Conclusions Conclusions

•New chances for Proton &Gamma ray Astronomy at UHE from ISS with JEM-EUSO

•New results of LHC updating the simulation

•GZK tendancies confirmed after specific treatment of inclined EAS and particular procedure in the conversion of vertical signal to primary energy.

•Xmax behaviour and change in p-Air interaction above 3 EeV?

•Ratio of light at 500g/cm2 to 1100g/cm2 depends on mass (in favour of p composition at UHE for HIRES

Page 105: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.
Page 106: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.

G.COCCONI, 1961

Ne

t

e

r

Page 107: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.

Cascade électromagnétique Cascade électromagnétique (NKG)(NKG)

Page 108: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.

Signal dans AugerSignal dans Auger

Simulation densité de particulesDétecteurs Auger signal en Vertical Equivalent Muons (VEM)

Signal (r) = C1 e+e- (r) + C2 (r) VEM

Des simulations avec géant4 de la cuve d’Auger :C1 = 0,47

C2 = 0,9 – 1

Page 109: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.

Trans GZK AREATrans GZK AREA New scales New scales Adequate Adequate

Advanced Advanced TechnologiesTechnologies

Milesbornes to Milesbornes to Quantum GravityQuantum Gravity

earliest earliest approaches, EUSO approaches, EUSO and JEM-EUSOand JEM-EUSO

Page 110: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.

Astronomie proton

1000 evts à répartir sur un certain nombre de sources éventuelles avec leur spectre respectif

Page 111: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.
Page 112: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.

LPM effectLPM effect Maximum deeper Maximum deeper

in atmosphere for in atmosphere for pure e.m. cascadespure e.m. cascades

trigger more trigger more difficult for difficult for registration of registration of near vertical e.m. near vertical e.m. cascade with cascade with surface arrayssurface arrays

Page 113: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.
Page 114: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.
Page 115: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.
Page 116: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.

• Current models predictions: 90-130 mb

• Aim of TOTEM: ~1% accuracy

Total p-p Cross-SectionTotal p-p Cross-Section

mb 1.41.2

2.1 5.111 totLHC:

COMPETE Collaboration fits all available hadronic data and predicts:

[PRL 89 201801 (2002)]

~ ln2 s

Page 117: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.

Extrapolation des modèles Extrapolation des modèles d’interactions hadroniquesd’interactions hadroniques

Première interaction importante donne les caractéristiques générales

de la gerbe (Nmax, Xmax et profil latéral)

Modèles théoriques sont ajustés sur les données expérimentales

Or pas de données au-delà de 1,8 TeV

dans le centre de masse (collisions pp) extrapolation

Distribution de pseudo-rapidité

Page 118: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.

Distribution de pseudo-rapidité

Pythia 6.122 APythia 6.122 modele 4

Pythia 5.724 AtlasPHOJET 1.11sajet

Herwig 5.9Isajet 7.32

Incertitudes Incertitudes

Prédictions pour le LHCà 14 TeV dans le centre de masse

Multiplicité entre 70 (Isajet ) et 125 (Pythia 6.122A)

• Combien de particules ?• Quelle énergie emportée par la particule leader

Page 119: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.
Page 120: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.

Violation du scaling de KNO (1000 collisions) 1020 eV

Page 121: LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr.