Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)

47
. . . . . . Section 5.4 The Fundamental Theorem of Calculus V63.0121, Calculus I April 23, 2009 Announcements I Quiz 6 next week on §§5.1–5.2

description

The First Fundamental Theorem of Calculus looks at the area function and its derivative. It so happens that the derivative of the area function is the original integrand.

Transcript of Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)

Page 1: Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)

. . . . . .

Section5.4TheFundamentalTheoremofCalculus

V63.0121, CalculusI

April23, 2009

Announcements

I Quiz6nextweekon§§5.1–5.2

Page 2: Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)

. . . . . .

Outline

Recall: TheEvaluationTheorema/k/a2FTC

TheFirstFundamentalTheoremofCalculusTheAreaFunctionStatementandproofof1FTCBiographies

Differentiationoffunctionsdefinedbyintegrals“Contrived”examplesErfOtherapplications

Worksheet

Summary

Page 3: Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)

. . . . . .

Thedefiniteintegralasalimit

DefinitionIf f isafunctiondefinedon [a,b], the definiteintegralof f from ato b isthenumber∫ b

af(x)dx = lim

∆x→0

n∑i=1

f(ci) ∆x

Page 4: Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)

. . . . . .

Theorem(TheSecondFundamentalTheoremofCalculus)Suppose f isintegrableon [a,b] and f = F′ foranotherfunction F,then ∫ b

af(x)dx = F(b) − F(a).

Page 5: Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)

. . . . . .

TheIntegralasTotalChange

Anotherwaytostatethistheoremis:∫ b

aF′(x)dx = F(b) − F(a),

or theintegralofaderivativealonganintervalisthetotalchangebetweenthesidesofthatinterval. Thishasmanyramifications:

Page 6: Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)

. . . . . .

TheIntegralasTotalChange

Anotherwaytostatethistheoremis:∫ b

aF′(x)dx = F(b) − F(a),

or theintegralofaderivativealonganintervalisthetotalchangebetweenthesidesofthatinterval. Thishasmanyramifications:

TheoremIf v(t) representsthevelocityofaparticlemovingrectilinearly,then ∫ t1

t0v(t)dt = s(t1) − s(t0).

Page 7: Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)

. . . . . .

TheIntegralasTotalChange

Anotherwaytostatethistheoremis:∫ b

aF′(x)dx = F(b) − F(a),

or theintegralofaderivativealonganintervalisthetotalchangebetweenthesidesofthatinterval. Thishasmanyramifications:

TheoremIf MC(x) representsthemarginalcostofmaking x unitsofaproduct, then

C(x) = C(0) +

∫ x

0MC(q)dq.

Page 8: Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)

. . . . . .

TheIntegralasTotalChange

Anotherwaytostatethistheoremis:∫ b

aF′(x)dx = F(b) − F(a),

or theintegralofaderivativealonganintervalisthetotalchangebetweenthesidesofthatinterval. Thishasmanyramifications:

TheoremIf ρ(x) representsthedensityofathinrodatadistanceof x fromitsend, thenthemassoftherodupto x is

m(x) =

∫ x

0ρ(s)ds.

Page 9: Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)

. . . . . .

Myfirsttableofintegrals∫[f(x) + g(x)] dx =

∫f(x)dx +

∫g(x)dx∫

xn dx =xn+1

n + 1+ C (n ̸= −1)∫

ex dx = ex + C∫sin x dx = − cos x + C∫cos x dx = sin x + C∫sec2 x dx = tan x + C∫

sec x tan x dx = sec x + C∫1

1 + x2dx = arctan x + C

∫cf(x)dx = c

∫f(x)dx∫

1xdx = ln |x| + C∫

ax dx =ax

ln a+ C∫

csc2 x dx = − cot x + C∫csc x cot x dx = − csc x + C∫

1√1− x2

dx = arcsin x + C

Page 10: Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)

. . . . . .

Outline

Recall: TheEvaluationTheorema/k/a2FTC

TheFirstFundamentalTheoremofCalculusTheAreaFunctionStatementandproofof1FTCBiographies

Differentiationoffunctionsdefinedbyintegrals“Contrived”examplesErfOtherapplications

Worksheet

Summary

Page 11: Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)

. . . . . .

Anareafunction

Let f(t) = t3 anddefine g(x) =

∫ x

0f(t)dt. Canweevaluatethe

integralin g(x)?

..0 .x

Dividingtheinterval [0, x] into n pieces

gives ∆x =xnand xi = 0 + i∆x =

ixn.

So

Rn =xn· x

3

n3+

xn· (2x)3

n3+ · · · + x

n· (nx)3

n3

=x4

n4(13 + 23 + 33 + · · · + n3

)=

x4

n4[12n(n + 1)

]2=

x4n2(n + 1)2

4n4→ x4

4

as n → ∞.

Page 12: Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)

. . . . . .

Anareafunction

Let f(t) = t3 anddefine g(x) =

∫ x

0f(t)dt. Canweevaluatethe

integralin g(x)?

..0 .x

Dividingtheinterval [0, x] into n pieces

gives ∆x =xnand xi = 0 + i∆x =

ixn.

So

Rn =xn· x

3

n3+

xn· (2x)3

n3+ · · · + x

n· (nx)3

n3

=x4

n4(13 + 23 + 33 + · · · + n3

)=

x4

n4[12n(n + 1)

]2=

x4n2(n + 1)2

4n4→ x4

4

as n → ∞.

Page 13: Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)

. . . . . .

Anareafunction, continued

So

g(x) =x4

4.

Thismeansthatg′(x) = x3.

Page 14: Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)

. . . . . .

Anareafunction, continued

So

g(x) =x4

4.

Thismeansthatg′(x) = x3.

Page 15: Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)

. . . . . .

Theareafunction

Let f beafunctionwhichisintegrable(i.e., continuousorwithfinitelymanyjumpdiscontinuities)on [a,b]. Define

g(x) =

∫ x

af(t)dt.

I Whenis g increasing?

I Whenis g decreasing?I Overasmallinterval, what’stheaveragerateofchangeof g?

Page 16: Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)

. . . . . .

Theareafunction

Let f beafunctionwhichisintegrable(i.e., continuousorwithfinitelymanyjumpdiscontinuities)on [a,b]. Define

g(x) =

∫ x

af(t)dt.

I Whenis g increasing?I Whenis g decreasing?

I Overasmallinterval, what’stheaveragerateofchangeof g?

Page 17: Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)

. . . . . .

Theareafunction

Let f beafunctionwhichisintegrable(i.e., continuousorwithfinitelymanyjumpdiscontinuities)on [a,b]. Define

g(x) =

∫ x

af(t)dt.

I Whenis g increasing?I Whenis g decreasing?I Overasmallinterval, what’stheaveragerateofchangeof g?

Page 18: Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)

. . . . . .

Theorem(TheFirstFundamentalTheoremofCalculus)Let f beanintegrablefunctionon [a,b] anddefine

g(x) =

∫ x

af(t)dt.

If f iscontinuousat x in (a,b), then g isdifferentiableat x and

g′(x) = f(x).

Page 19: Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)

. . . . . .

Proof.Let h > 0 begivensothat x + h < b. Wehave

g(x + h) − g(x)h

=

1h

∫ x+h

xf(t)dt.

Let Mh bethemaximumvalueof f on [x, x + h], and mh theminimumvalueof f on [x, x + h]. From§5.2wehave

mh · h ≤

∫ x+h

xf(t)dt

≤ Mh · h

So

mh ≤ g(x + h) − g(x)h

≤ Mh.

As h → 0, both mh and Mh tendto f(x). Zappa-dappa.

Page 20: Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)

. . . . . .

Proof.Let h > 0 begivensothat x + h < b. Wehave

g(x + h) − g(x)h

=1h

∫ x+h

xf(t)dt.

Let Mh bethemaximumvalueof f on [x, x + h], and mh theminimumvalueof f on [x, x + h]. From§5.2wehave

mh · h ≤

∫ x+h

xf(t)dt

≤ Mh · h

So

mh ≤ g(x + h) − g(x)h

≤ Mh.

As h → 0, both mh and Mh tendto f(x). Zappa-dappa.

Page 21: Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)

. . . . . .

Proof.Let h > 0 begivensothat x + h < b. Wehave

g(x + h) − g(x)h

=1h

∫ x+h

xf(t)dt.

Let Mh bethemaximumvalueof f on [x, x + h], and mh theminimumvalueof f on [x, x + h]. From§5.2wehave

mh · h ≤

∫ x+h

xf(t)dt

≤ Mh · h

So

mh ≤ g(x + h) − g(x)h

≤ Mh.

As h → 0, both mh and Mh tendto f(x). Zappa-dappa.

Page 22: Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)

. . . . . .

Proof.Let h > 0 begivensothat x + h < b. Wehave

g(x + h) − g(x)h

=1h

∫ x+h

xf(t)dt.

Let Mh bethemaximumvalueof f on [x, x + h], and mh theminimumvalueof f on [x, x + h]. From§5.2wehave

mh · h ≤

∫ x+h

xf(t)dt ≤ Mh · h

So

mh ≤ g(x + h) − g(x)h

≤ Mh.

As h → 0, both mh and Mh tendto f(x). Zappa-dappa.

Page 23: Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)

. . . . . .

Proof.Let h > 0 begivensothat x + h < b. Wehave

g(x + h) − g(x)h

=1h

∫ x+h

xf(t)dt.

Let Mh bethemaximumvalueof f on [x, x + h], and mh theminimumvalueof f on [x, x + h]. From§5.2wehave

mh · h ≤∫ x+h

xf(t)dt ≤ Mh · h

So

mh ≤ g(x + h) − g(x)h

≤ Mh.

As h → 0, both mh and Mh tendto f(x). Zappa-dappa.

Page 24: Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)

. . . . . .

Proof.Let h > 0 begivensothat x + h < b. Wehave

g(x + h) − g(x)h

=1h

∫ x+h

xf(t)dt.

Let Mh bethemaximumvalueof f on [x, x + h], and mh theminimumvalueof f on [x, x + h]. From§5.2wehave

mh · h ≤∫ x+h

xf(t)dt ≤ Mh · h

So

mh ≤ g(x + h) − g(x)h

≤ Mh.

As h → 0, both mh and Mh tendto f(x). Zappa-dappa.

Page 25: Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)

. . . . . .

Proof.Let h > 0 begivensothat x + h < b. Wehave

g(x + h) − g(x)h

=1h

∫ x+h

xf(t)dt.

Let Mh bethemaximumvalueof f on [x, x + h], and mh theminimumvalueof f on [x, x + h]. From§5.2wehave

mh · h ≤∫ x+h

xf(t)dt ≤ Mh · h

So

mh ≤ g(x + h) − g(x)h

≤ Mh.

As h → 0, both mh and Mh tendto f(x). Zappa-dappa.

Page 26: Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)

. . . . . .

MeettheMathematician: JamesGregory

I Scottish, 1638-1675I AstronomerandGeometer

I Conceivedtranscendentalnumbersandfoundevidencethatπ wastranscendental

I Provedageometricversionof1FTC asalemmabutdidn’ttakeitfurther

Page 27: Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)

. . . . . .

MeettheMathematician: IsaacBarrow

I English, 1630-1677I ProfessorofGreek,theology, andmathematicsatCambridge

I Hadafamousstudent

Page 28: Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)

. . . . . .

MeettheMathematician: IsaacNewton

I English, 1643–1727I ProfessoratCambridge(England)

I PhilosophiaeNaturalisPrincipiaMathematicapublished1687

Page 29: Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)

. . . . . .

MeettheMathematician: GottfriedLeibniz

I German, 1646–1716I Eminentphilosopheraswellasmathematician

I Contemporarilydisgracedbythecalculusprioritydispute

Page 30: Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)

. . . . . .

DifferentiationandIntegrationasreverseprocesses

Puttingtogether1FTC and2FTC,wegetabeautifulrelationshipbetweenthetwofundamentalconceptsincalculus.

Iddx

∫ x

af(t)dt = f(x)

I ∫ b

aF′(x)dx = F(b) − F(a).

Page 31: Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)

. . . . . .

DifferentiationandIntegrationasreverseprocesses

Puttingtogether1FTC and2FTC,wegetabeautifulrelationshipbetweenthetwofundamentalconceptsincalculus.

Iddx

∫ x

af(t)dt = f(x)

I ∫ b

aF′(x)dx = F(b) − F(a).

Page 32: Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)

. . . . . .

Outline

Recall: TheEvaluationTheorema/k/a2FTC

TheFirstFundamentalTheoremofCalculusTheAreaFunctionStatementandproofof1FTCBiographies

Differentiationoffunctionsdefinedbyintegrals“Contrived”examplesErfOtherapplications

Worksheet

Summary

Page 33: Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)

. . . . . .

Differentiationofareafunctions

Example

Let g(x) =

∫ x

0t3 dt. Weknow g′(x) = x3. Whatifinsteadwehad

h(x) =

∫ 3x

0t3 dt.

Whatis h′(x)?

SolutionWecanthinkof h asthecomposition g ◦ k, where g(u) =

∫ u

0t3 dt

and k(x) = 3x. Then

h′(x) = g′(k(x))k′(x) = 3(k(x))3 = 3(3x)3 = 81x3.

Page 34: Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)

. . . . . .

Differentiationofareafunctions

Example

Let g(x) =

∫ x

0t3 dt. Weknow g′(x) = x3. Whatifinsteadwehad

h(x) =

∫ 3x

0t3 dt.

Whatis h′(x)?

SolutionWecanthinkof h asthecomposition g ◦ k, where g(u) =

∫ u

0t3 dt

and k(x) = 3x. Then

h′(x) = g′(k(x))k′(x) = 3(k(x))3 = 3(3x)3 = 81x3.

Page 35: Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)

. . . . . .

Example

Let h(x) =

∫ sin2 x

0(17t2 + 4t− 4)dt. Whatis h′(x)?

SolutionWehave

ddx

∫ sin2 x

0(17t2 + 4t− 4)dt

=(17(sin2 x)2 + 4(sin2 x) − 4

)· ddx

sin2 x

=(17 sin4 x + 4 sin2 x− 4

)· 2 sin x cos x

Page 36: Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)

. . . . . .

Example

Let h(x) =

∫ sin2 x

0(17t2 + 4t− 4)dt. Whatis h′(x)?

SolutionWehave

ddx

∫ sin2 x

0(17t2 + 4t− 4)dt

=(17(sin2 x)2 + 4(sin2 x) − 4

)· ddx

sin2 x

=(17 sin4 x + 4 sin2 x− 4

)· 2 sin x cos x

Page 37: Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)

. . . . . .

ErfHere’safunctionwithafunnynamebutanimportantrole:

erf(x) =2√π

∫ x

0e−t2 dt.

Itturnsout erf istheshapeofthebellcurve. Wecan’tfind erf(x),explicitly, butwedoknowitsderivative.

erf′(x) =2√πe−x2 .

Example

Findddx

erf(x2).

SolutionBythechainrulewehave

ddx

erf(x2) = erf′(x2)ddx

x2 =2√πe−(x2)22x =

4√πxe−x4 .

Page 38: Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)

. . . . . .

ErfHere’safunctionwithafunnynamebutanimportantrole:

erf(x) =2√π

∫ x

0e−t2 dt.

Itturnsout erf istheshapeofthebellcurve.

Wecan’tfind erf(x),explicitly, butwedoknowitsderivative.

erf′(x) =2√πe−x2 .

Example

Findddx

erf(x2).

SolutionBythechainrulewehave

ddx

erf(x2) = erf′(x2)ddx

x2 =2√πe−(x2)22x =

4√πxe−x4 .

Page 39: Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)

. . . . . .

ErfHere’safunctionwithafunnynamebutanimportantrole:

erf(x) =2√π

∫ x

0e−t2 dt.

Itturnsout erf istheshapeofthebellcurve. Wecan’tfind erf(x),explicitly, butwedoknowitsderivative.

erf′(x) =

2√πe−x2 .

Example

Findddx

erf(x2).

SolutionBythechainrulewehave

ddx

erf(x2) = erf′(x2)ddx

x2 =2√πe−(x2)22x =

4√πxe−x4 .

Page 40: Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)

. . . . . .

ErfHere’safunctionwithafunnynamebutanimportantrole:

erf(x) =2√π

∫ x

0e−t2 dt.

Itturnsout erf istheshapeofthebellcurve. Wecan’tfind erf(x),explicitly, butwedoknowitsderivative.

erf′(x) =2√πe−x2 .

Example

Findddx

erf(x2).

SolutionBythechainrulewehave

ddx

erf(x2) = erf′(x2)ddx

x2 =2√πe−(x2)22x =

4√πxe−x4 .

Page 41: Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)

. . . . . .

ErfHere’safunctionwithafunnynamebutanimportantrole:

erf(x) =2√π

∫ x

0e−t2 dt.

Itturnsout erf istheshapeofthebellcurve. Wecan’tfind erf(x),explicitly, butwedoknowitsderivative.

erf′(x) =2√πe−x2 .

Example

Findddx

erf(x2).

SolutionBythechainrulewehave

ddx

erf(x2) = erf′(x2)ddx

x2 =2√πe−(x2)22x =

4√πxe−x4 .

Page 42: Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)

. . . . . .

ErfHere’safunctionwithafunnynamebutanimportantrole:

erf(x) =2√π

∫ x

0e−t2 dt.

Itturnsout erf istheshapeofthebellcurve. Wecan’tfind erf(x),explicitly, butwedoknowitsderivative.

erf′(x) =2√πe−x2 .

Example

Findddx

erf(x2).

SolutionBythechainrulewehave

ddx

erf(x2) = erf′(x2)ddx

x2 =2√πe−(x2)22x =

4√πxe−x4 .

Page 43: Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)

. . . . . .

Otherfunctionsdefinedbyintegrals

I Thefuturevalueofanasset:

FV(t) =

∫ ∞

tπ(τ)e−rτ dτ

where π(τ) istheprofitabilityattime τ and r isthediscountrate.

I Theconsumersurplusofagood:

CS(q∗) =

∫ q∗

0(f(q) − p∗)dq

where f(q) isthedemandfunctionand p∗ and q∗ theequilibriumpriceandquantity.

Page 44: Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)

. . . . . .

Outline

Recall: TheEvaluationTheorema/k/a2FTC

TheFirstFundamentalTheoremofCalculusTheAreaFunctionStatementandproofof1FTCBiographies

Differentiationoffunctionsdefinedbyintegrals“Contrived”examplesErfOtherapplications

Worksheet

Summary

Page 45: Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)

. . . . . .

Worksheet

.

.Image: ErickCifuentes

Page 46: Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)

. . . . . .

Outline

Recall: TheEvaluationTheorema/k/a2FTC

TheFirstFundamentalTheoremofCalculusTheAreaFunctionStatementandproofof1FTCBiographies

Differentiationoffunctionsdefinedbyintegrals“Contrived”examplesErfOtherapplications

Worksheet

Summary

Page 47: Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)

. . . . . .

Summary

I FTC linksintegrationanddifferentiationI Whendifferentiatingintegralfunctions, donotforgetthechainrule

I Factsabouttheintegralfunctioncanbegleanedfromtheintegrand