Lesson 22: Optimization I (Section 4 version)

60
. . . . . . Section 4.5 Optimization Problems V63.0121, Calculus I April 7, 2009 Announcements I Quiz 5 is next week, covering Sections 4.1–4.4 I I am moving to WWH 624 sometime next week (April 13th) I Happy Opening Day! . . Image credit: wallyg

description

 

Transcript of Lesson 22: Optimization I (Section 4 version)

Page 1: Lesson 22: Optimization I (Section 4 version)

. . . . . .

Section4.5OptimizationProblems

V63.0121, CalculusI

April7, 2009

Announcements

I Quiz5isnextweek, coveringSections4.1–4.4I I ammovingtoWWH 624sometimenextweek(April13th)I HappyOpeningDay!

..Imagecredit: wallyg

Page 2: Lesson 22: Optimization I (Section 4 version)

. . . . . .

OfficeHoursandotherhelp

Day Time Who/What WhereinWWHM 1:00–2:00 LeingangOH 718/624

5:00–7:00 CurtoPS 517T 1:00–2:00 LeingangOH 718/624

4:00–5:50 CurtoPS 317W 2:00–3:00 LeingangOH 718/624R 9:00–10:00am LeingangOH 718/624F 2:00–4:00 CurtoOH 1310

I ammovingtoWWH 624sometimenextweek(April13th)

Page 3: Lesson 22: Optimization I (Section 4 version)

. . . . . .

Outline

LeadingbyExample

TheTextintheBox

MoreExamples

Page 4: Lesson 22: Optimization I (Section 4 version)

. . . . . .

LeadingbyExample

ExampleWhatistherectangleoffixedperimeterwithmaximumarea?

Solution

I Drawarectangle.

.

.

.ℓ

.w

Page 5: Lesson 22: Optimization I (Section 4 version)

. . . . . .

LeadingbyExample

ExampleWhatistherectangleoffixedperimeterwithmaximumarea?

Solution

I Drawarectangle.

.

.

.ℓ

.w

Page 6: Lesson 22: Optimization I (Section 4 version)

. . . . . .

LeadingbyExample

ExampleWhatistherectangleoffixedperimeterwithmaximumarea?

Solution

I Drawarectangle.

.

.

.ℓ

.w

Page 7: Lesson 22: Optimization I (Section 4 version)

. . . . . .

LeadingbyExample

ExampleWhatistherectangleoffixedperimeterwithmaximumarea?

Solution

I Drawarectangle.

.

.

.ℓ

.w

Page 8: Lesson 22: Optimization I (Section 4 version)

. . . . . .

Solution(Continued)

I Letitslengthbe ℓ anditswidthbe w. Theobjectivefunctionisarea A = ℓw.

I Thisisafunctionoftwovariables, notone. Buttheperimeterisfixed.

I Since p = 2ℓ + 2w, wehave ℓ =p− 2w

2, so

A = ℓw =p− 2w

2·w =

12(p− 2w)(w) =

12pw−w2

I Nowwehave A asafunctionof w alone(p isconstant).I Thenaturaldomainofthisfunctionis [0,p/2] (wewantto

makesure A(w) ≥ 0).

Page 9: Lesson 22: Optimization I (Section 4 version)

. . . . . .

Solution(Continued)

I Letitslengthbe ℓ anditswidthbe w. Theobjectivefunctionisarea A = ℓw.

I Thisisafunctionoftwovariables, notone. Buttheperimeterisfixed.

I Since p = 2ℓ + 2w, wehave ℓ =p− 2w

2, so

A = ℓw =p− 2w

2·w =

12(p− 2w)(w) =

12pw−w2

I Nowwehave A asafunctionof w alone(p isconstant).I Thenaturaldomainofthisfunctionis [0,p/2] (wewantto

makesure A(w) ≥ 0).

Page 10: Lesson 22: Optimization I (Section 4 version)

. . . . . .

Solution(Continued)

I Letitslengthbe ℓ anditswidthbe w. Theobjectivefunctionisarea A = ℓw.

I Thisisafunctionoftwovariables, notone. Buttheperimeterisfixed.

I Since p = 2ℓ + 2w, wehave ℓ =p− 2w

2,

so

A = ℓw =p− 2w

2·w =

12(p− 2w)(w) =

12pw−w2

I Nowwehave A asafunctionof w alone(p isconstant).I Thenaturaldomainofthisfunctionis [0,p/2] (wewantto

makesure A(w) ≥ 0).

Page 11: Lesson 22: Optimization I (Section 4 version)

. . . . . .

Solution(Continued)

I Letitslengthbe ℓ anditswidthbe w. Theobjectivefunctionisarea A = ℓw.

I Thisisafunctionoftwovariables, notone. Buttheperimeterisfixed.

I Since p = 2ℓ + 2w, wehave ℓ =p− 2w

2, so

A = ℓw =p− 2w

2·w =

12(p− 2w)(w) =

12pw−w2

I Nowwehave A asafunctionof w alone(p isconstant).I Thenaturaldomainofthisfunctionis [0,p/2] (wewantto

makesure A(w) ≥ 0).

Page 12: Lesson 22: Optimization I (Section 4 version)

. . . . . .

Solution(Continued)

I Letitslengthbe ℓ anditswidthbe w. Theobjectivefunctionisarea A = ℓw.

I Thisisafunctionoftwovariables, notone. Buttheperimeterisfixed.

I Since p = 2ℓ + 2w, wehave ℓ =p− 2w

2, so

A = ℓw =p− 2w

2·w =

12(p− 2w)(w) =

12pw−w2

I Nowwehave A asafunctionof w alone(p isconstant).

I Thenaturaldomainofthisfunctionis [0,p/2] (wewanttomakesure A(w) ≥ 0).

Page 13: Lesson 22: Optimization I (Section 4 version)

. . . . . .

Solution(Continued)

I Letitslengthbe ℓ anditswidthbe w. Theobjectivefunctionisarea A = ℓw.

I Thisisafunctionoftwovariables, notone. Buttheperimeterisfixed.

I Since p = 2ℓ + 2w, wehave ℓ =p− 2w

2, so

A = ℓw =p− 2w

2·w =

12(p− 2w)(w) =

12pw−w2

I Nowwehave A asafunctionof w alone(p isconstant).I Thenaturaldomainofthisfunctionis [0,p/2] (wewantto

makesure A(w) ≥ 0).

Page 14: Lesson 22: Optimization I (Section 4 version)

. . . . . .

Solution(Concluded)WeusetheClosedIntervalMethodfor A(w) =

12pw−w2 on

[0,p/2].I Attheendpoints, A(0) = A(p/2) = 0.

I Tofindthecriticalpoints, wefinddAdw

=12p− 2w.

I Thecriticalpointsarewhen

0 =12p− 2w =⇒ w =

p4

I Sincethisistheonlycriticalpoint, itmustbethemaximum.

Inthiscase ℓ =p4aswell.

I Wehaveasquare! Themaximalareais A(p/4) = p2/16.

Page 15: Lesson 22: Optimization I (Section 4 version)

. . . . . .

Solution(Concluded)WeusetheClosedIntervalMethodfor A(w) =

12pw−w2 on

[0,p/2].I Attheendpoints, A(0) = A(p/2) = 0.

I Tofindthecriticalpoints, wefinddAdw

=12p− 2w.

I Thecriticalpointsarewhen

0 =12p− 2w =⇒ w =

p4

I Sincethisistheonlycriticalpoint, itmustbethemaximum.

Inthiscase ℓ =p4aswell.

I Wehaveasquare! Themaximalareais A(p/4) = p2/16.

Page 16: Lesson 22: Optimization I (Section 4 version)

. . . . . .

Solution(Concluded)WeusetheClosedIntervalMethodfor A(w) =

12pw−w2 on

[0,p/2].I Attheendpoints, A(0) = A(p/2) = 0.

I Tofindthecriticalpoints, wefinddAdw

=12p− 2w.

I Thecriticalpointsarewhen

0 =12p− 2w =⇒ w =

p4

I Sincethisistheonlycriticalpoint, itmustbethemaximum.

Inthiscase ℓ =p4aswell.

I Wehaveasquare! Themaximalareais A(p/4) = p2/16.

Page 17: Lesson 22: Optimization I (Section 4 version)

. . . . . .

Solution(Concluded)WeusetheClosedIntervalMethodfor A(w) =

12pw−w2 on

[0,p/2].I Attheendpoints, A(0) = A(p/2) = 0.

I Tofindthecriticalpoints, wefinddAdw

=12p− 2w.

I Thecriticalpointsarewhen

0 =12p− 2w =⇒ w =

p4

I Sincethisistheonlycriticalpoint, itmustbethemaximum.

Inthiscase ℓ =p4aswell.

I Wehaveasquare! Themaximalareais A(p/4) = p2/16.

Page 18: Lesson 22: Optimization I (Section 4 version)

. . . . . .

Solution(Concluded)WeusetheClosedIntervalMethodfor A(w) =

12pw−w2 on

[0,p/2].I Attheendpoints, A(0) = A(p/2) = 0.

I Tofindthecriticalpoints, wefinddAdw

=12p− 2w.

I Thecriticalpointsarewhen

0 =12p− 2w =⇒ w =

p4

I Sincethisistheonlycriticalpoint, itmustbethemaximum.

Inthiscase ℓ =p4aswell.

I Wehaveasquare! Themaximalareais A(p/4) = p2/16.

Page 19: Lesson 22: Optimization I (Section 4 version)

. . . . . .

Outline

LeadingbyExample

TheTextintheBox

MoreExamples

Page 20: Lesson 22: Optimization I (Section 4 version)

. . . . . .

TheTextintheBox

1. UnderstandtheProblem. Whatisknown? Whatisunknown? Whataretheconditions?

2. Drawadiagram.

3. IntroduceNotation.

4. Expressthe“objectivefunction” Q intermsoftheothersymbols

5. If Q isafunctionofmorethanone“decisionvariable”, usethegiveninformationtoeliminateallbutoneofthem.

6. Findtheabsolutemaximum(orminimum, dependingontheproblem)ofthefunctiononitsdomain.

Page 21: Lesson 22: Optimization I (Section 4 version)

. . . . . .

TheTextintheBox

1. UnderstandtheProblem. Whatisknown? Whatisunknown? Whataretheconditions?

2. Drawadiagram.

3. IntroduceNotation.

4. Expressthe“objectivefunction” Q intermsoftheothersymbols

5. If Q isafunctionofmorethanone“decisionvariable”, usethegiveninformationtoeliminateallbutoneofthem.

6. Findtheabsolutemaximum(orminimum, dependingontheproblem)ofthefunctiononitsdomain.

Page 22: Lesson 22: Optimization I (Section 4 version)

. . . . . .

TheTextintheBox

1. UnderstandtheProblem. Whatisknown? Whatisunknown? Whataretheconditions?

2. Drawadiagram.

3. IntroduceNotation.

4. Expressthe“objectivefunction” Q intermsoftheothersymbols

5. If Q isafunctionofmorethanone“decisionvariable”, usethegiveninformationtoeliminateallbutoneofthem.

6. Findtheabsolutemaximum(orminimum, dependingontheproblem)ofthefunctiononitsdomain.

Page 23: Lesson 22: Optimization I (Section 4 version)

. . . . . .

TheTextintheBox

1. UnderstandtheProblem. Whatisknown? Whatisunknown? Whataretheconditions?

2. Drawadiagram.

3. IntroduceNotation.

4. Expressthe“objectivefunction” Q intermsoftheothersymbols

5. If Q isafunctionofmorethanone“decisionvariable”, usethegiveninformationtoeliminateallbutoneofthem.

6. Findtheabsolutemaximum(orminimum, dependingontheproblem)ofthefunctiononitsdomain.

Page 24: Lesson 22: Optimization I (Section 4 version)

. . . . . .

TheTextintheBox

1. UnderstandtheProblem. Whatisknown? Whatisunknown? Whataretheconditions?

2. Drawadiagram.

3. IntroduceNotation.

4. Expressthe“objectivefunction” Q intermsoftheothersymbols

5. If Q isafunctionofmorethanone“decisionvariable”, usethegiveninformationtoeliminateallbutoneofthem.

6. Findtheabsolutemaximum(orminimum, dependingontheproblem)ofthefunctiononitsdomain.

Page 25: Lesson 22: Optimization I (Section 4 version)

. . . . . .

TheTextintheBox

1. UnderstandtheProblem. Whatisknown? Whatisunknown? Whataretheconditions?

2. Drawadiagram.

3. IntroduceNotation.

4. Expressthe“objectivefunction” Q intermsoftheothersymbols

5. If Q isafunctionofmorethanone“decisionvariable”, usethegiveninformationtoeliminateallbutoneofthem.

6. Findtheabsolutemaximum(orminimum, dependingontheproblem)ofthefunctiononitsdomain.

Page 26: Lesson 22: Optimization I (Section 4 version)

. . . . . .

Recall: TheClosedIntervalMethodSeeSection4.1

Tofindtheextremevaluesofafunction f on [a,b], weneedto:I Evaluate f atthe endpoints a and bI Evaluate f atthe criticalpoints x whereeither f′(x) = 0 or f isnotdifferentiableat x.

I Thepointswiththelargestfunctionvaluearetheglobalmaximumpoints

I Thepointswiththesmallestormostnegativefunctionvaluearetheglobalminimumpoints.

Page 27: Lesson 22: Optimization I (Section 4 version)

. . . . . .

Recall: TheFirstDerivativeTestSeeSection4.3

Theorem(TheFirstDerivativeTest)Let f becontinuouson [a,b] and c acriticalpointof f in (a,b).

I If f′(x) > 0 on (a, c) and f′(x) < 0 on (c,b), then c isalocalmaximum.

I If f′(x) < 0 on (a, c) and f′(x) > 0 on (c,b), then c isalocalminimum.

I If f′(x) hasthesamesignon (a, c) and (c,b), then c isnotalocalextremum.

Page 28: Lesson 22: Optimization I (Section 4 version)

. . . . . .

SeeSection4.3

Theorem(TheSecondDerivativeTest)Let f, f′, and f′′ becontinuouson [a,b]. Let c bebeapointin(a,b) with f′(c) = 0.

I If f′′(c) < 0, then f(c) isalocalmaximum.I If f′′(c) > 0, then f(c) isalocalminimum.

If f′′(c) = 0, thesecondderivativetestisinconclusive(thisdoesnotmean c isneither; wejustdon’tknowyet).

Page 29: Lesson 22: Optimization I (Section 4 version)

. . . . . .

Whichtousewhen?

CIM 1DT 2DTPro no need for in-

equalitiesgets global ex-trema automati-cally

w o r k s o nnon-closed,non-boundedintervalsonlyonederiva-tive

w o r k s o nnon-closed,non-boundedintervalsno need for in-equalities

Con only for closedbounded inter-vals

UsesinequalitiesMore work atboundary thanCIM

Morederivativesless conclusivethan1DTmore work atboundary thanCIM

Page 30: Lesson 22: Optimization I (Section 4 version)

. . . . . .

Whichtousewhen? Thebottomline

I UseCIM ifitapplies: thedomainisaclosed, boundedinterval

I Ifdomainisnotclosedornotbounded, use2DT ifyouliketotakederivatives, or1DT ifyouliketocomparesigns.

Page 31: Lesson 22: Optimization I (Section 4 version)

. . . . . .

Outline

LeadingbyExample

TheTextintheBox

MoreExamples

Page 32: Lesson 22: Optimization I (Section 4 version)

. . . . . .

AnotherExample

Example(TheBestFencingPlan)A rectangularplotoffarmlandwillbeboundedononesidebyariverandontheotherthreesidesbyasingle-strandelectricfence. With800mofwireatyourdisposal, whatisthelargestareayoucanenclose, andwhatareitsdimensions?

I Known: amountoffenceusedI Unknown: areaenclosedI Objective: maximizeareaI Constraint: fixedfencelength

Page 33: Lesson 22: Optimization I (Section 4 version)

. . . . . .

Solution1. Everybodyunderstand?

2. Drawadiagram.3. Introducenotation: Lengthandwidthare ℓ and w. Lengthof

wireusedis p.4. Q = area = ℓw.5. Since p = ℓ + 2w, wehave ℓ = p− 2w andso

Q(w) = (p− 2w)(w) = pw− 2w2

Thedomainof Q is [0,p/2]

6.dQdw

= p− 4w, whichiszerowhen w =p4.

Q(0) = Q(p/2) = 0, but

Q(p4

)= p · p

4− 2 · p

2

16=

p2

8= 80, 000m2

sothecriticalpointistheabsolutemaximum.

Page 34: Lesson 22: Optimization I (Section 4 version)

. . . . . .

AnotherExample

Example(TheBestFencingPlan)A rectangularplotoffarmlandwillbeboundedononesidebyariverandontheotherthreesidesbyasingle-strandelectricfence. With800mofwireatyourdisposal, whatisthelargestareayoucanenclose, andwhatareitsdimensions?

I Known: amountoffenceusedI Unknown: areaenclosedI Objective: maximizeareaI Constraint: fixedfencelength

Page 35: Lesson 22: Optimization I (Section 4 version)

. . . . . .

AnotherExample

Example(TheBestFencingPlan)A rectangularplotoffarmlandwillbeboundedononesidebyariverandontheotherthreesidesbyasingle-strandelectricfence. With800mofwireatyourdisposal, whatisthelargestareayoucanenclose, andwhatareitsdimensions?

I Known: amountoffenceusedI Unknown: areaenclosed

I Objective: maximizeareaI Constraint: fixedfencelength

Page 36: Lesson 22: Optimization I (Section 4 version)

. . . . . .

AnotherExample

Example(TheBestFencingPlan)A rectangularplotoffarmlandwillbeboundedononesidebyariverandontheotherthreesidesbyasingle-strandelectricfence. With800mofwireatyourdisposal, whatisthelargestareayoucanenclose, andwhatareitsdimensions?

I Known: amountoffenceusedI Unknown: areaenclosedI Objective: maximizeareaI Constraint: fixedfencelength

Page 37: Lesson 22: Optimization I (Section 4 version)

. . . . . .

Solution1. Everybodyunderstand?

2. Drawadiagram.3. Introducenotation: Lengthandwidthare ℓ and w. Lengthof

wireusedis p.4. Q = area = ℓw.5. Since p = ℓ + 2w, wehave ℓ = p− 2w andso

Q(w) = (p− 2w)(w) = pw− 2w2

Thedomainof Q is [0,p/2]

6.dQdw

= p− 4w, whichiszerowhen w =p4.

Q(0) = Q(p/2) = 0, but

Q(p4

)= p · p

4− 2 · p

2

16=

p2

8= 80, 000m2

sothecriticalpointistheabsolutemaximum.

Page 38: Lesson 22: Optimization I (Section 4 version)

. . . . . .

Solution1. Everybodyunderstand?2. Drawadiagram.

3. Introducenotation: Lengthandwidthare ℓ and w. Lengthofwireusedis p.

4. Q = area = ℓw.5. Since p = ℓ + 2w, wehave ℓ = p− 2w andso

Q(w) = (p− 2w)(w) = pw− 2w2

Thedomainof Q is [0,p/2]

6.dQdw

= p− 4w, whichiszerowhen w =p4.

Q(0) = Q(p/2) = 0, but

Q(p4

)= p · p

4− 2 · p

2

16=

p2

8= 80, 000m2

sothecriticalpointistheabsolutemaximum.

Page 39: Lesson 22: Optimization I (Section 4 version)

. . . . . .

Diagram

A rectangularplotoffarmlandwillbeboundedononesidebyariverandontheotherthreesidesbyasingle-strandelectricfence. With800mofwireatyourdisposal, whatisthelargestareayoucanenclose, andwhatareitsdimensions?

.

.

.

.

.w

.ℓ

Page 40: Lesson 22: Optimization I (Section 4 version)

. . . . . .

Solution1. Everybodyunderstand?2. Drawadiagram.

3. Introducenotation: Lengthandwidthare ℓ and w. Lengthofwireusedis p.

4. Q = area = ℓw.5. Since p = ℓ + 2w, wehave ℓ = p− 2w andso

Q(w) = (p− 2w)(w) = pw− 2w2

Thedomainof Q is [0,p/2]

6.dQdw

= p− 4w, whichiszerowhen w =p4.

Q(0) = Q(p/2) = 0, but

Q(p4

)= p · p

4− 2 · p

2

16=

p2

8= 80, 000m2

sothecriticalpointistheabsolutemaximum.

Page 41: Lesson 22: Optimization I (Section 4 version)

. . . . . .

Solution1. Everybodyunderstand?2. Drawadiagram.3. Introducenotation: Lengthandwidthare ℓ and w. Lengthof

wireusedis p.

4. Q = area = ℓw.5. Since p = ℓ + 2w, wehave ℓ = p− 2w andso

Q(w) = (p− 2w)(w) = pw− 2w2

Thedomainof Q is [0,p/2]

6.dQdw

= p− 4w, whichiszerowhen w =p4.

Q(0) = Q(p/2) = 0, but

Q(p4

)= p · p

4− 2 · p

2

16=

p2

8= 80, 000m2

sothecriticalpointistheabsolutemaximum.

Page 42: Lesson 22: Optimization I (Section 4 version)

. . . . . .

Diagram

A rectangularplotoffarmlandwillbeboundedononesidebyariverandontheotherthreesidesbyasingle-strandelectricfence. With800mofwireatyourdisposal, whatisthelargestareayoucanenclose, andwhatareitsdimensions?

.

.

.

.

.w

.ℓ

Page 43: Lesson 22: Optimization I (Section 4 version)

. . . . . .

Diagram

A rectangularplotoffarmlandwillbeboundedononesidebyariverandontheotherthreesidesbyasingle-strandelectricfence. With800mofwireatyourdisposal, whatisthelargestareayoucanenclose, andwhatareitsdimensions?

.

.

.

.

.w

.ℓ

Page 44: Lesson 22: Optimization I (Section 4 version)

. . . . . .

Solution1. Everybodyunderstand?2. Drawadiagram.3. Introducenotation: Lengthandwidthare ℓ and w. Lengthof

wireusedis p.

4. Q = area = ℓw.5. Since p = ℓ + 2w, wehave ℓ = p− 2w andso

Q(w) = (p− 2w)(w) = pw− 2w2

Thedomainof Q is [0,p/2]

6.dQdw

= p− 4w, whichiszerowhen w =p4.

Q(0) = Q(p/2) = 0, but

Q(p4

)= p · p

4− 2 · p

2

16=

p2

8= 80, 000m2

sothecriticalpointistheabsolutemaximum.

Page 45: Lesson 22: Optimization I (Section 4 version)

. . . . . .

Solution1. Everybodyunderstand?2. Drawadiagram.3. Introducenotation: Lengthandwidthare ℓ and w. Lengthof

wireusedis p.4. Q = area = ℓw.

5. Since p = ℓ + 2w, wehave ℓ = p− 2w andso

Q(w) = (p− 2w)(w) = pw− 2w2

Thedomainof Q is [0,p/2]

6.dQdw

= p− 4w, whichiszerowhen w =p4.

Q(0) = Q(p/2) = 0, but

Q(p4

)= p · p

4− 2 · p

2

16=

p2

8= 80, 000m2

sothecriticalpointistheabsolutemaximum.

Page 46: Lesson 22: Optimization I (Section 4 version)

. . . . . .

Solution1. Everybodyunderstand?2. Drawadiagram.3. Introducenotation: Lengthandwidthare ℓ and w. Lengthof

wireusedis p.4. Q = area = ℓw.5. Since p = ℓ + 2w, wehave ℓ = p− 2w andso

Q(w) = (p− 2w)(w) = pw− 2w2

Thedomainof Q is [0,p/2]

6.dQdw

= p− 4w, whichiszerowhen w =p4.

Q(0) = Q(p/2) = 0, but

Q(p4

)= p · p

4− 2 · p

2

16=

p2

8= 80, 000m2

sothecriticalpointistheabsolutemaximum.

Page 47: Lesson 22: Optimization I (Section 4 version)

. . . . . .

Solution1. Everybodyunderstand?2. Drawadiagram.3. Introducenotation: Lengthandwidthare ℓ and w. Lengthof

wireusedis p.4. Q = area = ℓw.5. Since p = ℓ + 2w, wehave ℓ = p− 2w andso

Q(w) = (p− 2w)(w) = pw− 2w2

Thedomainof Q is [0,p/2]

6.dQdw

= p− 4w, whichiszerowhen w =p4.

Q(0) = Q(p/2) = 0, but

Q(p4

)= p · p

4− 2 · p

2

16=

p2

8= 80, 000m2

sothecriticalpointistheabsolutemaximum.

Page 48: Lesson 22: Optimization I (Section 4 version)

. . . . . .

Solution1. Everybodyunderstand?2. Drawadiagram.3. Introducenotation: Lengthandwidthare ℓ and w. Lengthof

wireusedis p.4. Q = area = ℓw.5. Since p = ℓ + 2w, wehave ℓ = p− 2w andso

Q(w) = (p− 2w)(w) = pw− 2w2

Thedomainof Q is [0,p/2]

6.dQdw

= p− 4w, whichiszerowhen w =p4.

Q(0) = Q(p/2) = 0, but

Q(p4

)= p · p

4− 2 · p

2

16=

p2

8= 80, 000m2

sothecriticalpointistheabsolutemaximum.

Page 49: Lesson 22: Optimization I (Section 4 version)

. . . . . .

Solution1. Everybodyunderstand?2. Drawadiagram.3. Introducenotation: Lengthandwidthare ℓ and w. Lengthof

wireusedis p.4. Q = area = ℓw.5. Since p = ℓ + 2w, wehave ℓ = p− 2w andso

Q(w) = (p− 2w)(w) = pw− 2w2

Thedomainof Q is [0,p/2]

6.dQdw

= p− 4w, whichiszerowhen w =p4.

Q(0) = Q(p/2) = 0, but

Q(p4

)= p · p

4− 2 · p

2

16=

p2

8= 80, 000m2

sothecriticalpointistheabsolutemaximum.

Page 50: Lesson 22: Optimization I (Section 4 version)

. . . . . .

Yourturn

Example(Theshortestfence)A 216m2 rectangularpeapatchistobeenclosedbyafenceanddividedintotwoequalpartsbyanotherfenceparalleltooneofitssides. Whatdimensionsfortheouterrectanglewillrequirethesmallesttotallengthoffence? Howmuchfencewillbeneeded?

SolutionLetthelengthandwidthofthepeapatchbe ℓ and w. Theamountoffenceneededis f = 2ℓ + 3w. Since ℓw = A, aconstant, wehave

f(w) = 2Aw

+ 3w.

Thedomainisallpositivenumbers.

Page 51: Lesson 22: Optimization I (Section 4 version)

. . . . . .

Yourturn

Example(Theshortestfence)A 216m2 rectangularpeapatchistobeenclosedbyafenceanddividedintotwoequalpartsbyanotherfenceparalleltooneofitssides. Whatdimensionsfortheouterrectanglewillrequirethesmallesttotallengthoffence? Howmuchfencewillbeneeded?

SolutionLetthelengthandwidthofthepeapatchbe ℓ and w. Theamountoffenceneededis f = 2ℓ + 3w. Since ℓw = A, aconstant, wehave

f(w) = 2Aw

+ 3w.

Thedomainisallpositivenumbers.

Page 52: Lesson 22: Optimization I (Section 4 version)

. . . . . .

.

. .

.ℓ

.w

f = 2ℓ + 3w A = ℓw ≡ 216

Page 53: Lesson 22: Optimization I (Section 4 version)

. . . . . .

Solution(Continued)Weneedtofindtheminimumvalueof f(w) =

2Aw

+ 3w on

(0,∞).

I Wehavedfdw

= −2Aw2 + 3

whichiszerowhen w =

√2A3.

I Since f′′(w) = 4Aw−3, whichispositiveforallpositive w, thecriticalpointisaminimum, infacttheglobalminimum.

I Sotheareaisminimizedwhen w =

√2A3

= 12 and

ℓ =Aw

=

√3A2

= 18. Theamountoffenceneededis

f

(√2A3

)= 2·

√2A2

+3

√2A3

= 2√6A = 2

√6 · 216 = 72m

Page 54: Lesson 22: Optimization I (Section 4 version)

. . . . . .

Solution(Continued)Weneedtofindtheminimumvalueof f(w) =

2Aw

+ 3w on

(0,∞).I Wehave

dfdw

= −2Aw2 + 3

whichiszerowhen w =

√2A3.

I Since f′′(w) = 4Aw−3, whichispositiveforallpositive w, thecriticalpointisaminimum, infacttheglobalminimum.

I Sotheareaisminimizedwhen w =

√2A3

= 12 and

ℓ =Aw

=

√3A2

= 18. Theamountoffenceneededis

f

(√2A3

)= 2·

√2A2

+3

√2A3

= 2√6A = 2

√6 · 216 = 72m

Page 55: Lesson 22: Optimization I (Section 4 version)

. . . . . .

Solution(Continued)Weneedtofindtheminimumvalueof f(w) =

2Aw

+ 3w on

(0,∞).I Wehave

dfdw

= −2Aw2 + 3

whichiszerowhen w =

√2A3.

I Since f′′(w) = 4Aw−3, whichispositiveforallpositive w, thecriticalpointisaminimum, infacttheglobalminimum.

I Sotheareaisminimizedwhen w =

√2A3

= 12 and

ℓ =Aw

=

√3A2

= 18. Theamountoffenceneededis

f

(√2A3

)= 2·

√2A2

+3

√2A3

= 2√6A = 2

√6 · 216 = 72m

Page 56: Lesson 22: Optimization I (Section 4 version)

. . . . . .

Solution(Continued)Weneedtofindtheminimumvalueof f(w) =

2Aw

+ 3w on

(0,∞).I Wehave

dfdw

= −2Aw2 + 3

whichiszerowhen w =

√2A3.

I Since f′′(w) = 4Aw−3, whichispositiveforallpositive w, thecriticalpointisaminimum, infacttheglobalminimum.

I Sotheareaisminimizedwhen w =

√2A3

= 12 and

ℓ =Aw

=

√3A2

= 18. Theamountoffenceneededis

f

(√2A3

)= 2·

√2A2

+3

√2A3

= 2√6A = 2

√6 · 216 = 72m

Page 57: Lesson 22: Optimization I (Section 4 version)

. . . . . .

ExampleA Normanwindowhastheoutlineofasemicircleontopofarectangle. Supposethereis 8 + 2π feetofwoodtrimavailable.Findthedimensionsoftherectangleandsemicirclethatwillmaximizetheareaofthewindow.

.

AnswerThedimensionsare4ftby2ft.

Page 58: Lesson 22: Optimization I (Section 4 version)

. . . . . .

ExampleA Normanwindowhastheoutlineofasemicircleontopofarectangle. Supposethereis 8 + 2π feetofwoodtrimavailable.Findthedimensionsoftherectangleandsemicirclethatwillmaximizetheareaofthewindow.

.

AnswerThedimensionsare4ftby2ft.

Page 59: Lesson 22: Optimization I (Section 4 version)

. . . . . .

SolutionLet h and w betheheightandwidthofthewindow. Wehave

L = 2h + w +π

2w A = wh +

π

2

(w2

)2If L isfixedtobe 8 + 2π, wehave

h =16 + 4π − 2w− πw

4,

so

A =w4

(16 + 4π − 2w− πw) +π

8w2 = (π + 4)w−

(12

8

)w2.

So A′ = (π + 4)w−(1 +

π

4

), whichiszerowhen

w =π + 41 + π

2= 4 ft. Thedimensionsare4ftby2ft.

Page 60: Lesson 22: Optimization I (Section 4 version)

. . . . . .

Summary

I RememberthechecklistI Askyourself: whatistheobjective?I Rememberyourgeometry:

I similartrianglesI righttrianglesI trigonometricfunctions