Lectures on · Growth and amenability 3.1. Bounded geometry 3.2. Growth 3.3. Amenable spaces 3.4....

12

Transcript of Lectures on · Growth and amenability 3.1. Bounded geometry 3.2. Growth 3.3. Amenable spaces 3.4....

Page 1: Lectures on · Growth and amenability 3.1. Bounded geometry 3.2. Growth 3.3. Amenable spaces 3.4. Examples of amenable and nonamenable spaces 3.5. Amenable groups 3.6. F0lner's Theorem
Page 2: Lectures on · Growth and amenability 3.1. Bounded geometry 3.2. Growth 3.3. Amenable spaces 3.4. Examples of amenable and nonamenable spaces 3.5. Amenable groups 3.6. F0lner's Theorem

Lectures o n Coarse Geometr y

http://dx.doi.org/10.1090/ulect/031

Page 3: Lectures on · Growth and amenability 3.1. Bounded geometry 3.2. Growth 3.3. Amenable spaces 3.4. Examples of amenable and nonamenable spaces 3.5. Amenable groups 3.6. F0lner's Theorem

University

LECTURE Series

Volume 3 1

Lectures o n Coarse Geometr y

John Ro e

American Mathematica l Societ y Providence, Rhod e Islan d

Page 4: Lectures on · Growth and amenability 3.1. Bounded geometry 3.2. Growth 3.3. Amenable spaces 3.4. Examples of amenable and nonamenable spaces 3.5. Amenable groups 3.6. F0lner's Theorem

EDITORIAL COMMITTE E Jer ry L . Bon a (Chair ) Eri c M . Friedlande r Nigel J . Hitchi n Pe te r Landwebe r

2000 Mathematics Subject Classification. P r i m a r y 20F65 , 51K05 , 53C24 , 46L85 , 54E15 .

For addi t iona l informatio n an d upda te s o n thi s book , visi t w w w . a m s . o r g / b o o k p a g e s / u l e c t - 3 1

Library o f Congres s Cataloging-in-Publicat io n Dat a

Roe, John , 1959 -Lectures o n coars e geometr y / Joh n Roe .

p. cm . — (Universit y lectur e series , ISS N 1047-399 8 ; v. 31 ) Includes bibliographica l references . ISBN 0-8218-3332- 4 (alk . paper ) 1. Metri c spaces . 2 . Algebrai c topology . I . Title : Coars e geometry . II . Title . III . Univer -

sity lectur e serie s (Providence , R . I. ) ; 31.

QA611.28.R64 200 3 514/.325—dc22 200305238 5

Copying an d reprinting . Individua l reader s o f thi s publication , an d nonprofi t librarie s acting fo r them , ar e permitte d t o mak e fai r us e o f th e material , suc h a s t o cop y a chapte r fo r us e in teachin g o r research . Permissio n i s grante d t o quot e brie f passage s fro m thi s publicatio n i n reviews, provide d th e customar y acknowledgmen t o f th e sourc e i s given .

Republication, systemati c copying , o r multipl e reproductio n o f any materia l i n thi s publicatio n is permitte d onl y unde r licens e fro m th e America n Mathematica l Society . Request s fo r suc h permission shoul d b e addresse d t o th e Acquisition s Department , America n Mathematica l Society , 201 Charle s Street , Providence , Rhod e Islan d 02904-2294 , USA . Request s ca n als o b e mad e b y e-mail t o [email protected] .

© 200 3 b y th e author . Al l right s reserved . Printed i n th e Unite d State s o f America .

@ Th e pape r use d i n thi s boo k i s acid-fre e an d fall s withi n th e guideline s established t o ensur e permanenc e an d durability .

Visit th e AM S hom e pag e a t h t t p : //www. ams. org/

10 9 8 7 6 5 4 3 2 1 5 1 4 1 3 1 2 1 1 1 0

Page 5: Lectures on · Growth and amenability 3.1. Bounded geometry 3.2. Growth 3.3. Amenable spaces 3.4. Examples of amenable and nonamenable spaces 3.5. Amenable groups 3.6. F0lner's Theorem

Contents

Preface

Chapter 1 . Metri c Space s 1.1. Legendr e o n hyperboli c geometr y 1.2. Metri c space s an d lengt h space s 1.3. Th e coars e perspectiv e o n metri c space s 1.4. Group s an d leave s 1.5. Tree s an d complexe s 1.6. Hyperboli c spac e 1.7. Nilpoten t example s — Heisenber g grou p

Chapter 2 . Coars e Space s 2.1. Th e abstrac t notio n o f coarse structur e 2.2. Topologica l coars e structur e 2.3. Th e Higso n coron a 2.4. Metrizatio n o f coars e structure s 2.5. Hyperbolizatio n

Chapter 3 . Growt h an d amenabilit y 3.1. Bounde d geometr y 3.2. Growt h 3.3. Amenabl e space s 3.4. Example s o f amenabl e an d nonamenabl e space s 3.5. Amenabl e group s 3.6. F0lner' s Theore m 3.7. Amenabilit y an d analysi s

Chapter 4 . Translatio n Algebra s 4.1. Translatio n Algebra s 4.2. Amenabilit y an d th e Translatio n Algebr a 4.3. Finitenes s o f Grou p Algebra s 4.4. Translatio n C*-Algebra s 4.5. Translatio n Algebra s a s Crosse d Product s

Chapter 5 . Coars e Algebrai c Topolog y 5.1. Coars e cohomolog y theor y 5.2. Produc t structur e o n coars e theor y 5.3. Computatio n o f coars e cohomolog y

vii

1 1 3 5 7

11 13 18

21 21 26 29 33 35

39 39 42 44 47 51 55 58

59 59 60 63 66 68

71 71 76 78

V

Page 6: Lectures on · Growth and amenability 3.1. Bounded geometry 3.2. Growth 3.3. Amenable spaces 3.4. Examples of amenable and nonamenable spaces 3.5. Amenable groups 3.6. F0lner's Theorem

vi CONTENT S

5.4. Covers , nerve s an d metrizatio n 8 0 5.5. Coars e homolog y theorie s 8 2 5.6. Th e Coars e Baum–Conne s conjectur e 8 4

Chapter 6 . Coars e Negativ e Curvatur e 8 7 6.1. Curvatur e condition s 8 7 6.2. Th e Rip s propert y an d Gromo v hyperbolicit y 8 8 6.3. Controllin g quasigeodesic s 9 2 6.4. Th e Gromo v boundar y o f a hyperboli c spac e 9 3 6.5. Bolicit y 9 7

Chapter 7 . Limit s o f Metri c Space s 9 9 7.1. Convergenc e o f metri c space s 9 9 7.2. Th e rescale d limi t o f metric space s 10 1 7.3. Group s o f polynomial growt h 10 4 7.4. Ultralimit s 10 5 7.5. Asymptoti c Cone s 10 7

Chapter 8 . Rigidit y 11 1 8.1. Wha t i s rigidity? 111 8.2. Th e quasi-isometr y grou p o f hyperboli c spac e 11 2 8.3. Proo f o f Mostow Rigidit y 11 7 8.4. Quasi-Isometri c Rigidit y Fo r Product s o f Hyperboli c Space s 12 1

Chapter 9 . Asymptoti c Dimensio n 12 9 9.1. Th e asymptoti c dimensio n o f a coarse spac e 12 9 9.2. Compositio n propertie s o f asymptoti c dimensio n 13 2 9.3. Mor e Example s 13 6 9.4. Analyti c implication s o f finit e asymptoti c dimensio n 13 9

Chapter 10 . Groupoid s an d coars e geometr y 14 1 10.1. Reminder s abou t topologica l groupoid s 14 1 10.2. Th e pai r produc t an d th e Stone-Cec h boundar y 14 3 10.3. Th e translatio n groupoi d o f a coarse spac e 14 5 10.4. Translatio n groupoi d an d translatio n algebr a 14 8

Chapter 11 . Coars e Embeddabilit y 15 1 11.1. Coars e embeddin g 15 1 11.2. Kernel s an d embedding s i n Hilber t spac e 15 3 11.3. Embeddabilit y an d Propert y T 15 7 11.4. Propert y T an d coars e equivalenc e 16 2 11.5. Propert y A and exactnes s fo r grou p C*-algebra s 16 5

Bibliography 173

Page 7: Lectures on · Growth and amenability 3.1. Bounded geometry 3.2. Growth 3.3. Amenable spaces 3.4. Examples of amenable and nonamenable spaces 3.5. Amenable groups 3.6. F0lner's Theorem

Preface

In the spring of 2002 I gave a series of graduate lectures a t Pen n Stat e on 'coars e geometry'. Thes e ar e th e edite d lectur e note s fro m tha t course . Th e intentio n wa s to discus s variou s aspect s o f the theor y o f 'larg e scal e structures ' o n spaces , wit h a particular focu s on the notions of asymptotic dimension an d uniform embeddabilit y into Hilber t space , whic h hav e recentl y prove d o f significanc e fo r th e Noviko v conjecture. O n the othe r hand , s o far a s is consistent wit h th e precedin g objective , the study o f C*-algebras arisin g from coars e geometry has been de-emphasized ; thi s has alread y bee n writte n abou t a t lengt h elsewher e [59] .

The first fe w chapters of the book are devoted to a general perspective on 'coars e structures' whic h was first se t ou t i n the pape r [34] . Thi s notion ha s the advantag e of including unde r on e heading man y o f the differen t notion s o f 'control ' tha t hav e been use d b y topologist s (fo r exampl e [2]) ; an d eve n whe n onl y metri c coars e structures ar e i n view , th e abstrac t framewor k bring s th e sam e simplificatio n a s does the passage from epsilon s and delta s to open set s when speaking o f continuity . In thi s mor e genera l contex t on e ca n stil l discus s idea s lik e growth , amenability , and coars e cohomology , an d thes e ar e addresse d i n chapter s 3 through 5 .

The middl e sectio n o f th e note s review s notion s o f negativ e curvatur e an d rigidity. Moder n interest i n large scale geometry derives in large part fro m Mostow' s rigidity theorem , wit h it s crucia l insigh t tha t th e coars e structur e o f hyperboli c space determines the quasiconformal structur e o f the boundary, an d from Gromov' s subsequent 'larg e scale ' renditio n o f th e crucia l propertie s o f negativel y curve d spaces. Ther e ar e man y excellen t exposition s o f thi s materia l an d ou r accoun t i s brief i n places .

In the fina l section s we discuss recent result s o n asymptoti c dimensio n (mostl y due t o Bel l an d Dranishnikov ) an d unifor m embeddin g int o Hilber t space . W e also tak e th e opportunit y t o revie w th e beautifu l constructio n o f Skandalis , T u and Y u [62 ] whic h allow s on e t o encod e th e larg e scal e structur e o f a (bounde d geometry) spac e b y mean s o f a suitable groupoid .

The larg e scal e geometr y o f discrete groups i s a beautifu l an d activ e are a o f research, an d i n thes e note s w e barel y scratc h it s surface . Th e reade r wh o want s to lear n mor e abou t geometri c grou p theor y i s referred t o th e book s [13 , 25 , 17] .

I am grateful t o the Nationa l Scienc e Foundation fo r thei r suppor t unde r grant s DMS-9800765 an d DMS-0100464 .

John Ro e

Page 8: Lectures on · Growth and amenability 3.1. Bounded geometry 3.2. Growth 3.3. Amenable spaces 3.4. Examples of amenable and nonamenable spaces 3.5. Amenable groups 3.6. F0lner's Theorem

This page intentionally left blank

Page 9: Lectures on · Growth and amenability 3.1. Bounded geometry 3.2. Growth 3.3. Amenable spaces 3.4. Examples of amenable and nonamenable spaces 3.5. Amenable groups 3.6. F0lner's Theorem

Bibliography

C. Anantharaman-Delaroch e an d J . Renault . Amenable groupoids, volum e 3 6 o f Monogra-phies de L'Enseignement Mathimatique [Monographs of L'Enseignement Mathematique]. L'Enseignement Mathematique , Geneva , 2000 . Wit h a forewor d b y George s Skandali s an d Appendix B b y E . Germain . D.R. Anderson , F . Connolly , S.C . Ferry , an d E.K . Pedersen . Algebrai c K-theor y wit h continuous contro l a t infinity . Journal of Pure and Applied Algebra, 94:25-47 , 1994 . Pere Ara , Kevi n C . O'Meara , an d Frances c Perera . Stabl e finiteness o f group rings in arbitrar y characteristic. Adv. Math., 170(2):224-238 , 2002 . O. Attie , J . Block , an d S . Weinberger . Characteristi c classe s an d distortio n o f diffeomor -phisms. Journal of the American Mathematical Society, 5:919-921 , 1992 . M. E . B . Bekka , P.-A . Cherix , an d A . Valette . Prope r afnn e isometri c action s o f amenabl e groups. I n Novikov conjectures, index theorems and rigidity, Vol. 2 (Oberwolfach, 1993), volume 22 7 o f London Math. Soc. Lecture Note Ser., page s 1-4 . Cambridg e Univ . Press , Cambridge, 1995 . M. E . B . Bekk a an d A . Valette . Kazhdan' s propert y (T ) an d amenabl e representations . Math. Z., 212(2):293-299 , 1993 . G. Bel l an d A . Dranishnikov . O n asymptoti c dimensio n o f groups . Algebraic and Geometric Topology, 1:57-71 , 2001 . G. Bel l an d A . Dranishnikov . O n asymptoti c dimensio n o f group s actin g o n trees . Preprint , 2002. Y. Benyamin i an d J . Lindenstrauss . Geometric Nonlinear Functional Analysis, volum e 4 8 of Colloquium Publications. America n Mathematica l Society , Providence , R.I. , 2000 . J. Bloc k an d S . Weinberger . Aperiodi c tilings , positiv e scala r curvature , an d amenabilit y o f spaces. Journal of the American Mathematical Society, 5:907-920 , 1992 . M. Bon k an d O . Schramm . Embedding s o f Gromo v hyperboli c spaces . Geometric and Functional Analysis, 10:266-306 , 2000 . R. Bot t an d L.W . Tu . Differential Forms in Algebraic Topology, volum e 8 2 of Graduate Texts in Mathematics. Springer-Verlag , Ne w York-Heidelberg-Berlin , 1982 . M. R . Bridso n an d A . Haefliger . Metric Spaces of Non-Positive Curvature. Springer-Verlag , New York-Heidelberg-Berlin , 2000 . Matthew G . Brin . Th e chameleo n group s o f Richar d J . Thompson : automorphism s an d dynamics. Inst. Hautes Etudes Sci. Publ. Math., 84:5-33 , 1996 . Michelle Buche r an d Ander s Karlsson . O n th e definitio n o f boli c spaces . Expositiones Math-ematicae, 20(3):269-277 , 2002 . Pierre-Alain Cherix , Michae l Cowling , Pau l Jolissaint , Pierr e Julg , an d Alai n Valette . Groups with the Haagerup property, volum e 19 7 o f Progress in Mathematics. Birkhause r Verlag , Basel, 2001 . P. d e l a Harpe . Topics in Geometric Group Theory. Universit y o f Chicag o Press , 2000 . P. d e l a Harp e an d A . Valette . L a propriet e (T ) d e Kazhda n pou r le s groupe s localemen t compacts. Asterisque, 175 , 1989 . C. H . Dowker . Topolog y o f metri c complexes . Amer. J. Math., 74:555-577 , 1952 . D.B.A. Epstein . Ends . I n M.K . Fort , editor , Topology of 3-Manifolds and Related Topics, pages 110-117 . Prentice-Hall , 1962 . Alex Furman . Gromov' s measur e equivalenc e an d rigidit y o f highe r ran k lattices . Ann. of Math. (2), 150(3):1059-1081 , 1999 . E. Ghy s an d P . d e l a Harpe . Sur les Groupes Hyperboliques d'apres Mikhael Gromov, volume 8 3 o f Progress in Mathematics. Birkhauser , Basel , 1990 .

173

Page 10: Lectures on · Growth and amenability 3.1. Bounded geometry 3.2. Growth 3.3. Amenable spaces 3.4. Examples of amenable and nonamenable spaces 3.5. Amenable groups 3.6. F0lner's Theorem

174 BIBLIOGRAPH Y

[23] J . Gray . Ideas of Space: Euclidean, Noneuclidean, and Relativistic. Oxfor d Universit y Press , 1988.

[24] M . Gromov . Hyperboli c groups . I n S.M . Gersten , editor , Essays in Group Theory, page s 75 -263. Springer-Verlag , Ne w York-Heidelberg-Berlin , 1987 . Mathematica l Science s Researc h Institute Publication s 8 .

[25] M . Gromov . Asymptoti c invariant s fo r infinit e groups . I n G.A . Nibl o an d M.A . Roller , editors, Geometric Group Theory, volum e 18 2 of LMS Lecture Notes, page s 1-295 . Cambridg e University Press , Cambridge , 1993 .

[26] M . Gromov . Metric structures for Riemannian and non-Riemannian spaces, volum e 15 2 o f Progress in Mathematics. Birkhause r Bosto n Inc. , Boston , MA , 1999 . Base d o n th e 198 1 French origina l [M R 85e:53051] , Wit h appendice s b y M . Katz , P . Pans u an d S . Semmes , Translated fro m th e Frenc h b y Sea n Michae l Bates .

[27] M . Gromov . Space s an d questions . Geom. Fund. Anal, Specia l Volume , Par t 1:118-161 , 2000. GAF A 200 0 (Te l Aviv , 1999) .

[28] M . Gromo v an d P . Pansu . Rigidit y o f lattices: a n introduction . I n Geometric topology: recent developments (Montecatini Terme, 1990), volum e 150 4 o f Lecture Notes in Math., page s 39-137. Springer , Berlin , 1991 .

[29] Mikhae l Gromov . Group s o f polynomia l growt h an d expandin g maps . Inst. Hautes Etudes Sci. Publ. Math., 53:53-73 , 1981.

[30] Eri k Guentne r an d Jerom e Kaminker . Addendu m to : "Exactnes s an d th e Noviko v conjec -ture". Topology, 41(2):419-420 , 2002 .

[31] Eri k Guentne r an d Jerom e Kaminker . Exactnes s an d th e Noviko v conjecture . Topology, 41(2):411-418, 2002 .

[32] Uff e Haagerup . A n exampl e o f a nonnuclea r C*-algebra , whic h ha s th e metri c approximatio n property. Invent. Math., 50(3):279-293 , 1978/79 .

[33] N . Higson , V . Lafforgue , an d G . Skandalis . Counterexample s t o th e Baum-Conne s conjecture . Geom. Fund. Anal, 12(2):330-354 , 2002 .

[34] N . Higson , E.K . Pedersen , an d J . Roe . C*-algebra s an d controlle d topology . K-Theory, 11:209-239, 1997 .

[35] N . Higso n an d J . Roe . Th e Baum-Conne s conjectur e i n coars e geometry . I n S . Ferry , A. Ranicki , an d J . Rosenberg , editors , Proceedings of the 1993 Oberwolfach Conference on the Novikov Conjecture, volum e 22 7 of LMS Lecture Notes, page s 227-254 . Cambridge Universit y Press, Cambridge , 1995 .

[36] N . Higso n an d J . Roe . Analytic K-Homology. Oxfor d Mathematica l Monographs . Oxfor d University Press , Oxford , 2000 .

[37] N . Higson , J . Roe , an d G . Yu . A coars e Mayer-Vietori s principle . Mathematical Proceedings of the Cambridge Philosophical Society, 114:85-97 , 1993 .

[38] C.H . Houghton . End s o f group s an d th e associate d first cohomolog y groups . Journal of the London Mathematical Society, 6:81-92 , 1972 .

[39] W . Hurewic z an d H . Wallman . Dimension Theory. Princeto n Universit y Press , Princeton , N.J., 1941 .

[40] J . Vaisala . Lectures on n-dimensional quasiconformal mappings, volum e 12 9 of Lecture Notes in Mathematics. Spinge r Verlag , 1971 .

[41] Michae l Kapovich , Bruc e Kleiner , an d Bernhar d Leeb . Quasi-isometrie s an d th e d e Rha m decomposition. Topology, 37(6):1193-1211 , 1998 .

[42] G.G . Kasparov . Topologica l invariant s o f ellipti c operator s I : K-homology . Mathematics of the USSR — Izvestija, 9:751-792 , 1975 .

[43] G.G . Kasparo v an d G . Skandalis . Groupe s "boliques " e t conjectur e d e Novikov . C. R. Acad. Sci. Paris Sir. I Math., 319(8):815-820 , 1994 .

[44] Harr y Kesten . Ful l Banac h mea n value s o n countabl e groups . Math. Scand., 7:146-156 , 1959 . [45] Harr y Kesten . Symmetri c rando m walk s o n groups . Trans. Amer. Math. Soc, 92:336-354 ,

1959. [46] Bruc e Kleine r an d Bernhar d Leeb . Rigidit y o f quasi-isometrie s fo r symmetri c space s an d

Euclidean buildings . Inst. Hautes Etudes Sci. Publ. Math., 86:115-19 7 (1998) , 1997 . [47] A . Lubotzky . Discrete Groups, Expanding Graphs and Invariant Measures, volum e 12 5 o f

Progress in Mathematics. Birkhauser , Basel-Boston-Berlin , 1994 . [48] J.W . Milnor . O n axiomati c homolog y theory . Pacific Journal of Mathematics, 12:337-341 ,

1962.

Page 11: Lectures on · Growth and amenability 3.1. Bounded geometry 3.2. Growth 3.3. Amenable spaces 3.4. Examples of amenable and nonamenable spaces 3.5. Amenable groups 3.6. F0lner's Theorem

BIBLIOGRAPHY 175

J.W. Milnor . A not e o n curvatur e an d th e fundamenta l group . Journal of Differential Geometry, 2:1-7 , 1968 . I. Mineyev . Straightenin g an d bounde d cohomolog y o f hyperboli c groups . Geom. Fund. Anal, ll(4):807-839 , 2001 . Igor Mineye v an d Guolian g Yu . Th e Baum-Conne s conjectur e fo r hyperboli c groups . Invent. Math., 149(1):97-122 , 2002 . G.D. Mostow . Strong Rigidity of Locally Symmetric Spaces, volum e 7 8 o f Annals of Mathe-matics Studies. Princeto n Universit y Press , Princeton , N.J. , 1973 . Narutaka Ozawa . Amenabl e action s an d exactnes s fo r discret e groups . C. R. Acad. Sci. Paris Sir. I Math., 330(8):691-695 , 2000 . Pierre Pansu . Metrique s d e Carnot-Caratheodor y e t quasiisometrie s de s espace s symetrique s de ran g un . Ann. of Math. (2), 129(l):l-60 , 1989 . W.L. Paschke . K-theor y fo r commutant s i n th e Calki n algebra . Pacific Journal of Mathemat-ics, 95:427-437 , 1981 . G.K. Pedersen . C* -algebras and their Automorphism Groups. Academi c Press , Boston , 1979 . J. Roe . A n inde x theore m o n ope n manifold s I . Journal of Differential Geometry, 27:87-113 , 1988. J. Roe . Coars e cohomolog y an d inde x theor y o n complet e Riemannia n manifolds . Memoirs of the American Mathematical Society, 497 , 1993 . J. Roe . Index Theory, Coarse Geometry, and the Topology of Manifolds, volum e 9 0 of CBMS Conference Proceedings. America n Mathematica l Society , Providence , R.I. , 1996 . W. Rudin . Functional Analysis. McGraw-Hill , Ne w York , 1973 . J.-P. Serre . Trees. Springer-Verlag , Ne w York-Heidelberg-Berlin , 1980 . G. Skandalis , J.-L . Tu , an d G . Yu . Coars e Baum-Conne s conjectur e an d groupoids . Topology, 41:807-834, 2002 . E. Spanier . Algebraic Topology. McGraw-Hill , Ne w York , 1966 . Elias M . Stein . Singular integrals and differentiability properties of functions. Princeto n Mathematical Series , No . 30 . Princeto n Universit y Press , Princeton , N.J. , 1970 . D. Sullivan . Hyperboli c geometr y an d homeomorphisms . I n J.C . Cantrell , editor , Geometric Topology, page s 543-555 , Boston , 1979 . Academi c Press . A.S. Svarc . A volum e invarian t o f coverings . Doklady Akad. Nauk. SSR, 105:32-34 , 1955 . Pekka Tukia . Quasiconforma l extensio n o f quasisymmetri c map s compatibl e wit h a Mobiu s group. Acta Mathematica, 154:153-193 , 1985 . L. va n de n Drie s an d A . J . Wilkie . Gromov' s theore m o n group s o f polynomia l growt h an d elementary logic . J. Algebra, 89(2):349-374 , 1984 . S. Wassermann . Exact C*-algebras and related topics. Seou l Nationa l Universit y Researc h Institute o f Mathematic s Globa l Analysi s Researc h Center , Seoul , 1994 . Nick Wright . C o coarse geometry. Ph D thesis , Pen n State , 2002 . Nick Wright . Co coars e geometr y an d scala r curvature . Journal of Functional Analysis, 197(2):469-488, 2003 .

[72] G . Yu . Th e Noviko v conjectur e fo r group s wit h finite asymptoti c dimension . Annals of Mathematics, 147:325-355 , 1998 .

Page 12: Lectures on · Growth and amenability 3.1. Bounded geometry 3.2. Growth 3.3. Amenable spaces 3.4. Examples of amenable and nonamenable spaces 3.5. Amenable groups 3.6. F0lner's Theorem