Lecture12 MPC

20
EE392m - Winter 2003 Control Engineering 12-1 Lecture 12 - Model Predictive Control Prediction model Control optimization Receding horizon update Disturbance estimator - feedback IMC representation of MPC Resource: Joe Qin, survey of industrial MPC algorithms – http://www.che.utexas.edu/~qin/cpcv/cpcv14.html

Transcript of Lecture12 MPC

Page 1: Lecture12 MPC

EE392m - Winter 2003 Control Engineering 12-1

Lecture 12 - Model Predictive Control

• Prediction model• Control optimization• Receding horizon update• Disturbance estimator - feedback• IMC representation of MPC• Resource:

– Joe Qin, survey of industrial MPC algorithms– http://www.che.utexas.edu/~qin/cpcv/cpcv14.html

Page 2: Lecture12 MPC

EE392m - Winter 2003 Control Engineering 12-2

Control Hierarchy

Page 3: Lecture12 MPC

EE392m - Winter 2003 Control Engineering 12-3

Models for MPC

Plant structure:• CV - controlled variables - y• MV - manipulated variables - u• DV - disturbance variables - v

• FSR - Finite Step Response model

– compact notation

Plant

MV: u

DV: v

CV: y

dtvstusty DU +∆+∆= ))(*())(*()(

dktvkSktukStyN

k

DN

k

U +−∆+−∆= ∑∑==

)()()()()(11

11;

−−=∆∆=

zsh

Page 4: Lecture12 MPC

EE392m - Winter 2003 Control Engineering 12-4

FSR Model

FSR model

dktvkStyn

k+−∆=∑

=

)()()(1

• Ignores anything thathappened more than nsteps in the past

• This is attributed to aconstant disturbance d

Page 5: Lecture12 MPC

EE392m - Winter 2003 Control Engineering 12-5

MPC Process Model Example

MV, DV

CV

Page 6: Lecture12 MPC

EE392m - Winter 2003 Control Engineering 12-6

Prediction Model

+∆

∆=

)(

)()(

ntu

tutU M

+=

)(

)()(

nty

tytY M

+−∆

−∆=

)1(

)1()(

Ntu

tutU M

Discuss later

FSR model

Page 7: Lecture12 MPC

EE392m - Winter 2003 Control Engineering 12-7

Prediction Modeldtvstusty DU +∆+∆= ))(*())(*()(

DdtVtUtUtY D +Φ+⋅Φ+Ψ= )()()()(

Hankel matrix

=

1

1MD

0)1()(

00)1(000

L

MOMM

L

L

nSnS

S

UU

U

Past DV

Toeplitz matrix

CV Prediction

Future MV Hankel matrixPast MV

Toeplitz matrix Hankel matrix

00)(

0)3()2()()2()1(

L

MOMM

L

L

NS

SSNSSS

D

DD

DDD

D

Unmeasured disturbance

Future impact of the disturbance

Page 8: Lecture12 MPC

EE392m - Winter 2003 Control Engineering 12-8

Optimization of future inputs

• Optimization problem

4444 34444 21)(*

)()()()(tY

D DdtVtUtUtY +Φ+⋅Φ+Ψ=

( ) ( ) min)()()()()()( →+−−= tRUtUtYtYQtYtYJ Td

Td

=

=u

u

y

y

R

RR

Q

QQ

L

MOM

L

L

MOM

L

0

0,

0

0

+=

)(

)()(

Nty

tytY

d

d

d M

Page 9: Lecture12 MPC

EE392m - Winter 2003 Control Engineering 12-9

Optimization constraints

• MV constraints

• CV constraints

• Terminal constraint:

maxmax )( utuu ∆≤∆≤∆−

)()()( maxmin tytyty ≤≤

maxmin )( utuu ≤≤

∑=

∆+−=+k

jtutuktu

1

)()1()(

pkktuykty d ≥=+∆=+ for 0)(;)(

maxmin

maxmax

)()(

uCtUuutUu

≤−Σ≤∆≤≤∆−

maxmin )( YtYY ≤≤

Page 10: Lecture12 MPC

EE392m - Winter 2003 Control Engineering 12-10

QP solution

• QP Problem:

min21 →+=

=≤

xfQxxJ

bxAbAx

TT

eqeq

• Standard QP codes are available

=)()(

tYtU

x Predicted MVs, CVs

Page 11: Lecture12 MPC

EE392m - Winter 2003 Control Engineering 12-11

Receding horizon control• Optimization problem solution at step t :

• Use the first computed control value only

• Repeat at each t)(]001[)( tUtu OPT⋅= K

)(tUU OPT=⇒→ min)(UJ

Page 12: Lecture12 MPC

EE392m - Winter 2003 Control Engineering 12-12

Control dynamics• System dynamics as an equality constraint in optimization

• Update of the system state

)()()( * tYtUtY +Ψ=

[ ] )()()(* tdtXtY D +⋅ΦΦ=

• Optimization problem solution at step t :

• Use the first of the computed control values)(]001[)( tUtu OPT⋅= K

)(tUU OPT=⇒→ min))(;( UYUJ

)()()()1( tvBtuBtAXtX D∆+∆+=+

Page 13: Lecture12 MPC

EE392m - Winter 2003 Control Engineering 12-13

State update and estimation

• State update - shift register

• Disturbance estimator (feedback)

• Integrator feedback

+−∆

−∆=

)1(

)1()(

Ntu

tutU M

+−∆

−∆=

)1(

)1()(

Ntv

tvtV M

=)()(

)(tVtU

tX

)(tu∆ )(tv∆

( ))()()()1( tytytdtd m −+=+

Actually measured CV

Unmeasured disturbance

CV Prediction based on the current state X(t)

Page 14: Lecture12 MPC

EE392m - Winter 2003 Control Engineering 12-14

Optimization detail• Setpoint• Zone• Trajectory• Funnels

• Soft constraints (quadraticpenalties) and hardconstraints for MV, CV

• Regularization– penalty– singular value thresholding

Page 15: Lecture12 MPC

EE392m - Winter 2003 Control Engineering 12-15

Advantages and Conveniences

• Industrial strength products that can be used for a broadrange of applications

• Flexibility to plant size, automated setup• Based on step response/impulse response model• On the fly reconfiguration if plant is changing

– MV, CV, DV channels taken off control / returned into MPC– measurement problems, actuator failures

• Systematic handling of multi-rate measurements andmissed measurement points– do not update d if no data

Page 16: Lecture12 MPC

EE392m - Winter 2003 Control Engineering 12-16

Technical detail

• Tuning of MPC feedback control performance is an issue.– Works in practice, without formal analysis– Theory requires

• Large (infinite) prediction horizon• Terminal constraint

• Additional tricks for– a separate static optimization step– integrating and unstable dynamics– active constraints– regularization– shape functions for control– different control horizon and prediction horizon– ...

Page 17: Lecture12 MPC

EE392m - Winter 2003 Control Engineering 12-17

MPC as IMC

• MPC is a special case of IMC• Closed-loop dynamics (filter dynamics)

– integrator - in disturbance estimator– N poles z=0 - in the FSR model update

Plant

Predictionmodel

Optimizerreference output

disturbance

∆d-

Page 18: Lecture12 MPC

EE392m - Winter 2003 Control Engineering 12-18

Emerging MPC applications

• Vehicle path planning and control– nonlinear vehicle models– world models– receding horizon preview

Page 19: Lecture12 MPC

EE392m - Winter 2003 Control Engineering 12-19

Emerging MPC applications

• Spacecraft rendezvous with space station– visibility cone constraint– fuel optimality

From Richards & How, MIT

Page 20: Lecture12 MPC

EE392m - Winter 2003 Control Engineering 12-20

Emerging MPC applications

• Nonlinear plants– just need a computable model (simulation)

• Hybrid plants– combination of dynamics and discrete mode change

• Engine control• Large scale operation control problems

– operations management– campaign control