Lecture1 Ee720 Intro

27
Sam Palermo Analog & Mixed-Signal Center Texas A&M University ECEN720: High-Speed Links Circuits and Systems Spring 2013 Lecture 1: Introduction

description

ECEN720: High-Speed Links Circuits and Systems Spring 2013Lecture 1: Introduction

Transcript of Lecture1 Ee720 Intro

Page 1: Lecture1 Ee720 Intro

Sam Palermo Analog & Mixed-Signal Center

Texas A&M University

ECEN720: High-Speed Links Circuits and Systems

Spring 2013

Lecture 1: Introduction

Page 2: Lecture1 Ee720 Intro

Class Topics

• System and design issues relevant to high-speed electrical (and optical) signaling

• Channel properties • Modeling, measurements, communication techniques

• High-Speed link circuits • Drivers, receivers, equalizers, timing systems

• Link system design • Modeling and performance metrics

• Link system examples

2

Page 3: Lecture1 Ee720 Intro

Administrative

• Instructor: • Sam Palermo • 315E WERC Bldg., 845-4114, [email protected] • Office hours: MW 2:00pm-3:30pm

• Lectures: MW 4:10pm-5:25pm, ZACH 223A

• Lab: M 5:45pm-7:35pm, ZACH 203 • Lab begins third week

• Class web page • http://www.ece.tamu.edu/~spalermo/ecen720.html

3

Page 4: Lecture1 Ee720 Intro

Class Material

• Textbook: Class Notes and Technical Papers

• Key References • Digital Systems Engineering, W. Dally and J. Poulton, Cambridge

University Press, 1998. • Advanced Signal Integrity for High-Speed Digital Designs, S. H.

Hall and H. L. Heck, John Wiley & Sons, 2009. • High-Speed Digital Design: A Handbook of Black Magic, H.

Johnson & M. Graham, Prentice Hall, 1993. • Design of Integrated Circuits for Optical Communications, B.

Razavi, McGraw-Hill, 2003.

• Class notes • Will hand out hard copies in class

4

Page 5: Lecture1 Ee720 Intro

Grading

• Exams (50%) • Two midterm exams (25% each)

• Homework & Labs (25%) • Labs (Prelab + Report) and homeworks weighted equally • Collaboration is allowed, but independent simulations and write-ups • Need to setup CADENCE simulation environment • Due at beginning of class • No late homework will be graded

• Final Project (25%) • Groups of 1-2 students • Report and PowerPoint presentation required

5

Page 6: Lecture1 Ee720 Intro

Prerequisites

• This is a circuits AND systems class • Circuits

• ECEN474 or approval of instructor • Basic knowledge of CMOS gates, flops, etc… • Circuit simulation experience (HSPICE, Spectre)

• Systems • Basic knowledge of s- and z-transforms • Basic digital communication knowledge • MATLAB experience

6

Page 7: Lecture1 Ee720 Intro

Simulation Tools

• Matlab

• Stateye (Statistical BER link analysis)

• Cadence

• 90nm CMOS device models • Can use other technology models if they are a

90nm or more advanced CMOS node

• Other tools, schematic, layout, etc… are optional

7

Page 8: Lecture1 Ee720 Intro

Desktop Computer I/O Architecture

• Many high-speed I/O interfaces

• Key bandwidth bottleneck points are memory (FSB) and graphics interfaces (PCIe)

• Near-term architectures ̶ Integrated memory controller with

serial I/O (>5Gb/s) to memory ̶ Increasing PCIe from 2.5Gb/s (Gen1)

to 8Gb/s (Gen3)

• Other serial I/O systems ̶ Multi-processor systems ̶ Routers

8

Page 9: Lecture1 Ee720 Intro

Serial Link Applications • Processor-to-memory

• RDRAM (1.6Gbps), XDR DRAM (7.2Gbps), XDR2 DRAM (12.8Gbps)

• Processor-to-peripheral • PCIe (2.5, 5, 8Gbps), Infiniband (10Gbps), USB3 (4.8Gbps)

• Processor-to-processor • Intel QPI (6.4Gbps), AMD Hypertransport (6.4Gbps)

• Storage • SATA (6Gbps), Fibre Channel (20Gbps)

• Networks • LAN: Ethernet (1, 10Gbps) • WAN: SONET (2.5, 10, 40Gbps) • Backplane Routers: (2.5 – 12.5Gbps)

9

Page 10: Lecture1 Ee720 Intro

Chip-to-Chip Signaling Trends Decade Speeds Transceiver Features 1980’s >10Mb/s Inverter out, inverter in

1990’s >100Mb/s Termination Source-synchronous clk.

2000’s >1 Gb/s Pt-to-pt serial streams Pre-emphasis equalization

Future >10 Gb/s Adaptive Equalization, Advanced low power clk. Alternate channel materials

Lumped capacitance

… Transmission line

Lossy transmission line

h(t) Σ

Channel noise Sampler Slicer RX

Equalizer Transmit

Filter

CDR

Slide Courtesy of Frank O’Mahony & Brian Casper, Intel 10

Page 11: Lecture1 Ee720 Intro

Increasing I/O Bandwidth Demand

Single ⇒ Multi ⇒ Many-Core µProcessors

Tera-scale many-core processors will aggressively drive aggregate I/O rates

*2006 International Technology Roadmap for Semiconductors

ITRS Projections* Intel Teraflop Research Chip

• 80 processor cores • On-die mesh

interconnect network w/ >2Tb/s aggregate bandwidth

• 100 million transistors • 275mm2

S. Vangal et al, “An 80-Tile Sub-100W TeraFLOPS Processor in 65nm CMOS," JSSC, 2008.

11

Page 12: Lecture1 Ee720 Intro

High-Speed Electrical Link System

TX

ChannelTX

data

Seria

lizer

PLLref clk

RX

Des

eria

lizer

RXdata

TX clk RX clk

D[n+1]D[n] D[n+2] D[n+3]TX data

TX clk

RX clk

CDR

12

Page 13: Lecture1 Ee720 Intro

13

Electrical Backplane Channel

Line card trace(dispersion)

Backplane via(major reflections)

Backplane trace(dispersion)

Backplane connector(crosstalk)

Package via(reflections)

On-chip termination(reflections)

Chip package(crosstalk)

Line card via(reflections)

• Frequency dependent loss ̶ Dispersion & reflections

• Co-channel interference ̶ Far-end (FEXT) & near-end (NEXT) crosstalk

Page 14: Lecture1 Ee720 Intro

14

Channel Performance Impact

Page 15: Lecture1 Ee720 Intro

15

Channel Performance Impact

Page 16: Lecture1 Ee720 Intro

A 10Gb/s 5-tap DFE / 4-Tap FFE Transceiver in 90nm CMOS Technology

Mounir Meghelli, Sergey Rylov, John Bulzacchelli, Woogeun Rhee, Alexander Rylyakov, Herschel Ainspan, Ben Parker, Michael Beakes, Aichin Chung, Troy Beukema, Petar Pepeljugoski, Lei Shan, Young Kwark, Sudhir Gowda and Dan Friedman

IBM T. J. Watson Research Center, Yorktown Heights, NY

Backplane Link Example

16

Page 17: Lecture1 Ee720 Intro

Transmission Channel Impairments

The Channel Tx IC

Pkg Line card trace

Edge connector

Backplane 16” trace

Edge connector

Line card trace

Rx IC

Pkg

Edge connector

Packaged SerDes

Line card trace

Backplane trace

Via stub

-100ps 100ps-50ps 0ps 50ps-500mV

500mV

-400mV

-300mV

-200mV

-100mV

-0.0mV

100mV

200mV

300mV

400mV

500mVEye FFE1 10.0Gb/s [OPEN,1e-8] No Xtalk

Time

Sign

al A

mpl

itude

Vpd

DATA = RAND Tx 600mVpd AGC Gain -5.48dBXTALK = NONE AGC 5.0GHz 0.00dBPKG=0/0 TERM = 5050/5050 IC = 3/3

HSSCDR = 2.3.2-pre2 IBM ConfidentialDate = Sat 01/21/2006 12:00 PMPLL=0F1V0S0,C16,N32,O1,L80 FREQ=0.00ppm/0.00usFFE = [1.000, 0.000]

-100ps 100ps-50ps 0ps 50ps-500mV

500mV

-400mV

-300mV

-200mV

-100mV

-0.0mV

100mV

200mV

300mV

400mV

500mVEye FFE1 10.0Gb/s [OPEN,1e-8] No Xtalk

Time

Sign

al A

mpl

itude

Vpd

DATA = RAND Tx 600mVpd AGC Gain -6.02dBXTALK = NONE AGC 5.0GHz 0.00dBPKG=0/0 TERM = 5050/5050 IC = 3/3

HSSCDR = 2.3.2-pre2 IBM ConfidentialDate = Sat 01/21/2006 12:01 PMPLL=0F1V0S0,C16,N32,O1,L80 FREQ=0.00ppm/0.00usFFE = [1.000, 0.000]

INPUT

OUTPUT

0Hz 10GHz2.0GHz 4.0GHz 6.0GHz 8.0GHz-90

10

-80

-70

-60

-50

-40

-30

-20

-10

0

10[OPEN,1e-8] Channel Response

Frequency

|SDD

21|

-40

60

-30

-20

-10

0

10

20

30

40

50

60

|S11

|,|S2

2|

S21

-24.6dB @ 5GHz

17 [Meghelli (IBM) ISSCC 2006]

Page 18: Lecture1 Ee720 Intro

10Gb/s SerDes Main Features

Tx with 1 baud-spaced 4-tap FFE

Rx with 5-tap adaptive DFE and digital clock recovery

LC-VCO based PLL for low noise clock generation

90nm CMOS technology

18 [Meghelli (IBM) ISSCC 2006]

Page 19: Lecture1 Ee720 Intro

Transmitter Architecture

“A Low Power 10Gb/s Serial Link Transmitter in 90-nm CMOS” A. Rylyakov et al., CSICS 2005

L

L L

L

L

L

L

L

L

1x 4x 2x 1x

1/4 1 1/2 1/4 IDACs

& Bias

Control

sgn-1 sgn0 sgn1 sgn2

50Ω

Out-P

Out-N

4:2 MUX

2

2

2

2 1

D0

D1

D2

D3

VDDA=1.2V VDD=1.0V

VDDIO=1.0V

VDDA=1.2V

1

1

1

C2 (5GHz) From on-chip PLL

2

(2.5

Gb/

s)

(10Gb/s)

(5Gb/s)

ESD

Key Features: - Half-rate CML design - 4-tap FFE - Tap polarity control - ESD protection - 70mW (24mA main tap, no FFE)

FFE Taps Full Scale DAC bits

Pre-cursor 25% 4

Cursor 100% 6

1st Post-cursor 50% 5

2nd Post-cursor 25% 4

19 [Meghelli (IBM) ISSCC 2006]

Page 20: Lecture1 Ee720 Intro

20

Tx Output Eye Diagram @ 10Gb/s

No FFE, 24mA on main tap

Simulated Measured

FFE 4=[0, 85%, -15%, 0, 0]

1 0 0 p s0 p s 0 p s 5 0 p s

e F F E 4 1 0 .0 G b /s [O P E N ,1 e -8 ] N o X ta lk

T im e

8 0 0 m V p dA G C G a in -6 .0 2 d B E A G C 5 .0 G H z 0 .0 0 d B

R M = 5 0 5 0 /5 0 5 0 IC = 3 /0

2 .4 IB M C o n f id e n tia l 3 2E Q O F S = 0 .0 0 p p m /0 .0 0 u sD /E O F S T 1 0 .8 6 3 , -0 .1 3 7 , 0 .0 0 0 ]

100 ps50ps 0ps 50p s

ye F F E 1 10 .0G b /s [O P E N ,1 e -8 ] N o X ta lk

T im e

Dx 600m V pdA G C G a in -6 .02d B N E A G C 5 .0G H z 0 .00 dB

R M = 5 050 /5050 IC = 3 /0 % U I

2 .4 IB M C on fiden tia l N 32R E Q O F S = 0 .00ppm /0 .00 us 0 .000 ]

[Meghelli (IBM) ISSCC 2006]

Page 21: Lecture1 Ee720 Intro

Receiver Architecture

Key Features: - Half-rate design - 5-tap continuously adaptive DFE - Variable gain amplifier - Digital CDR - ESD protection (HBM & CDM) - 130mW (with DFE and CDR logic)

T-Coil Compensation Network

50Ω

In_P In_N

(10G

b/s)

ESD

VGA

Vcm

PI PI

Phase rotator

2:8 DMUX

8:16 DMUX

CDR logic

I-Clock control

Q-Clock control I Q

DFE logic

Tap weights

C2-I C2-Q

Edge

Data Amp

From on-chip PLL (5GHz)

CML CMOS logic VDDA=1.2V

8

2

D0

D1

D2

D3

2

2

2

(2.5

Gb/

s)

1

1

1

1 VDDIO=1V

DFE Block

Phase detector

VDD=1.0V

Data Amp Edge Clock

21 [Meghelli (IBM) ISSCC 2006]

Page 22: Lecture1 Ee720 Intro

DFE Approach

Key Features: - Half-rate DFE with H1 speculation and dynamic H2-H5 feedback allows 2UI for settling - DFE algorithm maximizes vertical eye opening at the data slicing instant - Offset adjustment at all the slicer inputs

Received eye ISI

Σ L L L

Σ L L L

Tap-feedback and weighting H1-5

Tap weights Data

I

I

I

I I I I

I I I

Σ I

Offset

Deven

Dodd

Amplitude

On-chip DFE Logic

(+H1)

(-H1)

(+H1)

(-H1)

DFE Taps Resolution

H1 6 bits

H2 5 bits

H3, H4, H5 4 bits

22 [Meghelli (IBM) ISSCC 2006]

Page 23: Lecture1 Ee720 Intro

CDR Loop

Data Z-1

Z-1

DMUX XORs

D

E

D

E

Early

Late

Digital Filter

I Rotator Control

Q Rotator Control

PI D/A

PI D/A C2-I

C2-Q

From

on-

chip

PLL

Data Clock

Edge Clock

Key Features: - Fully digital loop - Can handle up to +/- 4000ppm frequency offset - Independent I,Q control

Jitter Tolerance

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.00E+05 1.00E+06 1.00E+07 1.00E+08 1.00E+09

Modulation Frequency

Sine

Jitt

er (U

I pp)

Receiver Jitter tolerance curve ( BER<1e-9)

Tracking bandwidth ~9MHz

23 [Meghelli (IBM) ISSCC 2006]

Page 24: Lecture1 Ee720 Intro

24

Chip-to-Chip Link Experiments

Trace Length

5GHz losses (Tx module + board trace + Rx module)

Number of vias 3.8mm via stub / 1.8mm via stub / 1.8mm via through

10” (#1) 12dB 2 / 0 / 0 10” (#2) 10dB 0 / 2 / 0 15” 25dB 4 / 2 / 0 20” 15dB 0 / 0 / 2

Module Module

SerDes1 SerDes2

Board

Trace Via stub

SerDes1

SerDes2

Trace

[Meghelli (IBM) ISSCC 2006]

Page 25: Lecture1 Ee720 Intro

25

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

10" (#1) 10" (#2) 15" 20" Link

Hor

izon

tal E

ye O

peni

ng (1

e-9

BER

)

DFE+FFE DFE FFE

Chip-to-Chip Measurement Results Trace Length

5GHz losses

(Tx module + board trace + Rx module)

Number of vias

3.8mm via stub / 1.8mm via stub / 1.8mm via through

10” (#1) 12dB 2 / 0 / 0

10” (#2) 10dB 0 / 2 / 0

15” 25dB 4 / 2 / 0

20” 15dB 0 / 0 / 2

DFE

+ F

FE

DFE

+ F

FE

DFE

+ F

FE

DFE

+ F

FE

DFE

ON

LY

DFE

ON

LY

FFE

ON

LY

FFE

ON

LY

Horizontal eye opening of the equalized eye at the receiver slicer input

[Meghelli (IBM) ISSCC 2006]

Page 26: Lecture1 Ee720 Intro

26

Preliminary Schedule

• Dates may change with reasonable notice

Page 27: Lecture1 Ee720 Intro

Next Time

• Channels • Components

• Chip packages, PCBs, Wires, Connectors

• Modeling • Wires, Transmission Lines

27