Lecture Slides - Topic one: Production line profit ... · A P(N) Cost ($) P(N*(A )) ... Convert the...

43
Topic one: Production line profit maximization subject to a production rate constraint c 2010 Chuan Shi Topic one: Line optimization : 22/79

Transcript of Lecture Slides - Topic one: Production line profit ... · A P(N) Cost ($) P(N*(A )) ... Convert the...

Page 1: Lecture Slides - Topic one: Production line profit ... · A P(N) Cost ($) P(N*(A )) ... Convert the constrained problem to minimization form ... Production line profit maximization

Topic one: Production line profit maximization subject to a production rate constraint

c⃝2010 Chuan Shi — Topic one: Line optimization : 22/79

Page 2: Lecture Slides - Topic one: Production line profit ... · A P(N) Cost ($) P(N*(A )) ... Convert the constrained problem to minimization form ... Production line profit maximization

Production line profit maximization

The profit maximization problem

max N

�(N) = �� (N) − �−1∑

�=1

���� − �−1∑

�=1

�� ̄��(N)

s.t. � (N) ≥ �̂ ,

�� ≥ �min, ∀� = 1, ⋅ ⋅ ⋅ , � − 1.

where � (N) = production rate, parts/time unit �̂ = required production rate, parts/time unit � = profit coefficient, $/part

�̄�(N) = average inventory of buffer �, � = 1, ⋅ ⋅ ⋅ , � − 1 �� = buffer cost coefficient, $/part/time unit �� = inventory cost coefficient, $/part/time unit

c⃝2010 Chuan Shi — Topic one: Line optimization : Constrained and unconstrained problems 23/79

Page 3: Lecture Slides - Topic one: Production line profit ... · A P(N) Cost ($) P(N*(A )) ... Convert the constrained problem to minimization form ... Production line profit maximization

An example about the research goal

0 10 20 30 40 50 60 70 80 90 100 0 10

20 30

40 50

60 70

80 90

100

1040 1060 1080 1100 1120 1140 1160 1180 1200 1220

J(N)

"data.txt""feasible.txt"

1205120011901180116011401120110010801060

Optimalboundary

N1

N2

J(N)

Figure 2: �(N) vs. �1 and �2

c⃝2010 Chuan Shi — Topic one: Line optimization : Constrained and unconstrained problems 24/79

Page 4: Lecture Slides - Topic one: Production line profit ... · A P(N) Cost ($) P(N*(A )) ... Convert the constrained problem to minimization form ... Production line profit maximization

Two problems

Original constrained problem

max N

�(N) = �� (N) − �−1∑

�=1

���� − �−1∑

�=1

�� ̄��(N)

s.t. � (N) ≥ �̂ ,

�� ≥ �min, ∀� = 1, ⋅ ⋅ ⋅ , � − 1.

Simpler unconstrained problem (Schor’s problem)

max N

�(N) = �� (N) − �−1∑

�=1

���� − �−1∑

�=1

�� ̄��(N)

s.t. �� ≥ �min, ∀� = 1, ⋅ ⋅ ⋅ , � − 1.

c⃝2010 Chuan Shi — Topic one: Line optimization : Constrained and unconstrained problems 25/79

Page 5: Lecture Slides - Topic one: Production line profit ... · A P(N) Cost ($) P(N*(A )) ... Convert the constrained problem to minimization form ... Production line profit maximization

An example for algorithm derivation

Data �1 = .1, �1 = .01, �2 = .11, �2 = .01, �3 = .1, �3 = .009, �̂ = .88 Cost function �(N) = 2000� (N) − �1 − �2 − �̄1(N) − �̄2(N)

0 10 20 30 40 50 60 70 80 90 100 0 10

20 30

40 50

60 70

80 90

100

1500 1520 1540 1560 1580 1600 1620 1640 1660

J(N)

N1

N2

J(N)

10

20

30

40

50

60

70

80

90

100

20 30 40 50 60 70 80 90 100

N2

N1

P(N1,N2)=P

P(N1,N2)>P

P(N1,N2)< P

Figure 3: �(N) vs. �1 and �2 Figure 4: � (N)

c⃝2010 Chuan Shi — Topic one: Line optimization : Algorithm derivation 26/79

Page 6: Lecture Slides - Topic one: Production line profit ... · A P(N) Cost ($) P(N*(A )) ... Convert the constrained problem to minimization form ... Production line profit maximization

An example for algorithm derivation

0 10 20 30 40 50 60 70 80 90 100 0 10

20 30

40 50

60 70

80 90

100

1500 1520 1540 1560 1580 1600 1620 1640 1660

J(N)

N1

N2

J(N)

Figure 5: �(N) vs. �1 and �2

c⃝2010 Chuan Shi — Topic one: Line optimization : Algorithm derivation 27/79

Page 7: Lecture Slides - Topic one: Production line profit ... · A P(N) Cost ($) P(N*(A )) ... Convert the constrained problem to minimization form ... Production line profit maximization

Algorithm derivation

Two cases Case 1 The solution of the unconstrained problem is N� s.t. � (N�) ≥ �̂ . In this case, the solution of the constrained problem is the same as the solution of the unconstrained problem. We are done.

Unconstrained problem

max N

�(N) = �� (N) − �−1∑

�=1

����

− �−1∑

�=1

�� ̄��(N)

s.t. �� ≥ �min, ∀� = 1, ⋅ ⋅ ⋅ , � − 1.

( N1 , N2 ) u u

P(N1,N2) > P

10

20

30

40

50

60

70

80

90

100

20 30 40 50 60 70 80 90 100

N2

N1

c⃝2010 Chuan Shi — Topic one: Line optimization : Algorithm derivation 28/79

Page 8: Lecture Slides - Topic one: Production line profit ... · A P(N) Cost ($) P(N*(A )) ... Convert the constrained problem to minimization form ... Production line profit maximization

Algorithm derivation

Two cases (continued) Case 2 N� satisfies � (N�) < �̂ . This is not the solution of the constrained problem.

( N1 , N2 ) u u

P(N1,N2) > P

10

20

30

40

50

60

70

80

90

100

20 30 40 50 60 70 80 90 100

N2

N1

c⃝2010 Chuan Shi — Topic one: Line optimization : Algorithm derivation 29/79

Page 9: Lecture Slides - Topic one: Production line profit ... · A P(N) Cost ($) P(N*(A )) ... Convert the constrained problem to minimization form ... Production line profit maximization

Algorithm derivation

Two cases (continued)

Case 2 (continued)

In this case, we consider the following unconstrained problem:

�−1 �−1∑ ∑ max �(N) = �′� (N) − ���� − ���̄�(N)N

�=1 �=1

s.t. �� ≥ �min, ∀� = 1, ⋅ ⋅ ⋅ , � − 1.

in which � is replaced by �′ . Let N★(�′) be the solution to this problem and � ★(�′) = � (N★(�′)).

c⃝2010 Chuan Shi — Topic one: Line optimization : Algorithm derivation 30/79

Page 10: Lecture Slides - Topic one: Production line profit ... · A P(N) Cost ($) P(N*(A )) ... Convert the constrained problem to minimization form ... Production line profit maximization

Assertion

The constrained problem �−1 �−1∑ ∑

max �(N) = �′� (N) − ���� − ���̄�(N) N

�=1 �=1

s.t. � (N) � , ≥ ˆ

�� ≥ �min, ∀� = 1, ⋅ ⋅ ⋅ , � − 1.

has the same solution for all �′ in which the solution of the corresponding unconstrained problem ∑�−1 �−1∑

max �(N) = �′� (N) − ���� − ���̄�(N)N

�=1 �=1

s.t. �� ≥ �min, ∀� = 1, ⋅ ⋅ ⋅ , � − 1.

has � ★(�′) ≤ �̂ . c⃝2010 Chuan Shi — Topic one: Line optimization : Algorithm derivation 31/79

Page 11: Lecture Slides - Topic one: Production line profit ... · A P(N) Cost ($) P(N*(A )) ... Convert the constrained problem to minimization form ... Production line profit maximization

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

s.t.

s.t.

� (�

Interpretation of the assertion

We claim If the optimal solution of the unconstrained problem is not that of the constrained

−1 ★�

★problem, then the solution of the constrained problem, (�

−1 ★�

, � ), satisfies 1 ,

) = �̂ . ★ , � 1 ,

400

410

420

430

440

450

460

470

480

0 5 10 15 20 25 30 35 40 0

10

20

30

40

50

60

70

80

A’P

(N)

Cos

t ($)

NP(N*(A’)) < P

N*(A’)

max �(�) = 500� (�) − � − �̄(�) N

s.t. � (�) ≥ �̂

� ≥ �min

max �(N) = 500�̂ − � − �̄(�) N

s.t. � (� ) ≥ �̂ ⇒ � (�) = �̂

� ≥ �min

We formally prove this by the Karush-Kuhn-Tucker (KKT) conditions of nonlin-ear programming.

c⃝2010 Chuan Shi — Topic one: Line optimization : Algorithm derivation 32/79

Page 12: Lecture Slides - Topic one: Production line profit ... · A P(N) Cost ($) P(N*(A )) ... Convert the constrained problem to minimization form ... Production line profit maximization

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

s.t.

s.t.

� (�

Interpretation of the assertion

We claim If the optimal solution of the unconstrained problem is not that of the constrained

−1 ★�

★problem, then the solution of the constrained problem, (�

−1 ★�

, � ), satisfies 1 ,

) = �̂ . ★ , � 1 ,

400

410

420

430

440

450

460

470

480

0 5 10 15 20 25 30 35 40 0

10

20

30

40

50

60

70

80

A’P

(N)

Cos

t ($)

NP(N*(A’)) < P

N*(A’)

max �(�) = 500� (�) − � − �̄(�) N

s.t. � (�) ≥ �̂

� ≥ �min

max �(N) = 500�̂ − � − �̄(�) N

s.t. � (� ) ≥ �̂ ⇒ � (�) = �̂

� ≥ �min

We formally prove this by the Karush-Kuhn-Tucker (KKT) conditions of nonlin-ear programming.

c⃝2010 Chuan Shi — Topic one: Line optimization : Algorithm derivation 32/79

Page 13: Lecture Slides - Topic one: Production line profit ... · A P(N) Cost ($) P(N*(A )) ... Convert the constrained problem to minimization form ... Production line profit maximization

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

s.t.

s.t.

� (�

Interpretation of the assertion

We claim If the optimal solution of the unconstrained problem is not that of the constrained

−1 ★�

★problem, then the solution of the constrained problem, (�

−1 ★�

, � ), satisfies 1 ,

) = �̂ . ★ , � 1 ,

400

410

420

430

440

450

460

470

480

0 5 10 15 20 25 30 35 40 0

10

20

30

40

50

60

70

80

A’P

(N)

Cos

t ($)

NP(N*(A’)) < P

N*(A’)

max �(�) = 500� (�) − � − �̄(�) N

s.t. � (�) ≥ �̂

� ≥ �min

max �(N) = 500�̂ − � − �̄(�) N

s.t. � (� ) ≥ �̂ ⇒ � (�) = �̂

� ≥ �min

We formally prove this by the Karush-Kuhn-Tucker (KKT) conditions of nonlin-ear programming.

c⃝2010 Chuan Shi — Topic one: Line optimization : Algorithm derivation 32/79

Page 14: Lecture Slides - Topic one: Production line profit ... · A P(N) Cost ($) P(N*(A )) ... Convert the constrained problem to minimization form ... Production line profit maximization

Interpretation of the assertion

0 10 20 30 40 50 60 70 80 90 100 0 10

20 30

40 50

60 70

80 90

100

1040 1060 1080 1100 1120 1140 1160 1180 1200 1220

J(N)

"infeasible.txt""feasible.txt"

1205120011901180116011401120110010801060

Optimalboundary

N1

N2

J(N)

A = 1500 (Original Problem)

0 10 20 30 40 50 60 70 80 90 100 0 10

20 30

40 50

60 70

80 90

100 1880 1900 1920 1940 1960 1980 2000 2020 2040 2060 2080

J(N)

"infeasible.txt""feasible.txt"

20602055

2049.82040202020001980195019301900

Optimalboundary

N1

N2

J(N)

A’ = 2500

0 10 20 30 40 50 60 70 80 90 100 0 10

20 30

40 50

60 70

80 90

100

2650

2700

2750

2800

2850

2900

2950

J(N)

"infeasible.txt""feasible.txt"

29212919.7

29102900288028602830280027702730

Optimalboundary

N1

N2

J(N)

A’ = 3500

0 10 20 30 40 50 60 70 80 90 100 0 10

20 30

40 50

60 70

80 90

100 3450 3500 3550 3600 3650 3700 3750 3800 3850

J(N)

"infeasible.txt""feasible.txt"

3819381638133818380037703730370036603620358035403500

Optimalboundary

N1

N2

J(N)

A’ = 4535.82 (Final A’)

c⃝2010 Chuan Shi — Topic one: Line optimization : Algorithm derivation 33/79

Page 15: Lecture Slides - Topic one: Production line profit ... · A P(N) Cost ($) P(N*(A )) ... Convert the constrained problem to minimization form ... Production line profit maximization

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅

⋅ ⋅ ⋅

Karush-Kuhn-Tucker (KKT) conditions Let �★ be a local minimum of the problem

min �(�) s.t. ℎ1(�) = 0, , ℎ�(�) = 0,

�1(�) ≤ 0, , ��(�) ≤ 0,

where � , ℎ�, and �� are continuously differentiable functions from ℜ�

to Then there exist unique Lagrange multipliers �★ , �★ andℜ. 1, � �★ 1, , �★

� , satisfying the following conditions:

∇��(�★, �★, �★) = 0,

�★� ≥ 0, � = 1, , �,

�★� �� (�

★) = 0, � = 1, , �. ∑� ∑�where �(�, �, �) = �(�) + �=1 ��ℎ�(�) + �=1 �� ��(�) is called the Lagrangian function.

c⃝2010 Chuan Shi — Topic one: Line optimization : Proofs of the algorithm by KKT conditions 34/79

Page 16: Lecture Slides - Topic one: Production line profit ... · A P(N) Cost ($) P(N*(A )) ... Convert the constrained problem to minimization form ... Production line profit maximization

Convert the constrained problem to minimization form

Minimization form

The constrained problem

min N

−�(N) = −�� (N) + �−1∑

�=1

���� + �−1∑

�=1

�� ̄��(N)

s.t. �̂ − � (N) ≤ 0

�min − �� ≤ 0, ∀� = 1, ⋅ ⋅ ⋅ , � − 1

We have argued that we treat �� as continuous variables, and � (�) and �(�) as continuously differentiable functions.

c⃝2010 Chuan Shi — Topic one: Line optimization : Proofs of the algorithm by KKT conditions 35/79

Page 17: Lecture Slides - Topic one: Production line profit ... · A P(N) Cost ($) P(N*(A )) ... Convert the constrained problem to minimization form ... Production line profit maximization

⋅ ⋅ ⋅

Applying KKT conditions

The Slater constraint qualification for convex inequalities guarantees the existence of Lagrange multipliers for our problem. So, there exist unique Lagrange multipliers �★

� , � = 0, , � − 1 for the constrained problem to satisfy the KKT conditions:

�−1∑ −∇�(N★) + �★

0∇(�̂ − � (N★)) + ��★∇(�min − ��) = 0 (1)

�=1

or ⎛ ⎛⎞ ⎞⎛⎞⎛⎞⎛

⎞ ∂�(N★) ∂� (N★) ⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎟⎟⎟⎟⎟⎟⎟⎟⎠

− �★ 0

⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎟⎟⎟⎟⎟⎟⎟⎟⎠

∂�1 ∂�(N★) ∂�2 ...

∂�(N★)

∂�1 ∂� (N★ 1 0 0

) ⎜⎜⎜⎝

0 ...

⎟⎟⎟⎠−⋅ ⋅ ⋅− �★ �−1

⎜⎜⎜⎝

0 ...

⎟⎟⎟⎠ =

⎜⎜⎜⎝

0 ...

⎟⎟⎟⎠ ∂�2 ...

∂� (N★)

★ − �− ,1

0 1 0

∂��−1 ∂��−1

(2)

c⃝2010 Chuan Shi — Topic one: Line optimization : Proofs of the algorithm by KKT conditions 36/79

Page 18: Lecture Slides - Topic one: Production line profit ... · A P(N) Cost ($) P(N*(A )) ... Convert the constrained problem to minimization form ... Production line profit maximization

⋅ ⋅ ⋅

haha

haha⋅ ⋅ ⋅

⋅ ⋅ ⋅

Applying KKT conditions

★ �

and ≥ 0, ∀� = 0, , � − 1, (3)

�0 (�̂ − � (N★)) = 0, ★ (4)

where N★ is the optimal solution of the constrained problem. Assume

★��

★that ��★��

★�(�min − � ) = 0, ∀� = 1, , � − 1, (5)

> �min for all �. In this case, by equation (5), we know that = 0, ∀� = 1, , � − 1.

c⃝2010 Chuan Shi — Topic one: Line optimization : Proofs of the algorithm by KKT conditions 37/79

Page 19: Lecture Slides - Topic one: Production line profit ... · A P(N) Cost ($) P(N*(A )) ... Convert the constrained problem to minimization form ... Production line profit maximization

Applying KKT conditions

The KKT conditions are simplified to ⎛ ⎞ ⎛ ∂�(N★) ∂� (N★) ⎞⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝∂�1

∂�(N★) ∂�2 . . .

∂�(N★)

⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂�1 ∂� (N★) ∂�2 . . .

∂� (N★)

⎟⎟⎟⎟⎟⎟⎟⎟⎠

0

= ⎜⎜⎜⎝

⎟⎟⎟⎠

0 .. .

− �★ 0 (6),

0

∂��−1 ∂��−1

�★ 0(�̂

− � (N★)) = 0, (7)

where �★ 0 ≥ 0. Since N★ is not the optimal solution of the unconstrained

problem, ∇�(N★) =∕ 0. Thus, �★ =∕ 0 since otherwise condition (6) 0 would be violated. By condition (7), the optimal solution N★ satisfies � (N★) = �̂ .

c⃝2010 Chuan Shi — Topic one: Line optimization : Proofs of the algorithm by KKT conditions 38/79

Page 20: Lecture Slides - Topic one: Production line profit ... · A P(N) Cost ($) P(N*(A )) ... Convert the constrained problem to minimization form ... Production line profit maximization

Applying KKT conditions

The KKT conditions are simplified to ⎛ ⎞ ⎛ ∂�(N★) ∂� (N★) ⎞⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝∂�1

∂�(N★) ∂�2 . . .

∂�(N★)

⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂�1 ∂� (N★) ∂�2 . . .

∂� (N★)

⎟⎟⎟⎟⎟⎟⎟⎟⎠

0

= ⎜⎜⎜⎝

⎟⎟⎟⎠

0 .. .

− �★ 0 ,

0

∂��−1 ∂��−1

�★ 0(�̂

− � (N★)) = 0,

In addition, conditions (6) and (7) reveal how we could find �★ 0 and N★ .

For every �★ 0, condition (6) determines N★ since there are � − 1 equations

and � − 1 unknowns. Therefore, we can think of N★ = N★(�0 ★). We

search for a value of �★ 0 such that � (N★(�★

0)) = �̂ . As we indicate in the following, this is exactly what the algorithm does.

c⃝2010 Chuan Shi — Topic one: Line optimization : Proofs of the algorithm by KKT conditions 39/79

Page 21: Lecture Slides - Topic one: Production line profit ... · A P(N) Cost ($) P(N*(A )) ... Convert the constrained problem to minimization form ... Production line profit maximization

Applying KKT conditions

Replacing �★ 0 by �0 > 0 in constraint (6) gives ⎛ ⎞ ⎛

∂�(N�) ∂� (N�) ⎞⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝∂�1

∂�(N�) ∂�2 . . .

∂�(N�)

⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂�1 ∂� (N�) ∂�2 . . .

∂� (N�)

⎟⎟⎟⎟⎟⎟⎟⎟⎠

0

=⎜⎜⎜⎝

⎟⎟⎟⎠

0 .. .

− �0 (8),

0

∂��−1 ∂��−1

where N� is the unique solution of (8). Note that N� is the solution of the following optimization problem:

min N

− �̄(N) = −�(N) + �0( �̂ − � (N))

(9)

s.t. �min − �� ≤ 0, ∀� = 1, ⋅ ⋅ ⋅ , � − 1.

c⃝2010 Chuan Shi — Topic one: Line optimization : Proofs of the algorithm by KKT conditions 40/79

Page 22: Lecture Slides - Topic one: Production line profit ... · A P(N) Cost ($) P(N*(A )) ... Convert the constrained problem to minimization form ... Production line profit maximization

⋅ ⋅ ⋅

⋅ ⋅ ⋅

⋅ ⋅ ⋅

Applying KKT conditions The problem above is equivalent to

max �̄(N) = �(N) − �0(�̂ − � (N)) N

(10)

s.t. �min − �� ≤ 0, ∀� = 1, , � − 1.

or

�−1 �−1∑ ∑ max �̄(N) = �� (N) − ���� − ���̄� − �0(�̂ − � (N)) N

�=1 �=1 (11)

s.t. �min − �� ≤ 0, ∀� = 1, , � − 1.

or �−1 �−1∑ ∑

max �̄(N) = (� + �0)� (N) − ���� − ���̄� N (12)

�=1 �=1 s.t. �� ≥ �min, ∀� = 1, , � − 1.

c⃝2010 Chuan Shi — Topic one: Line optimization : Proofs of the algorithm by KKT conditions 41/79

Page 23: Lecture Slides - Topic one: Production line profit ... · A P(N) Cost ($) P(N*(A )) ... Convert the constrained problem to minimization form ... Production line profit maximization

⋅ ⋅ ⋅

⋅ ⋅ ⋅

⋅ ⋅ ⋅

Applying KKT conditions The problem above is equivalent to

max �̄(N) = �(N) − �0(�̂ − � (N)) N

(10)

s.t. �min − �� ≤ 0, ∀� = 1, , � − 1.

or

�−1 �−1∑ ∑ max �̄(N) = �� (N) − ���� − ���̄� − �0(�̂ − � (N)) N

�=1 �=1 (11)

s.t. �min − �� ≤ 0, ∀� = 1, , � − 1.

or �−1 �−1∑ ∑

max �̄(N) = (� + �0)� (N) − ���� − ���̄� N (12)

�=1 �=1 s.t. �� ≥ �min, ∀� = 1, , � − 1.

c⃝2010 Chuan Shi — Topic one: Line optimization : Proofs of the algorithm by KKT conditions 41/79

Page 24: Lecture Slides - Topic one: Production line profit ... · A P(N) Cost ($) P(N*(A )) ... Convert the constrained problem to minimization form ... Production line profit maximization

⋅ ⋅ ⋅

⋅ ⋅ ⋅

⋅ ⋅ ⋅

Applying KKT conditions The problem above is equivalent to

max �̄(N) = �(N) − �0(�̂ − � (N)) N

(10)

s.t. �min − �� ≤ 0, ∀� = 1, , � − 1.

or

�−1 �−1∑ ∑ max �̄(N) = �� (N) − ���� − ���̄� − �0(�̂ − � (N)) N

�=1 �=1 (11)

s.t. �min − �� ≤ 0, ∀� = 1, , � − 1.

or �−1 �−1∑ ∑

max �̄(N) = (� + �0)� (N) − ���� − ���̄� N (12)

�=1 �=1 s.t. �� ≥ �min, ∀� = 1, , � − 1.

c⃝2010 Chuan Shi — Topic one: Line optimization : Proofs of the algorithm by KKT conditions 41/79

Page 25: Lecture Slides - Topic one: Production line profit ... · A P(N) Cost ($) P(N*(A )) ... Convert the constrained problem to minimization form ... Production line profit maximization

⋅ ⋅ ⋅

Applying KKT conditions

or, finally,

�−1 �−1∑ ∑ max �̄(N) = �′� (N) − ���� − ���̄� N

�=1 �=1 (13)

s.t. �� ≥ �min, ∀� = 1, , � − 1.

where �′ = � + �0. This is exactly the unconstrained problem, and N�

is its optimal solution. Note that �0 > 0 indicates that �′ > �.

In addition, the KKT conditions indicate that the optimal solution of the constrained problem N★ satisfies � (N★) = �̂ . This means that, for every �′ > � (or �0 > 0), we can find the corresponding optimal solution N�

satisfying condition (8) by solving problem (13). We need to find the �′ such that the solution to problem (13), denoted as N★(�′), satisfies � (N★(�′)) = �̂ .

c⃝2010 Chuan Shi — Topic one: Line optimization : Proofs of the algorithm by KKT conditions 42/79

Page 26: Lecture Slides - Topic one: Production line profit ... · A P(N) Cost ($) P(N*(A )) ... Convert the constrained problem to minimization form ... Production line profit maximization

⋅ ⋅ ⋅

Applying KKT conditions

or, finally,

�−1 �−1∑ ∑ max �̄(N) = �′� (N) − ���� − ���̄� N

�=1 �=1 (13)

s.t. �� ≥ �min, ∀� = 1, , � − 1.

where �′ = � + �0. This is exactly the unconstrained problem, and N�

is its optimal solution. Note that �0 > 0 indicates that �′ > �.

In addition, the KKT conditions indicate that the optimal solution of the constrained problem N★ satisfies � (N★) = �̂ . This means that, for every �′ > � (or �0 > 0), we can find the corresponding optimal solution N�

satisfying condition (8) by solving problem (13). We need to find the �′ such that the solution to problem (13), denoted as N★(�′), satisfies � (N★(�′)) = �̂ .

c⃝2010 Chuan Shi — Topic one: Line optimization : Proofs of the algorithm by KKT conditions 42/79

Page 27: Lecture Slides - Topic one: Production line profit ... · A P(N) Cost ($) P(N*(A )) ... Convert the constrained problem to minimization form ... Production line profit maximization

d

Applying KKT conditions

Then, �0 = �′ − � and N★(�′) satisfy conditions (6) and (7):

−∇�(N★(�′)) + �★ 0∇(�̂ − � (N★(�′))) = 0,

�★ 0(�̂ − � (N★(�′))) = 0.

Hence, �★ = �′ −� is exactly the Lagrange multiplier satisfying the KKT 0 conditions of the constrained problem, and N★ = N★(�′) is the optimal solution of the constrained problem.

Consequently, solving the constrained problem through our algorithm is essentially finding the unique Lagrange multipliers and optimal solution of the problem.

c⃝2010 Chuan Shi — Topic one: Line optimization : Proofs of the algorithm by KKT conditions 43/79

Page 28: Lecture Slides - Topic one: Production line profit ... · A P(N) Cost ($) P(N*(A )) ... Convert the constrained problem to minimization form ... Production line profit maximization

d

Applying KKT conditions

Then, �0 = �′ − � and N★(�′) satisfy conditions (6) and (7):

−∇�(N★(�′)) + �★ 0∇(�̂ − � (N★(�′))) = 0,

�★ 0(�̂ − � (N★(�′))) = 0.

Hence, �★ = �′ −� is exactly the Lagrange multiplier satisfying the KKT 0 conditions of the constrained problem, and N★ = N★(�′) is the optimal solution of the constrained problem.

Consequently, solving the constrained problem through our algorithm is essentially finding the unique Lagrange multipliers and optimal solution of the problem.

c⃝2010 Chuan Shi — Topic one: Line optimization : Proofs of the algorithm by KKT conditions 43/79

Page 29: Lecture Slides - Topic one: Production line profit ... · A P(N) Cost ($) P(N*(A )) ... Convert the constrained problem to minimization form ... Production line profit maximization

Algorithm summary for case 2

Solve unconstrained problem

Solve, by a gradient method, the unconstrained prob-lem for fixed �′

max N

�(N) = �′� (N) − �−1∑

�=1

���� − �−1∑

�=1

�� ̄��(N)

s.t. �� ≥ �min, ∀� = 1, ⋅ ⋅ ⋅ , � − 1.

Search

Do a one-dimensional search on �′ > � to find �′

such that the solution of the unconstrained problem, N★(�′), satisfies

� (N★(�′)) = �̂ .

P(N*(A'))=P?

Solve unconstrained problem

Search: Choose A'

Yes

No

Quit

c⃝2010 Chuan Shi — Topic one: Line optimization : Proofs of the algorithm by KKT conditions 44/79

Page 30: Lecture Slides - Topic one: Production line profit ... · A P(N) Cost ($) P(N*(A )) ... Convert the constrained problem to minimization form ... Production line profit maximization

⋅ ⋅ ⋅

Numerical results

Numerical experiment outline

Experiments on short lines.

Experiments on long lines.

Computation speed.

Method we use to check the algorithm

�̂ surface search in (�1, , ��−1) space. All buffer size allocations, N, such that � (N) = �̂ compose the �̂ surface.

c⃝2010 Chuan Shi — Topic one: Line optimization : Numerical results 45/79

Page 31: Lecture Slides - Topic one: Production line profit ... · A P(N) Cost ($) P(N*(A )) ... Convert the constrained problem to minimization form ... Production line profit maximization

�̂ surface search

15

20

25

30

35

40 40 45 50 55 60 65 70

70

75

80

85

90

N3

P surfaceThe optimal solution

N1

N2

Figure 6: �̂ Surface search

c⃝2010 Chuan Shi — Topic one: Line optimization : Numerical results 46/79

Page 32: Lecture Slides - Topic one: Production line profit ... · A P(N) Cost ($) P(N*(A )) ... Convert the constrained problem to minimization form ... Production line profit maximization

Experiment on short lines (4-buffer line)

Line parameters: �̂ = .88

machine �1 �2 �3 �4 �5

� .11 .12 .10 .09 .10 � .008 .01 .01 .01 .01

Machine 4 is the least reliable machine (bottleneck) of the line.

Cost function

4 4∑ ∑ �(N) = 2500� (N) − �� − �̄�(N)

�=1 �=1

c⃝2010 Chuan Shi — Topic one: Line optimization : Numerical results 47/79

Page 33: Lecture Slides - Topic one: Production line profit ... · A P(N) Cost ($) P(N*(A )) ... Convert the constrained problem to minimization form ... Production line profit maximization

Experiment on short lines (4-buffer line)

Results

Optimal solutions

�̂ Surface Search The algorithm Error Rounded �★

Prod. rate .8800 .8800 .8800 �★

1 28.85 28.8570 0.02% 29.0000 �★

2 58.46 58.5694 0.19% 59.0000 �★

3 92.98 92.9068 0.08% 93.0000 �★

4 87.39 87.4415 0.06% 87.0000 �̄1 19.0682 19.0726 0.02% 19.1791 �̄2 34.3084 34.3835 0.23% 34.7289 �̄3 48.7200 48.6981 0.04% 48.9123 �̄4 31.9894 32.0063 0.05% 31.9485

Profit ($) 1798.2 1798.1 0.006% 1797.4000

The maximal error is 0.23% and appears in �̄2.

Computer time for this experiment is 2.69 seconds.

c⃝2010 Chuan Shi — Topic one: Line optimization : Numerical results 48/79

Page 34: Lecture Slides - Topic one: Production line profit ... · A P(N) Cost ($) P(N*(A )) ... Convert the constrained problem to minimization form ... Production line profit maximization

Experiment on long lines (11-buffer line)

Line parameters: �̂ = .88

machine �1 �2 �3 �4 �5 �6

� .11 .12 .10 .09 .10 .11 � .008 .01 .01 .01 .01 .01

machine �7 �8 �9 �10 �11 �12

� .10 .11 .12 .10 .12 .09 � .009 .01 .009 .008 .01 .009

Cost function

11 11∑ ∑ �(N) = 6000� (N) − �� − �̄�(N)

�=1 �=1

c⃝2010 Chuan Shi — Topic one: Line optimization : Numerical results 49/79

Page 35: Lecture Slides - Topic one: Production line profit ... · A P(N) Cost ($) P(N*(A )) ... Convert the constrained problem to minimization form ... Production line profit maximization

Experiment on long lines (11-buffer line)

Results

Optimal solutions, buffer sizes:

�̂ Surface Search The algorithm Error Rounded �★

Prod. rate .8800 .8800 .8799 �★

1 29.10 29.1769 0.26% 29.0000 �★

2 59.20 59.2830 0.14% 59.0000 �★

3 97.80 97.7980 0.002% 98.0000 �★

4 107.50 107.4176 0.08% 107.0000 �★

5 84.50 84.4804 0.02% 84.0000 �★

6 70.80 70.6892 0.17% 71.0000 �★

7 63.10 63.1893 0.14% 63.0000 �★

8 53.10 52.9274 0.33% 53.0000 �★

9 47.20 47.2232 0.05% 47.0000 � ★

10 47.90 47.7967 0.22% 48.0000 � ★

11 48.80 48.7716 0.06% 49.0000

c⃝2010 Chuan Shi — Topic one: Line optimization : Numerical results 50/79

Page 36: Lecture Slides - Topic one: Production line profit ... · A P(N) Cost ($) P(N*(A )) ... Convert the constrained problem to minimization form ... Production line profit maximization

Experiment on long lines (11-buffer line)

Results (continued)

Optimal solutions, average inventories:

�̂ Surface Search The algorithm Error Rounded �★

�̄1 19.2388 19.2986 0.31% 19.1979 �̄2 34.9561 35.0423 0.25% 34.8194 �̄3 52.5423 52.6032 0.12% 52.6833 �̄4 45.1528 45.1840 0.07% 45.0835 �̄5 34.4289 34.4770 0.14% 34.2790 �̄6 30.7073 30.7048 0.01% 30.8229 �̄7 28.0446 28.1299 0.30% 28.0902 �̄8 21.5666 21.5438 0.11% 21.5932 �̄9 21.5059 21.5442 0.18% 21.4299 �̄10 22.6756 22.6496 0.11% 22.7303 �̄11 20.8692 20.8615 0.04% 20.9613

Profit ($) 4239.3 4239.2 0.002% 4239.5000

Computer time is 91.47 seconds.

c⃝2010 Chuan Shi — Topic one: Line optimization : Numerical results 51/79

Page 37: Lecture Slides - Topic one: Production line profit ... · A P(N) Cost ($) P(N*(A )) ... Convert the constrained problem to minimization form ... Production line profit maximization

Experiments for Tolio, Matta, and Gershwin (2002) model

Consider a 4-machine 3-buffer line with constraints �̂ = .87. In addition, � = 2000 and all �� and �� are 1.

machine �1 �2 �3 �4

��1 .10 .12 .10 .20 ��1 .01 .008 .01 .007 ��2 – .20 – .16 ��2 – .005 – .004

�̂ Surf. Search The algorithm Error � (N★) .8699 .8699 �★

1 29.8600 29.9930 0.45% �★

2 38.2200 38.0206 0.52% �★

3 20.6800 20.7616 0.39% �̄1 17.2779 17.3674 0.52% �̄2 17.2602 17.1792 0.47% �̄3 6.1996 6.2121 0.20%

Profit ($) 1610.3000 1610.3000 0.00%

c⃝2010 Chuan Shi — Topic one: Line optimization : Numerical results 52/79

Page 38: Lecture Slides - Topic one: Production line profit ... · A P(N) Cost ($) P(N*(A )) ... Convert the constrained problem to minimization form ... Production line profit maximization

Experiments for Levantesi, Matta, and Tolio (2003) model

Consider a 4-machine 3-buffer line with constraints �̂ = .87. In addition, � = 2000 and all �� and �� are 1.

machine �1 �2 �3 �4

�� 1.0 1.02 1.0 1.0 ��1 .10 .12 .10 .20 ��1 .01 .008 .01 .012 ��2 – .20 – .16 ��2 – .005 – .006

� ★ Surf. Search The algorithm Error � (N★) .8699 .8700 �★

1 27.7200 27.9042 0.66% �★

2 38.7900 38.9281 0.34% �★

3 34.0700 34.1574 0.26% �̄1 15.4288 15.5313 0.66% �̄2 19.8787 19.9711 0.46% �̄3 13.8937 13.9426 0.35%

Profit ($) 1590.0000 1589.7000 0.02%

c⃝2010 Chuan Shi — Topic one: Line optimization : Numerical results 53/79

Page 39: Lecture Slides - Topic one: Production line profit ... · A P(N) Cost ($) P(N*(A )) ... Convert the constrained problem to minimization form ... Production line profit maximization

Computation speed

Experiment

Run the algorithm for a series of experiments for lines having iden-tical machines to see how fast the algorithm could optimize longer lines.

Length of the line varies from 4 machines to 30 machines.

Machine parameters are � = .01 and � = .1.

In all cases, the feasible production rate is �̂ = .88.

The objective function is

�−1 �−1∑ ∑ �(N) = �� (N) − �� − �̄�(N).

�=1 �=1

where � = 500� for the line of length �.

c⃝2010 Chuan Shi — Topic one: Line optimization : Numerical results 54/79

Page 40: Lecture Slides - Topic one: Production line profit ... · A P(N) Cost ($) P(N*(A )) ... Convert the constrained problem to minimization form ... Production line profit maximization

Computation speed

0

500

1000

1500

2000

2500

3000

5 10 15 20 25 30

Com

pute

r tim

e (s

econ

ds )

Length of production lines

1 min3 mins

10 mins

c⃝2010 Chuan Shi — Topic one: Line optimization : Numerical results 55/79

Page 41: Lecture Slides - Topic one: Production line profit ... · A P(N) Cost ($) P(N*(A )) ... Convert the constrained problem to minimization form ... Production line profit maximization

Algorithm reliability

We run the algorithm on 739 randomly generated 4-machine 3-buffer lines. 98.92% of these experiments have a maximal error less than 6%.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

50

100

150

200

250

300

350

400

450

Maximal Error

Freq

uen

cy

c⃝2010 Chuan Shi — Topic one: Line optimization : Numerical results 56/79

Page 42: Lecture Slides - Topic one: Production line profit ... · A P(N) Cost ($) P(N*(A )) ... Convert the constrained problem to minimization form ... Production line profit maximization

Algorithm reliability

Taking a closer look at those 98.92% experiments, we find a more accurate distribution of the maximal error. We find that, out of the total 739 experiments, 83.90% of them have a maximal error less than 2%.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

10

20

30

40

50

60

Maximal Error

Freq

uen

cy

c⃝2010 Chuan Shi — Topic one: Line optimization : Numerical results 57/79

Page 43: Lecture Slides - Topic one: Production line profit ... · A P(N) Cost ($) P(N*(A )) ... Convert the constrained problem to minimization form ... Production line profit maximization

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

MIT OpenCourseWare http://ocw.mit.edu

2.852 Manufacturing Systems Analysis Spring 2010

For information about citing these materials or our Terms of Use,visit:http://ocw.mit.edu/terms.