Lecture Set 8 - Purdue University

142
Lecture Set 8: Induction Machines S.D. Sudhoff Spring 2021

Transcript of Lecture Set 8 - Purdue University

Page 1: Lecture Set 8 - Purdue University

Lecture Set 8:Induction Machines

S.D. SudhoffSpring 2021

Page 2: Lecture Set 8 - Purdue University

2

About this Lecture Set

• Reading–Electromechanical Motion Devices, 2nd Edition,

Sections 6.1-6.9, 6.12

• Goal–Understand the theory, operation, and modeling of

induction machines

Page 3: Lecture Set 8 - Purdue University

Lecture 68

Preliminaries

3

Page 4: Lecture Set 8 - Purdue University

4

Sample Applications• Low Power:–Shaded pole machines (small fans)–Permanent Split Capacitor Machines

(Residential HVAC)• Medium Power:– Industrial HVAC–Pumps–Vehicle Propulsion–Drive Applications

• High Power:–Ship, Train Propulsion–Wind Power Generation

Page 5: Lecture Set 8 - Purdue University

5

Characteristics

• The Good

• The Bad

• The Ugly

Page 6: Lecture Set 8 - Purdue University

6

Types of IM Machines

• Wound Rotor

• Squirrel Cage

• Solid Rotor

Page 7: Lecture Set 8 - Purdue University

1.5 MW Induction Generator

7

Page 8: Lecture Set 8 - Purdue University

8

150 Hp @ 1800 RPM

Page 9: Lecture Set 8 - Purdue University

9

5 Hp @ 1800 RPM

Page 10: Lecture Set 8 - Purdue University

ECE321 10

1 Hp @ 1800 RPM (Stator)

Page 11: Lecture Set 8 - Purdue University

11

1 Hp @ 1800 RPM (Rotor)

Page 12: Lecture Set 8 - Purdue University

Lecture 69

Theory of Operation: Stator MMF

12

Page 13: Lecture Set 8 - Purdue University

13

Two-Phase IM

Page 14: Lecture Set 8 - Purdue University

14

Stator MMF

Page 15: Lecture Set 8 - Purdue University

15

Stator MMF

Page 16: Lecture Set 8 - Purdue University

16

Stator MMF

Page 17: Lecture Set 8 - Purdue University

17

Stator MMF

Page 18: Lecture Set 8 - Purdue University

18

Stator MMF

Page 19: Lecture Set 8 - Purdue University

19

Stator MMF

Page 20: Lecture Set 8 - Purdue University

Lecture 70

Theory of Operation: Rotor MMF

20

Page 21: Lecture Set 8 - Purdue University

21

Rotor MMF

Page 22: Lecture Set 8 - Purdue University

22

Rotor MMF

Page 23: Lecture Set 8 - Purdue University

23

Rotor MMF

Page 24: Lecture Set 8 - Purdue University

24

Rotor MMF

Page 25: Lecture Set 8 - Purdue University

25

Rotor MMF

Page 26: Lecture Set 8 - Purdue University

26

Rotor MMF

Page 27: Lecture Set 8 - Purdue University

27

Comparison of MMFs

• As viewed from stator

• As viewed from rotor

Page 28: Lecture Set 8 - Purdue University

28

IM Torque Production

Page 29: Lecture Set 8 - Purdue University

Lecture 71

Overview of Machine Models

29

Page 30: Lecture Set 8 - Purdue University

30

Our Analysis

• Machine Variable Model

• Referred Machine Variable Model

• QD Model

• Steady-State Model

Page 31: Lecture Set 8 - Purdue University

31

Machine Variable Model

• Voltage equations

• Flux Linkage Equations

• Inductance Matrices

• Torque equation

abs ( )

abs s srT

abr sr r abr

L L iL L i

λλ

00

lr mrr

lr mr

L LL L

L

cos sinsin cos

r rsr sr

r r

L

L

absabssabs pλ irv

abr r abr abrp v r i λ

as

[( )sin2

(i )cos ]

e sr as ar bs br r

br bs ar r

PT L i i i i

i i i

00

ls mss

ls ms

L LL L

L

Page 32: Lecture Set 8 - Purdue University

32

Referred Machine Variable Model

• Referral of variables

• Voltage equations

• Flux linkage equations

• Torque equation

rr

sr N

N rr2

abr

abs

rT

sr

srs

abr

abs ii

LLLL

)(λλ

00

lr msr

lr ms

L LL L

L

rr

rrmssr

rs

sr LNN

cossinsincos

LL

abrsr

abr NN ii

abrrs

abr NN vv

abrrs

abr NN λλ

absabssabs pλ irv

abrabrrabr pλ irv

]cos)sin)[(

2rarbsbras

rbrbsarasmseiii(i

iiiiLPT

Page 33: Lecture Set 8 - Purdue University

QD Model

33

Page 34: Lecture Set 8 - Purdue University

34

Phasor Model

• Torque: ]~~Re[2

2 *arasmse IIjLPT

Page 35: Lecture Set 8 - Purdue University

Lecture 72

Machine Variable Model:Voltage and Flux Linkage Equations

35

Page 36: Lecture Set 8 - Purdue University

36

Voltage Equations

dtdirv as

assas

dtdirv bs

bssbs

dtdirv ar

arrar

dtd

irv brbrrbr

abrabrrabr

absabssabs

ppλλ

irvirv

][)( bsasT

abs f ff

][)( brarT

abr f ff

Page 37: Lecture Set 8 - Purdue University

37

Flux Linkage Equations – Scalar Form

brasbrarasarbsasbsasasasas iLiLiLiL

brbsbrarbsarbsbsbsasbsasbs iLiLiLiL

brarbrarararbsarbsasarasar iLiLiLiL

brbrbrarbrarbsbrbsasbrasbr iLiLiLiL

Page 38: Lecture Set 8 - Purdue University

38

Flux Linkage Equations – Matrix Form

abrsrabssabs iLiL λ

abrrabsT

srabr iLiL )(λ

abr

abs

rT

sr

srs

abr

abs

ii

LLLL

)(λ

λ

Page 39: Lecture Set 8 - Purdue University

39

Derivation of Magnetizing Inductances

Page 40: Lecture Set 8 - Purdue University

40

Derivation of Magnetizing Inductances

Page 41: Lecture Set 8 - Purdue University

41

Derivation of Magnetizing Inductances

Page 42: Lecture Set 8 - Purdue University

42

Derivation of Magnetizing Inductances

Page 43: Lecture Set 8 - Purdue University

43

Derivation of Magnetizing Inductances

Page 44: Lecture Set 8 - Purdue University

44

Flux Linkage Equation Summary

IL ssss

sss L

LL

00

IL rrrr

rrr L

LL

00

rr

rrsrsr L

cossinsincos

L

mslsss LLL

mrlrrr LLL

m

sms

NLR

2

m

rmr

NLR

2

m

srsr

NNL

R

Page 45: Lecture Set 8 - Purdue University

Lecture 73

Machine Variable Model:Torque Equation

45

Page 46: Lecture Set 8 - Purdue University

46

Starting Point

abr

abs

rT

sr

srs

abr

abs

ii

LLLL

)(λ

λ

Page 47: Lecture Set 8 - Purdue University

47

Derivation of Torque Equation

Page 48: Lecture Set 8 - Purdue University

48

Derivation of Torque Equation

Page 49: Lecture Set 8 - Purdue University

Lecture 74

Referred Machine Variable Model:Flux Linkage Equations

49

Page 50: Lecture Set 8 - Purdue University

50

Why

Page 51: Lecture Set 8 - Purdue University

51

Starting Point

abr

abs

rT

sr

srs

abr

abs

ii

LLLL

)(λ

λ

IL ssss

sss L

LL

00

IL rrrr

rrr L

LL

00

rr

rrsrsr L

cossinsincos

L

Page 52: Lecture Set 8 - Purdue University

52

Referral of Flux Linkage Equations

Page 53: Lecture Set 8 - Purdue University

53

Referral of Flux Linkage Equations

Page 54: Lecture Set 8 - Purdue University

54

Summary

abr

abs

rT

sr

srs

abr

abs

ii

LLLL

)(λ

λ

rr

rrr

r

sr L

LNN

002

LL

mslrmrr

slrrr LLL

NNLL

2

rr

rrmssr

r

ssr L

NN

cossinsincos

LL

Page 55: Lecture Set 8 - Purdue University

Lecture 75

Referred Machine Variable Model:Voltage and Torque Equations

55

Page 56: Lecture Set 8 - Purdue University

56

Referral of Voltage Equations

abrabrrabr

absabssabs

ppλλ

irvirv

Page 57: Lecture Set 8 - Purdue University

57

Referral of Voltage Equations

• Finally, we get

• Whereabrabrrabr

absabssabs

ppλλ

irvirv

rr

sr N

N rr2

Page 58: Lecture Set 8 - Purdue University

58

Referral of Torque Equation

• It can be shown that

]cos)(sin)[(2 rarbsbrasrbrbsarasmse iiiiiiiiLPT

Page 59: Lecture Set 8 - Purdue University

Lecture 76

The Stationary Reference Frame

59

Page 60: Lecture Set 8 - Purdue University

60

Stationary Reference Frame

• Stator transformation

• Rotor transformation

bs

ass

ds

sqs

ff

f

f10

01absss

sqds fKf

sqds

ssabs fKf 1)(

br

ar

rr

rrs

dr

sqr

ff

f

f

cossinsincos

abrsr

sqdr fKf

sqdr

srabr fKf 1)(

Page 61: Lecture Set 8 - Purdue University

61

Stationary Reference Frame

Page 62: Lecture Set 8 - Purdue University

62

Geometrical Interpretation

Page 63: Lecture Set 8 - Purdue University

Lecture 77

Transformation of the Voltage Equations to the Stationary Reference Frame

63

Page 64: Lecture Set 8 - Purdue University

64

Transformation of Voltage Equations

Page 65: Lecture Set 8 - Purdue University

65

Transformation of Voltage Equations

Page 66: Lecture Set 8 - Purdue University

66

Transformation of Voltage Equations

Page 67: Lecture Set 8 - Purdue University

67

Transformation of Voltage Equations

Page 68: Lecture Set 8 - Purdue University

68

Summary

sqds

sqdss

sqds pλ irv

sqdr

sdqrr

sqdrr

sqdr pλλ irv

[ ]s s s Tdqr dr qr λ

Page 69: Lecture Set 8 - Purdue University

Lecture 78

Transformation of the Flux Linkage Equations to the Stationary Reference Frame

69

Page 70: Lecture Set 8 - Purdue University

70

Transformation of Flux Linkage Equations

abrsrabssabs iLiL λ

abrrrabsabr iLiL T'sr λ

Page 71: Lecture Set 8 - Purdue University

71

Transformation of Flux Linkage Equations

Page 72: Lecture Set 8 - Purdue University

72

Transformation of Flux Linkage Equations

Page 73: Lecture Set 8 - Purdue University

73

Transformation of Flux Linkage Equations

Page 74: Lecture Set 8 - Purdue University

74

Transformation of Flux Linkage Equations

sqdrms

sqdsss

sqds LL ii λ

mslrrr

mslsss

sqdrrr

sqdsms

sqdr

LLL

LLL

LL

''

' iiλ

Page 75: Lecture Set 8 - Purdue University

Lecture 79

Transformation of the Torque Equation to the Stationary Reference Frame

75

Page 76: Lecture Set 8 - Purdue University

76

Transformation of the Torque Equations

sin coscos sin2

r rTe sr abs abr

r r

PT L

i i

Page 77: Lecture Set 8 - Purdue University

77

Transformation of the Torque Equations

Page 78: Lecture Set 8 - Purdue University

78

Transformation of the Torque Equations

Page 79: Lecture Set 8 - Purdue University

79

Transformation of the Torque Equations

)(2

sqr

sds

sdr

sqsmse iiiiLPT

'( )2

s s s se qr dr dr qr

PT i i

)(2

sds

sqs

sqs

sdse iiPT

Page 80: Lecture Set 8 - Purdue University

Lecture 80

QD Equivalent Circuit

80

Page 81: Lecture Set 8 - Purdue University

81

QD Equivalent Circuit

Page 82: Lecture Set 8 - Purdue University

82

QD Equivalent Circuit

Page 83: Lecture Set 8 - Purdue University

83

QD Equivalent Circuit

Page 84: Lecture Set 8 - Purdue University

84

Comments on QD Machine

• When is it valid ?

• What is it used for ?

Page 85: Lecture Set 8 - Purdue University

Lecture 81

Balanced Steady-State Operation and the Phasor Model

85

Page 86: Lecture Set 8 - Purdue University

86

Stator Side

• Steady-state forms

• We can show

2 cos[ (0)]as s e esfF F t

2 sin[ (0)]bs s e esfF F t

)0(~~ esfjsas

sqs eFFF

)(~~ )0(esfjsbs

sds ejFFF

s

dss

qs FjF ~~

Page 87: Lecture Set 8 - Purdue University

Stator Side

87

Page 88: Lecture Set 8 - Purdue University

Stator Side

88

Page 89: Lecture Set 8 - Purdue University

89

Rotor Side

• Rotor relationships

• We can show

2 cos[( ) (0)]ar r e r erfF F t

2 sin[( ) (0)]br r e r erfF F t

sdr

sqr FjF ~~

ars

qr FF ~~

brs

dr FF ~~

Page 90: Lecture Set 8 - Purdue University

90

Rotor Side

Page 91: Lecture Set 8 - Purdue University

91

Rotor Side

Page 92: Lecture Set 8 - Purdue University

92

Rotor Side

Page 93: Lecture Set 8 - Purdue University

Lecture 82

Balanced Steady-State Operation Phasor Equivalent Circuit

93

Page 94: Lecture Set 8 - Purdue University

94

Phasor Equivalent Circuit (2-Phase)

• Torque: ]~~Re[2

2 *arasmse IIjLPT

Page 95: Lecture Set 8 - Purdue University

95

Phasor Equivalent Circuit (2-Phase)

• Voltage Equations

• Slip

• Torque

)~~(~)(~arasmseaslsesas IILjILjrV

)~~(~~

'arasmsearlre

rar IILjILjsr

sV

e

res

]~~Re[2

2 *arasmse IIjLPT

Page 96: Lecture Set 8 - Purdue University

96

Derivation

Page 97: Lecture Set 8 - Purdue University

97

Derivation

Page 98: Lecture Set 8 - Purdue University

98

Derivation

Page 99: Lecture Set 8 - Purdue University

99

Derivation

Page 100: Lecture Set 8 - Purdue University

100

Derivation

Page 101: Lecture Set 8 - Purdue University

101

Chief Problems with Model

• Magnetizing Saturation

• Leakage Saturation

• Distributed System Effects

• Thermal Effects

Page 102: Lecture Set 8 - Purdue University

Lecture 83

Balanced Steady-State Operation of 3-Phase Machines

102

Page 103: Lecture Set 8 - Purdue University

103

Phasor Equivalent Circuit (3-Phase)

• Where

msMarasMe LLIIjLPT23]~~Re[

23 *

Page 104: Lecture Set 8 - Purdue University

104

Delta Connected Machine

Page 105: Lecture Set 8 - Purdue University

105

Wye Connected Machine

Page 106: Lecture Set 8 - Purdue University

Lecture 84

Analyzing Machine Operation

106

Page 107: Lecture Set 8 - Purdue University

107

Typical Operating Situations

• Utility grid– Fixed voltage, fixed frequency voltage source

• Inverter (power electronic control)– Voltage source based inverter (variable voltage, variable

frequency)• Volts-per-hertz control

– Current source based inverter (variable current, variable frequency)• Maximum torque per amp control• Field-oriented control• Direct torque control

Page 108: Lecture Set 8 - Purdue University

108

Derivation of Rotor Current

Page 109: Lecture Set 8 - Purdue University

109

Torque for a Given Stator Current

• We can show

22

22

)()(2

rrsr

rsMs

eLr

rILPNT

Page 110: Lecture Set 8 - Purdue University

110

Torque for a Given Stator Current

Page 111: Lecture Set 8 - Purdue University

111

Torque for a Given Stator Current

Page 112: Lecture Set 8 - Purdue University

112

Torque for a Given Stator Current

Page 113: Lecture Set 8 - Purdue University

Lecture 85

Operation From A Current Source

113

Page 114: Lecture Set 8 - Purdue University

114

Operation from Current Source

• Machine Parameters• 460 V, l-l, rms; 50 Hp @ 1800 rpm– Stator resistance: 72.5 m– Rotor resistance: 41.3 m– Stator and referred rotor leakage: 1.32 mH–Magnetizing Inductance: 30.1 mH

• Operating Conditions– Armature current: 50 A, rms– Frequency: 60 Hz

Page 115: Lecture Set 8 - Purdue University

115

Current Source Torque - Speed

0 100 200 300 4000

50

100

150

200

250216.266

1.508

T e ri

376.9920 ri

Page 116: Lecture Set 8 - Purdue University

116

Maximum Torque Per Amp Control

• Control Summary

• To show this, start with

rrMs

rrsres

rLNPLrT

I

2

22*

||))((||2

rr

rs L

r

22

22

)()(2

rrsr

rsMs

eLr

rILPNT

Page 117: Lecture Set 8 - Purdue University

117

Maximum Torque Per Amp Control

Page 118: Lecture Set 8 - Purdue University

118

Maximum Torque Per Amp Control

Page 119: Lecture Set 8 - Purdue University

119

Maximum Torque Per Amp Control

Page 120: Lecture Set 8 - Purdue University

120

MTPA Control Example

• Consider the 50 Hp example• Suppose we want 200 Nm at a speed of 1000 rpm• Compute the magnitude of the a-phase current, A• Compute the required voltage• Compute the efficiency

Page 121: Lecture Set 8 - Purdue University

121

MTPA Control Example

Page 122: Lecture Set 8 - Purdue University

122

MTPA Control Example

Page 123: Lecture Set 8 - Purdue University

123

MTPA Control Example

Page 124: Lecture Set 8 - Purdue University

Lecture 86

Operation From A Voltage Source

124

Page 125: Lecture Set 8 - Purdue University

125

Operation From Voltage Source: Stator Current

Page 126: Lecture Set 8 - Purdue University

126

Example 1

• Consider our 50 Hp machine• Fed from 460 V l-l rms source• Load torque of 200 Nm• Objective: Compute speed and current

Page 127: Lecture Set 8 - Purdue University

127

Steady-State Operating Point

0 100 200 300 4000

100

200

300

400

500493.596

0.499

T e V s e ri

T L

376.9840 ri ri

Page 128: Lecture Set 8 - Purdue University

128

Steady-State Operating Point

Page 129: Lecture Set 8 - Purdue University

129

Example 2

• Consider our 50 Hp machine• Fed from 460 V l-l rms, 60 Hz source• Let’s look at machine properties versus speed

Page 130: Lecture Set 8 - Purdue University

130

Current vs Speed

0 100 200 300 4000

50

100

150

200

250

300271.655

22.45

I as V s e ri r rs

I as V s e ri r r0

I as V s e ri r rb

376.6150 ri

Page 131: Lecture Set 8 - Purdue University

131

Torque vs Speed

0 100 200 300 4000

100

200

300

400

500493.595

4.981

T e V s e ri r rs

T e V s e ri r r0

T e V s e ri r rb

376.6150 ri

Page 132: Lecture Set 8 - Purdue University

132

Efficiency vs Speed

0 100 200 300 4000

0.2

0.4

0.6

0.8

0.985

0

V s e ri r rs

V s e ri r r0

V s e ri r rb

4000 ri

Page 133: Lecture Set 8 - Purdue University

133

Efficiency vs Output Power

0 1 104 2 104 3 104 4 104 5 104 6 104 7 104 8 104 9 104 1 1050

0.2

0.4

0.6

0.8

0.985

0

V s e ri r rs

V s e ri r r0

V s e ri r rb

9.216 1040 P out V s e ri r rs P out V s e ri

r r0 P out V s e ri r rb

Page 134: Lecture Set 8 - Purdue University

Lecture 87

Parameter Identification

134

Page 135: Lecture Set 8 - Purdue University

135

Parameter Identification

• DC Test

Page 136: Lecture Set 8 - Purdue University

136

Parameter Identification

• Blocked Rotor Test

Page 137: Lecture Set 8 - Purdue University

137

Parameter Identification

• Blocked Rotor Test

Page 138: Lecture Set 8 - Purdue University

138

Parameter Identification

• No Load Test

Page 139: Lecture Set 8 - Purdue University

Lecture 87

Volts Per Hertz Control

139

Page 140: Lecture Set 8 - Purdue University

140

Volts Per Hertz Control

• The idea:

Page 141: Lecture Set 8 - Purdue University

141

Volts Per Hertz Control

• The idea:

Page 142: Lecture Set 8 - Purdue University

142

Volts Per Hertz Control

0 100 200 300 4000

100

200

300

400

500493.583

0

T e eb ri

T e eb 0.75 ri

T e eb 0.5 ri

T e eb 0.25 ri

376.6150 ri