Lecture SCT2 – Process Integration

74
Lecture SCT2 – Process Integration 12. Web-based virtual Lecture: July 08 2021 Prof. Dr. Johann W. Bartha Inst. f. Halbleiter und Mikrosystemtechnik Technische Universität Dresden Summer Semester 2021 Start lecture here “SCT_SS21_12.1“ 37:08 L12 The hyperlinks to the video streams in this virtual lecture are marked by the Video Campus Sachsen Logo . To watch them you need to be logged on at the host: VCS . Please click on: https://videocampus.sachsen.de/login select TU-Dresden in the selection mask and than logon with the same ID and password as you use for OPAL or ZIH. Stay logged on as long as you work with the lecture slides.

Transcript of Lecture SCT2 – Process Integration

Page 1: Lecture SCT2 – Process Integration

Lecture SCT2 – Process Integration

12. Web-based virtual Lecture: July 08 2021Prof. Dr. Johann W. Bartha

Inst. f. Halbleiter und MikrosystemtechnikTechnische Universität Dresden

Summer Semester 2021

Start lecture here

“SCT_SS21_12.1“ 37:08

L12

The hyperlinks to the video streams in this virtual lecture are marked by the Video Campus Sachsen Logo. To watch them you need to be logged on at the host: VCS. Please click on: https://videocampus.sachsen.de/loginselect TU-Dresden in the selection mask and than logon with the same ID and password as you use for OPAL or ZIH. Stay logged on as long as you work with the lecture slides.

Page 2: Lecture SCT2 – Process Integration

This document including the contained video streams is only

available to students of the lecture „Semiconductor Technology 2“

at TU-Dresden. It must not be copied and published

outside of TUD! It is intended for

TUD internal use only!L12

Page 3: Lecture SCT2 – Process Integration

Page: 3 © J. W. Bartha 2021 TUD INTERNAL USE ONLY!

Lecture evaluation open until July 08!

Please participate in the lecture evaluation!

Page 4: Lecture SCT2 – Process Integration

Page: 4 © J. W. Bartha 2021 TUD INTERNAL USE ONLY!

Outline

http://www.computerhistory.org/siliconengine/timeline/

0. Introduction/ Lab organization/DMA /SCT1/Motivation1. Process integration

1.MOS Structure, MOS Capacitor2.Structure of a MOSFET3.I/V behavior

2. Circuits in Metal-Gate FET Technology1.Process sequence of N-MOSFET in Metal Gate2.From inverter to memory cell3.SRAM in NMOS Metal Gate4.The threshold voltage of the MOSFET

1.Parasitic FET2.Enhancement/Depletion Transistor3.N-MOS Logic by E/D Transitors4.Process sequence of the N-MOS E/D Process

3. Self aligned Process1.Metal Gate -> Si Gate2. Channel-Stop & LOCOS Technology

1.Example: Process flow of E/D SiGate LOCOS Inverter 2.LOCOS Variation3.Shallow Trench Isolation

3.Lightly doped drain4.SALICIDE5. Self Aligned Contacts (SAC)6. Resist trimming

4.Transition to CMOS Technology1.MOS Transistor Types2.CMOS Inverter

1.Consideration NMOS E/D Inverter2.Comparison CMOS Inverter

3.CMOS Process flow (Example CMOS 180 nm process)5. Further Considerations

1.Scaling1. Challenges2.Material Equivalent Scaling3.Further Concepts

SC-Basics

Review: - SCT Basics- MOS-Cap-CV- MOS-FET (N-FET enh.)- Al-Gate FET- SRAM product (E/E) - VT adjust => Depl.- E/D Logic- Self aligned process

Si-Gate, LOCOS, STI, LDD, SALICIDE, SAC, Resist Trimming

Today: CMOS

L12

Page 5: Lecture SCT2 – Process Integration

Page: 5 © J. W. Bartha 2021 TUD INTERNAL USE ONLY!

Outline

http://www.computerhistory.org/siliconengine/timeline/

0. Introduction/ Lab organization/DMA /SCT1/Motivation1. Process integration

1.MOS Structure, MOS Capacitor2.Structure of a MOSFET3.I/V behavior

2. Circuits in Metal-Gate FET Technology1.Process sequence of N-MOSFET in Metal Gate2.From inverter to memory cell3.SRAM in NMOS Metal Gate4.The threshold voltage of the MOSFET

1.Parasitic FET2.Enhancement/Depletion Transistor3.N-MOS Logic by E/D Transitors4.Process sequence of the N-MOS E/D Process

3. Self aligned Process1.Metal Gate -> Si Gate2. Channel-Stop & LOCOS Technology

1.Example: Process flow of E/D SiGate LOCOS Inverter 2.LOCOS Variation3.Shallow Trench Isolation

3.Lightly doped drain4.SALICIDE5. Self Aligned Contacts (SAC)6. Resist trimming

4.Transition to CMOS Technology1.MOS Transistor Types2.CMOS Inverter

1.Consideration NMOS E/D Inverter2.Comparison CMOS Inverter

3.CMOS Process flow (Example CMOS 180 nm process)5. Further Considerations

1.Scaling1. Challenges2.Material Equivalent Scaling3.Further Concepts

SC-Basics

Review: - SCT Basics- MOS-Cap-CV- MOS-FET (N-FET enh.)- Al-Gate FET- SRAM product (E/E) - VT adjust => Depl.- E/D Logic- Self aligned process

Si-Gate, LOCOS, STI, LDD, SALICIDE, SAC, Resist Trimming

Today: CMOS

L12

Continue “SCT_SS20_12.2“ 21:00

Page 6: Lecture SCT2 – Process Integration

Page: 6 © J. W. Bartha 2021 TUD INTERNAL USE ONLY!

Blackboard 12.1

L12

Page 7: Lecture SCT2 – Process Integration

Page: 7 © J. W. Bartha 2021 TUD INTERNAL USE ONLY!

4. Transition to CMOS Technology

L12

Page 8: Lecture SCT2 – Process Integration

Page: 8 © J. W. Bartha 2021 TUD INTERNAL USE ONLY!

4.1 Different Types of MOSFET

L12

Page 9: Lecture SCT2 – Process Integration

Page: 9 © J. W. Bartha 2021 TUD INTERNAL USE ONLY!

4.2 Transition to the CMOS inverter 4.2.1 Remember: E/E inverter

Remember the N-MOS Inverter!

L12

Page 10: Lecture SCT2 – Process Integration

Page: 10 © J. W. Bartha 2021 TUD INTERNAL USE ONLY!

4.2 Transition to the CMOS inverter 4.2.1 Remember: E/E inverter

Remember the N-MOS Inverter!

When Vi is increased from zero to VD, acurrent flows through the load transistor for Vi > VT and reaches a saturation value controlled by the load transistor.

L12

Page 11: Lecture SCT2 – Process Integration

Page: 11 © J. W. Bartha 2021 TUD INTERNAL USE ONLY!

4.2 Transition to the CMOS inverter 4.2.1 Remember: E/E inverter

Remember the N-MOS Inverter!

When the input is high, the inverter consumes continuously power!

When Vi is increased from zero to VD, acurrent flows through the load transistor for Vi > VT and reaches a saturation value controlled by the load transistor.

L12

Page 12: Lecture SCT2 – Process Integration

Page: 12 © J. W. Bartha 2021 TUD INTERNAL USE ONLY!

4.2.2. Hydrodynamic analogy: CMOS Inverter

Instead of the load device it would be much nicer to have a switching devicethat operates complementary!

L12

Page 13: Lecture SCT2 – Process Integration

Page: 13 © J. W. Bartha 2021 TUD INTERNAL USE ONLY!

4.2.2. Hydrodynamic analogy: CMOS Inverter

Instead of the load device it would be much nicer to have a switching devicethat operates complementary! Like the two valves controlled by the piston.

Operation state 1

L12

Page 14: Lecture SCT2 – Process Integration

Page: 14 © J. W. Bartha 2021 TUD INTERNAL USE ONLY!

4.2.2. Hydrodynamic analogy: CMOS Inverter

Instead of the load device it would be much nicer to have a switching devicethat operates complementary! Like the two valves controlled by the piston.

Operation state 1 Operation state 2

L12

Page 15: Lecture SCT2 – Process Integration

Page: 15 © J. W. Bartha 2021 TUD INTERNAL USE ONLY!

4.2.2. Hydrodynamic analogy: CMOS Inverter

Instead of the load device it would be much nicer to have a switching devicethat operates complementary!

Something like this can be done by combining a N-MOS and a P-MOS FET:

Like the two valves controlled by the piston.Operation state 1 Operation state 2

L12

Page 16: Lecture SCT2 – Process Integration

Page: 16 © J. W. Bartha 2021 TUD INTERNAL USE ONLY!

Process - integration

Application example:Ring Oscillator

L12

Page 17: Lecture SCT2 – Process Integration

Page: 17 © J. W. Bartha 2021 TUD INTERNAL USE ONLY!

Process - integration

Application example:Ring Oscillator

L12

Page 18: Lecture SCT2 – Process Integration

Page: 18 © J. W. Bartha 2021 TUD INTERNAL USE ONLY!

Process - integration

Application example:Ring Oscillator

Multiple stage ring oscillator can be nicely used to determine the switching speed of a circuit technology. The more stages the more easy to measure.

L12

Page 19: Lecture SCT2 – Process Integration

Page: 19 © J. W. Bartha 2021 TUD INTERNAL USE ONLY!

Application example: Ring Oscillator

L12

Page 20: Lecture SCT2 – Process Integration

Page: 20 © J. W. Bartha 2021 TUD INTERNAL USE ONLY!

Application example: Ring Oscillator

Feeding back last output to first input:

L12

Page 21: Lecture SCT2 – Process Integration

Page: 21 © J. W. Bartha 2021 TUD INTERNAL USE ONLY!

Does this circuit oscillate ?

Application example: Ring Oscillator

Feeding back last output to first input:

L12

Page 22: Lecture SCT2 – Process Integration

Page: 22 © J. W. Bartha 2021 TUD INTERNAL USE ONLY!

Does this circuit oscillate ?

No! Last output and first input are both on high. No reason to change the state!

Application example: Ring Oscillator

Feeding back last output to first input:

L12

Page 23: Lecture SCT2 – Process Integration

Page: 23 © J. W. Bartha 2021 TUD INTERNAL USE ONLY!L12

Page 24: Lecture SCT2 – Process Integration

Page: 24 © J. W. Bartha 2021 TUD INTERNAL USE ONLY!

And now?

L12

Page 25: Lecture SCT2 – Process Integration

Page: 25 © J. W. Bartha 2021 TUD INTERNAL USE ONLY!

Odd number of inverters required!

And now?

L12

Page 26: Lecture SCT2 – Process Integration

Page: 26 © J. W. Bartha 2021 TUD INTERNAL USE ONLY!

Back to realization of an inverter with an active load by using N-MOS and P-MOS FET

Odd number of inverters required!

And now?

L12

Page 27: Lecture SCT2 – Process Integration

Page: 27 © J. W. Bartha 2021 TUD INTERNAL USE ONLY!

Back to realization of an inverter with an active load by using N-MOS and P-MOS FET

Odd number of inverters required!

And now?

L12

Continue“SCT_SS20_12.03” 31:01

Page 28: Lecture SCT2 – Process Integration

Page: 28 © J. W. Bartha 2021 TUD INTERNAL USE ONLY!

Functioning of the CMOS Inverter

Remember the N-MOS characteristic.

L12

Page 29: Lecture SCT2 – Process Integration

Page: 29 © J. W. Bartha 2021 TUD INTERNAL USE ONLY!

Functioning of the CMOS Inverter

Remember the N-MOS characteristic.

Remember the P-MOS characteristic.

L12

Page 30: Lecture SCT2 – Process Integration

Page: 30 © J. W. Bartha 2021 TUD INTERNAL USE ONLY!

Functioning of the CMOS Inverter

Remember the N-MOS characteristic.

Remember the P-MOS characteristic.

L12

Page 31: Lecture SCT2 – Process Integration

Page: 31 © J. W. Bartha 2021 TUD INTERNAL USE ONLY!

Functioning of the CMOS Inverter

Remember the N-MOS characteristic.

Remember the P-MOS characteristic. Let’s turn the transistor aroundand plot IS instead of ID.

L12

Page 32: Lecture SCT2 – Process Integration

Page: 32 © J. W. Bartha 2021 TUD INTERNAL USE ONLY!

Functioning of the CMOS Inverter

Remember the N-MOS characteristic.

Remember the P-MOS characteristic.

Now we shift each terminal by VD!

Let’s turn the transistor aroundand plot IS instead of ID.

L12

Page 33: Lecture SCT2 – Process Integration

Page: 33 © J. W. Bartha 2021 TUD INTERNAL USE ONLY!

Functioning of the CMOS Inverter

Remember the N-MOS characteristic.

Remember the P-MOS characteristic.

Now we shift each terminal by VD!

Let’s turn the transistor aroundand plot IS instead of ID.

We assemble this to the CMOS inverter:

L12

Page 34: Lecture SCT2 – Process Integration

Page: 34 © J. W. Bartha 2021 TUD INTERNAL USE ONLY!

Process - integrationPerfect transfer curve

L12

Page 35: Lecture SCT2 – Process Integration

Page: 35 © J. W. Bartha 2021 TUD INTERNAL USE ONLY!

Process - integration

Transfer curve: ☺ Very steep☺ Vo max = VD, Vo min = 0☺ Static power consumption = 0

Perfect transfer curve

L12

Page 36: Lecture SCT2 – Process Integration

Page: 36 © J. W. Bartha 2021 TUD INTERNAL USE ONLY!

Process - integration

Higher process complexity necessary!

Transfer curve: ☺ Very steep☺ Vo max = VD, Vo min = 0☺ Static power consumption = 0

Perfect transfer curve

L12

Page 37: Lecture SCT2 – Process Integration

Page: 37 © J. W. Bartha 2021 TUD INTERNAL USE ONLY!

VDS = -VDD … 0

VGS =

-VDD … 0

VDS = 0 …+VDD

VGS =

0 …+VDD

CMOS Concept discovered by IDS=f(VDS)

L12

Page 38: Lecture SCT2 – Process Integration

Page: 38 © J. W. Bartha 2021 TUD INTERNAL USE ONLY!

VDS = -VDD … 0

VGS =

-VDD … 0

VDS = 0 …+VDD

VGS =

0 …+VDD

VGS =

-VDD … 0

VDS = -VDD … 0 VDS

CMOS Concept discovered by IDS=f(VDS)

L12

Page 39: Lecture SCT2 – Process Integration

Page: 39 © J. W. Bartha 2021 TUD INTERNAL USE ONLY!

VDS = -VDD … 0

VGS =

-VDD … 0

VDS = 0 …+VDD

VGS =

0 …+VDD

VGS =

-VDD … 0

VDS = -VDD … 0 VDS

VGS =

0 … VDD

VDS = 0 … VDD

VDS

VGS=0

VDD

VGS

CMOS Concept discovered by IDS=f(VDS)

L12

Page 40: Lecture SCT2 – Process Integration

Page: 40 © J. W. Bartha 2021 TUD INTERNAL USE ONLY!

VDS = -VDD … 0

VGS =

-VDD … 0

VDS = 0 …+VDD

VGS =

0 …+VDD

VGS =

-VDD … 0

VDS = -VDD … 0 VDS

VGS =

0 … VDD

VDS = 0 … VDD

VDS

VGS=0

VDD

VGS

CMOS Concept discovered by IDS=f(VDS)

L12

Page 41: Lecture SCT2 – Process Integration

Page: 41 © J. W. Bartha 2021 TUD INTERNAL USE ONLY!

Vout=VDD

No Current!

Concept of the CMOS InverterInput = low

L12

Page 42: Lecture SCT2 – Process Integration

Page: 42 © J. W. Bartha 2021 TUD INTERNAL USE ONLY!

Vout=0.95V

Concept of the CMOS Inverter

L12

Page 43: Lecture SCT2 – Process Integration

Page: 43 © J. W. Bartha 2021 TUD INTERNAL USE ONLY!

Vout=0.8V

Concept of the CMOS Inverter

L12

Page 44: Lecture SCT2 – Process Integration

Page: 44 © J. W. Bartha 2021 TUD INTERNAL USE ONLY!

Vout=0.2V

Concept of the CMOS Inverter

L12

Page 45: Lecture SCT2 – Process Integration

Page: 45 © J. W. Bartha 2021 TUD INTERNAL USE ONLY!

Vout=0.05V

Concept of the CMOS Inverter

L12

Page 46: Lecture SCT2 – Process Integration

Page: 46 © J. W. Bartha 2021 TUD INTERNAL USE ONLY!

Vout=0V

No Current!

Concept of the CMOS InverterInput = high

V12L12

Page 47: Lecture SCT2 – Process Integration

Page: 47 © J. W. Bartha 2021 TUD INTERNAL USE ONLY!

Ideal: long channel & IDsat(N)=IDsat(P)

Real: short channel & IDsat(N)>IDsat(P)

To get closer to ideal, design of FET width W(P) > W(N) !L12

Page 48: Lecture SCT2 – Process Integration

Page: 48 © J. W. Bartha 2021 TUD INTERNAL USE ONLY!

CMOS ComplementaryMOS(UtilizingNMOS & PMOS)

Inverter

L12

Page 49: Lecture SCT2 – Process Integration

Page: 49 © J. W. Bartha 2021 TUD INTERNAL USE ONLY!

CMOS ComplementaryMOS(UtilizingNMOS & PMOS)

Inverter

L12

Page 50: Lecture SCT2 – Process Integration

Page: 50 © J. W. Bartha 2021 TUD INTERNAL USE ONLY!

CMOS Inverter

Aus: Schumiki, Seegebrecht „Prozeßtechnologie“ Springer 1991

L12

Page 51: Lecture SCT2 – Process Integration

Page: 51 © J. W. Bartha 2021 TUD INTERNAL USE ONLY!

CMOS Inverter

Aus: Schumiki, Seegebrecht „Prozeßtechnologie“ Springer 1991

L12

Continue“HLT_SS20_12.04” 36:28

Page 52: Lecture SCT2 – Process Integration

Page: 52 © J. W. Bartha 2021 TUD INTERNAL USE ONLY!

4.3. CMOS Prozessablauf

Taken from IC Knowledge 2008http://www.icknowledge.com/misc_technology/Overview%20Post.pdf

L12

Page 53: Lecture SCT2 – Process Integration

Page: 53 © J. W. Bartha 2021 TUD INTERNAL USE ONLY!

4.3. CMOS Prozessablauf

Taken from IC Knowledge 2008http://www.icknowledge.com/misc_technology/Overview%20Post.pdf

CMOS Inverter:

Epi Wafer-Dual well-STI-SiGate-LDD (S/D extensions)-SALICIDE-SAC-Dielecric CMP

L12

Page 54: Lecture SCT2 – Process Integration

Page: 54 © J. W. Bartha 2021 TUD INTERNAL USE ONLY!

CMOS Inverter-STI

Taken from IC Knowledge 2008http://www.icknowledge.com/misc_technology/Overview%20Post.pdf

L12

Page 55: Lecture SCT2 – Process Integration

Page: 55 © J. W. Bartha 2021 TUD INTERNAL USE ONLY!

CMOS Inverter-STI

Taken from IC Knowledge 2008http://www.icknowledge.com/misc_technology/Overview%20Post.pdf

L12

Page 56: Lecture SCT2 – Process Integration

Page: 56 © J. W. Bartha 2021 TUD INTERNAL USE ONLY!

CMOS Inverter-wells

Taken from IC Knowledge 2008http://www.icknowledge.com/misc_technology/Overview%20Post.pdf

L12

Page 57: Lecture SCT2 – Process Integration

Page: 57 © J. W. Bartha 2021 TUD INTERNAL USE ONLY!

CMOS Inverter-wells

Taken from IC Knowledge 2008http://www.icknowledge.com/misc_technology/Overview%20Post.pdf

L12

Page 58: Lecture SCT2 – Process Integration

Page: 58 © J. W. Bartha 2021 TUD INTERNAL USE ONLY!

CMOS Inverter-Si Gate & S/D extensions

Taken from IC Knowledge 2008http://www.icknowledge.com/misc_technology/Overview%20Post.pdf

L12

Page 59: Lecture SCT2 – Process Integration

Page: 59 © J. W. Bartha 2021 TUD INTERNAL USE ONLY!

CMOS Inverter-Si Gate & S/D extensions

Taken from IC Knowledge 2008http://www.icknowledge.com/misc_technology/Overview%20Post.pdf

L12

Page 60: Lecture SCT2 – Process Integration

Page: 60 © J. W. Bartha 2021 TUD INTERNAL USE ONLY!

CMOS Inverter-S/D formation

Taken from IC Knowledge 2008http://www.icknowledge.com/misc_technology/Overview%20Post.pdf

L12

Page 61: Lecture SCT2 – Process Integration

Page: 61 © J. W. Bartha 2021 TUD INTERNAL USE ONLY!

CMOS Inverter-S/D formation

Taken from IC Knowledge 2008http://www.icknowledge.com/misc_technology/Overview%20Post.pdf

L12

Page 62: Lecture SCT2 – Process Integration

Page: 62 © J. W. Bartha 2021 TUD INTERNAL USE ONLY!

CMOS Inverter-SALICIDE & SAC contact etch

Taken from IC Knowledge 2008http://www.icknowledge.com/misc_technology/Overview%20Post.pdf

L12

Page 63: Lecture SCT2 – Process Integration

Page: 63 © J. W. Bartha 2021 TUD INTERNAL USE ONLY!

CMOS Inverter-SALICIDE & SAC contact etch

Taken from IC Knowledge 2008http://www.icknowledge.com/misc_technology/Overview%20Post.pdf

L12

Page 64: Lecture SCT2 – Process Integration

Page: 64 © J. W. Bartha 2021 TUD INTERNAL USE ONLY!

CMOS Inverter- Metal 1

Taken from IC Knowledge 2008http://www.icknowledge.com/misc_technology/Overview%20Post.pdf

L12

Page 65: Lecture SCT2 – Process Integration

Page: 65 © J. W. Bartha 2021 TUD INTERNAL USE ONLY!

CMOS Inverter- Metal 1

Taken from IC Knowledge 2008http://www.icknowledge.com/misc_technology/Overview%20Post.pdf

L12

Page 66: Lecture SCT2 – Process Integration

Page: 66 © J. W. Bartha 2021 TUD INTERNAL USE ONLY!

CMOS Inverter-Metal 2 +

L12

Page 67: Lecture SCT2 – Process Integration

Page: 67 © J. W. Bartha 2021 TUD INTERNAL USE ONLY!

CMOS Inverter-Metal 2 +

L12

Page 68: Lecture SCT2 – Process Integration

Page: 68 © J. W. Bartha 2021 TUD INTERNAL USE ONLY!

CMOS Inverter-Metal 2 +

In this scheme: Metal is etched and Oxide is polished!

L12

Page 69: Lecture SCT2 – Process Integration

Page: 69 © J. W. Bartha 2021 TUD INTERNAL USE ONLY!

Taken from IC Knowledge 2008http://www.icknowledge.com/misc_technology/Overview%20Post.pdf

Alternative Metallization

Scheme

L12

Page 70: Lecture SCT2 – Process Integration

Page: 70 © J. W. Bartha 2021 TUD INTERNAL USE ONLY!

Taken from IC Knowledge 2008http://www.icknowledge.com/misc_technology/Overview%20Post.pdf

Alternative Metallization

Scheme

L12

Page 71: Lecture SCT2 – Process Integration

Page: 71 © J. W. Bartha 2021 TUD INTERNAL USE ONLY!

CMOS SRAM

L12

Page 72: Lecture SCT2 – Process Integration

Page: 72 © J. W. Bartha 2021 TUD INTERNAL USE ONLY!

Integrated Circuit of a Logic Adder

Example for a logic circuit: CMOS Adder

L12

Page 73: Lecture SCT2 – Process Integration

Page: 73 © J. W. Bartha 2021 TUD INTERNAL USE ONLY!

Outline

http://www.computerhistory.org/siliconengine/timeline/

0. Introduction/ Lab organization/DMA /SCT1/Motivation1. Process integration

1.MOS Structure, MOS Capacitor2.Structure of a MOSFET3.I/V behavior

2. Circuits in Metal-Gate FET Technology1.Process sequence of N-MOSFET in Metal Gate2.From inverter to memory cell3.SRAM in NMOS Metal Gate4.The threshold voltage of the MOSFET

1.Parasitic FET2.Enhancement/Depletion Transistor3.N-MOS Logic by E/D Transitors4.Process sequence of the N-MOS E/D Process

3. Self aligned Process1.Metal Gate -> Si Gate2. Channel-Stop & LOCOS Technology

1.Example: Process flow of E/D SiGate LOCOS Inverter 2.LOCOS Variation3.Shallow Trench Isolation

3.Lightly doped drain4.SALICIDE5. Self Aligned Contacts (SAC)6. Resist trimming

4.Transition to CMOS Technology1.MOS Transistor Types2.CMOS Inverter

1.Consideration NMOS E/D Inverter2.Comparison CMOS Inverter

3.CMOS Process flow (Example CMOS 180 nm process)5. Further Considerations

1.Scaling1. Challenges2.Material Equivalent Scaling3.Further Concepts

SC-Basics

L12

Page 74: Lecture SCT2 – Process Integration

Page: 74 © J. W. Bartha 2021 TUD INTERNAL USE ONLY!L12