Lecture on MOS (Metal Oxide Semiconductor) Structure1 ECE 315 –Spring 2005 –Farhan Rana...

23
1 Lecture on MOS (Metal Oxide Semiconductor) Structure In this lecture you will learn: • The fundamental set of equations governing the behavior of NMOS structure • Accumulation, Flatband, Depletion, and Inversion Regimes • Large signal and small signal models of the NMOS capacitor MOS (Metal Oxide Semiconductor Field Effect Transistors (FETs) 100 nm A 173 nm gate length MOS transistor (INTEL) GaAs (Substrate) Source AlGaAs Drain Gate InGaAs (Quantum Well) Silicon MOS FET High Electron Mobility FET 22 nm gate length MOS transistors (INTEL)

Transcript of Lecture on MOS (Metal Oxide Semiconductor) Structure1 ECE 315 –Spring 2005 –Farhan Rana...

Page 1: Lecture on MOS (Metal Oxide Semiconductor) Structure1 ECE 315 –Spring 2005 –Farhan Rana –Cornell University Lecture on MOS (Metal Oxide Semiconductor) Structure In this lecture

1

ECE 315 – Spring 2005 – Farhan Rana – Cornell University

Lecture on

MOS (Metal Oxide Semiconductor) Structure

In this lecture you will learn:

• The fundamental set of equations governing the behavior of NMOS structure

• Accumulation, Flatband, Depletion, and Inversion Regimes

• Large signal and small signal models of the NMOS capacitor

ECE 315 – Spring 2005 – Farhan Rana – Cornell University

MOS (Metal Oxide Semiconductor Field Effect Transistors (FETs)

100 nm

A 173 nm gate length MOS transistor (INTEL)

GaAs (Substrate)

Source

AlGaAs

DrainGate

InGaAs (Quantum Well)

Silicon MOS FET

High Electron Mobility FET

22 nm gate length MOS transistors (INTEL)

Page 2: Lecture on MOS (Metal Oxide Semiconductor) Structure1 ECE 315 –Spring 2005 –Farhan Rana –Cornell University Lecture on MOS (Metal Oxide Semiconductor) Structure In this lecture

2

ECE 315 – Spring 2005 – Farhan Rana – Cornell University

A N-MOS (or NMOS) Capacitor Structure

SiO2

P-Si Substrate (or Bulk)

N+ Si Gate or Metal Gate

Gate metal contact

Metal contact

GBV

+

_

x

0x

Doping: Na

ECE 315 – Spring 2005 – Farhan Rana – Cornell University

A NMOS Capacitor in 3D

P-Si substrate (or bulk)

N+ Si gate

L

Gate

Metal

W

N+ Si Gate or Metal Gate

x

0xSiO2

GBV

+

_

Doping: Na

Page 3: Lecture on MOS (Metal Oxide Semiconductor) Structure1 ECE 315 –Spring 2005 –Farhan Rana –Cornell University Lecture on MOS (Metal Oxide Semiconductor) Structure In this lecture

3

ECE 315 – Spring 2005 – Farhan Rana – Cornell University

A NMOS Capacitor

x0oxt

SiO2 P-SiN+ Sior

MetalGate

Assumptions:

1) The potential in the metal gate isIf the gate is N+ Si then

2) The potential deep in the P-Si substrate is

3) The oxide (SiO2) is insulating (zero conductivity; no free electrons and holes) and is completely free of any charges

4) There cannot be any volume charge density inside the metal gate (it is very conductive). But there can be a surface charge density on the surface of the metal gate

5) Dielectric constants:

MnM

p

oox 9.3 os 7.11

oxs

Doping: Na

ECE 315 – Spring 2005 – Farhan Rana – Cornell University

A NMOS Capacitor in Equilibrium

x0oxt

SiO2 P-SiGate

x0oxt

Potential Plot: x

p

MPotential?

0GBV+ -

We need to find the potential in equilibrium everywhere

Doping: Na

pMB

B

0BAssume:

Page 4: Lecture on MOS (Metal Oxide Semiconductor) Structure1 ECE 315 –Spring 2005 –Farhan Rana –Cornell University Lecture on MOS (Metal Oxide Semiconductor) Structure In this lecture

4

ECE 315 – Spring 2005 – Farhan Rana – Cornell University

A NMOS Capacitor in Equilibrium: Depletion Region

x0oxt

SiO2 P-SiGate

0GBV+ -

Step 2: Depletion region is created in the substrate near the oxide interface, and a surface or sheet charge density is created on the metal gate

Step 1: Charges Flow

x0oxt

SiO2 P-SiGate

0GBV+ -

- - - -- - - -- - - -

---

- - - -- - - -

--

Positive surface charge density (C/cm2) Negative depletion charge density (C/cm3)

dox

aqNdoaG xqNQ

Doping: Na

Doping: Na

Quantum tunneling

ECE 315 – Spring 2005 – Farhan Rana – Cornell University

A NMOS Capacitor in Equilibrium: Charge Densities

x

0

oxt

Charge density plot:

aqN

doaG xqNQ

Depletion region charge density (C/cm3)

x0oxt

SiO2 P-SiGate

0GBV+ -

- - - -- - - -- - - -

---

- - - -- - - -

--

dox

dox

doaB xqNQ

Total charge per unit area in the semiconductor (C/cm2)

Page 5: Lecture on MOS (Metal Oxide Semiconductor) Structure1 ECE 315 –Spring 2005 –Farhan Rana –Cornell University Lecture on MOS (Metal Oxide Semiconductor) Structure In this lecture

5

ECE 315 – Spring 2005 – Farhan Rana – Cornell University

Electric field in the semiconductor:

x0oxt

SiO2 P-SiGate

0GBV+ -

- - - -- - - -- - - -

---

- - - -- - - -

--

dox

A NMOS Capacitor in Equilibrium: Electric Field

xxqN

xE

xxEqN

dxdE

dos

ax

doxs

a

s

x

0

Linearly varying

x0oxt dox

xE do

s

ax x

qNxE

0

Boundary condition:

ECE 315 – Spring 2005 – Farhan Rana – Cornell University

Some ElectrostaticsConsider an interface between media of different dielectric constants:

1 2

1E

2E

Suppose you know , can you find ??? 1E

2E

Use the principle: The product of the dielectric constant and the normalcomponent of the electric field on both sides of an interface are related as follows:

IQEE 1122

• Note that is the electric field JUST to the left of the interface and is the electric field JUST to right of the interface

1E

2E

Interface sheet charge density (C/cm2)

Page 6: Lecture on MOS (Metal Oxide Semiconductor) Structure1 ECE 315 –Spring 2005 –Farhan Rana –Cornell University Lecture on MOS (Metal Oxide Semiconductor) Structure In this lecture

6

ECE 315 – Spring 2005 – Farhan Rana – Cornell University

Electric field in the oxide:

x0oxt

SiO2 P-SiGate

0GBV+ -

- - - -- - - -- - - -

---

- - - -- - - -

--

dox

A NMOS Capacitor in Equilibrium: Electric Field

ox

doax

x

ox

x

xqNxE

xE

dxdE

constant

0

x0oxt dox

xE

ox

doa

s

doa

ox

xqNxE

xqNxE

xExEs

0

0

00

oxs

ECE 315 – Spring 2005 – Farhan Rana – Cornell University

x0oxt

SiO2 P-SiGate

0GBV+ -

- - - -- - - -- - - -

---

- - - -- - - -

--

dox

A NMOS Capacitor in Equilibrium: Potential

oxs

22

xxqN

x

xxxxqN

xEdx

xd

dos

ap

pdodos

ax

Potential in the semiconductor:

x

0oxtp

M

dox

Boundary condition:

Page 7: Lecture on MOS (Metal Oxide Semiconductor) Structure1 ECE 315 –Spring 2005 –Farhan Rana –Cornell University Lecture on MOS (Metal Oxide Semiconductor) Structure In this lecture

7

ECE 315 – Spring 2005 – Farhan Rana – Cornell University

x0oxt

SiO2 P-SiGate

0GBV+ -

- - - -- - - -- - - -

---

- - - -- - - -

--

dox

A NMOS Capacitor in Equilibrium: Potential

oxs

xxqNxqN

x

xqNx

xqNxE

dxxd

ox

doa

s

doap

s

doap

ox

doax

2

20

2

2Potential in the oxide:

x

0oxtp

M

dox

Boundary condition:

ECE 315 – Spring 2005 – Farhan Rana – Cornell University

x0oxt

SiO2 P-SiGate

0GBV+ -

- - - -- - - -- - - -

---

- - - -- - - -

--

dox

A NMOS Capacitor in Equilibrium: Potential

oxs

Moxox

doa

s

doapox t

xqNxqNtx

2

2Must have:

Therefore:

Ba

s

ox

s

ox

sdo qNCC

x

22

ox

oxox t

C

Oxide capacitance (per unit area):

x

0oxt p

M

dox

pMB

B

Page 8: Lecture on MOS (Metal Oxide Semiconductor) Structure1 ECE 315 –Spring 2005 –Farhan Rana –Cornell University Lecture on MOS (Metal Oxide Semiconductor) Structure In this lecture

8

ECE 315 – Spring 2005 – Farhan Rana – Cornell University

x0oxt

SiO2 P-SiGate

0GBV+ -

- - - -- - - -- - - -

---

- - - -- - - -

--

dox

A NMOS Capacitor in Equilibrium: Potential

oxs

2 2

2 2

B OX S

a do a do a do a doox

ox s ox s

V V

qN x qN x qN x qN xt

C

ox

oxox t

C

Oxide capacitance (per unit area)

Potential drop in the oxide

Potential drop in the semiconductor

B

x

0oxt p

M

dox

OXV

SV

ECE 315 – Spring 2005 – Farhan Rana – Cornell University

x0oxt

SiO2 P-SiGate

0GBV + -

- - - -- - - -- - - -

---

- - - -- - - -

--

dox

A Biased NMOS Capacitor: VGB > 0

oxs

x

0oxtp

dx

All of the applied bias falls across the depletion region and the oxide

GBB V

dox

dx

s

da

ox

da

SOXGBB

xqNC

xqN

VVV

2

2

B

Potential drop in the oxide

Potential drop in the semiconductor

---

--

The depletion region widens and the oxide field increases when VGB is positive

Page 9: Lecture on MOS (Metal Oxide Semiconductor) Structure1 ECE 315 –Spring 2005 –Farhan Rana –Cornell University Lecture on MOS (Metal Oxide Semiconductor) Structure In this lecture

9

ECE 315 – Spring 2005 – Farhan Rana – Cornell University

x0oxt

SiO2 P-SiGate

0GBV+ -

- - - -- - - -- - - -

---

- - - -- - - -

--

dox

A Biased NMOS Capacitor: VGB < 0

oxs

x

0oxtp

dx

All of the applied bias falls across the depletion region and the oxide

GBB V

dox

dx

s

da

ox

da

SOXGBB

xqNC

xqN

VVV

2

2

B

Potential drop in the oxide

Potential drop in the semiconductor

The depletion region shortens and the oxide field decreases when VGB is negative

ECE 315 – Spring 2005 – Farhan Rana – Cornell University

x0oxt

SiO2 P-SiGate

0GBV+ -

- - - -- - - -- - - -

---

- - - -- - - -

--

dox

A Biased NMOS Capacitor: VGB < 0

oxs

All of the applied bias falls across the depletion region and the oxide

dx

GBBa

s

ox

s

ox

sd V

qNCCx

2

2

ox

daox

xqNE

The depletion region shrinks and the oxide field also decreases for VGB < 0

x

0oxtp

dx

GBB V

dox

Page 10: Lecture on MOS (Metal Oxide Semiconductor) Structure1 ECE 315 –Spring 2005 –Farhan Rana –Cornell University Lecture on MOS (Metal Oxide Semiconductor) Structure In this lecture

10

ECE 315 – Spring 2005 – Farhan Rana – Cornell University

x0oxt

SiO2 P-SiGate

0GBV+ -

A Biased NMOS Capacitor: Flatband Condition

oxs

x0oxt

p

When VGB is sufficiently negative, the depletion region thickness shrinks to zeroThis value of VGB is called the flatband voltage VFB

pMBFB

FBBa

s

ox

s

ox

sd

V

VqNCC

x

0

22

Flatband voltage can be found by letting VGB equal to VFB and setting xd equal to 0 :

Potential in flatbandcondition:

ECE 315 – Spring 2005 – Farhan Rana – Cornell University

x0oxt

SiO2

P-SiGate

FBGB VV + -

A Biased NMOS Capacitor: Accumulation (VGB < VFB)

oxs

x0oxt

p

Potential:

GBB V

Charge accumulation (due to holes) on the semiconductor surface

The entire potential drop for VGB < VFB falls across the oxide:

Oxide Field and Potential:OXFBGB

OXGBB

VVV

VV

ox ox OXE t V

Semiconductor Accumulation Charge:

oxPQGQ

ox ox PE Q

oxox ox OX P OX GB FB

ox

P ox GB FB

tE t V Q V V V

Q C V V

Page 11: Lecture on MOS (Metal Oxide Semiconductor) Structure1 ECE 315 –Spring 2005 –Farhan Rana –Cornell University Lecture on MOS (Metal Oxide Semiconductor) Structure In this lecture

11

ECE 315 – Spring 2005 – Farhan Rana – Cornell University

x0oxt

SiO2

P-SiGate

FBGB VV + -

A Biased NMOS Capacitor: Accumulation (VGB < VFB)

oxs

x0oxt

p

Potential:

GBB V

x0

oxt FBGBoxP VVCQ Total charge per unit area in the hole accumulation layer

FBGBoxG VVCQ

Charge accumulation (due to holes) on the semiconductor surface

Charge Density:

ECE 315 – Spring 2005 – Farhan Rana – Cornell University

A Biased NMOS Capacitor: Charges

GBV

BQDepletion Region Charge (C/cm2)

FBV

GBV

PQ

FBV

Accumulation Layer Charge (C/cm2)

GBBa

s

ox

s

ox

sd V

qNCCx

2

2

daB xqNQ

FBGBoxP VVCQ

Page 12: Lecture on MOS (Metal Oxide Semiconductor) Structure1 ECE 315 –Spring 2005 –Farhan Rana –Cornell University Lecture on MOS (Metal Oxide Semiconductor) Structure In this lecture

12

ECE 315 – Spring 2005 – Farhan Rana – Cornell University

x0oxt

SiO2 P-SiGate

0GBV + -

- - - -- - - -- - - -

---

- - - -- - - -

--

dox

A Biased NMOS Capacitor: VGB > 0

oxs

x

0oxtp

dx

All of the applied bias falls across the depletion region and the oxide

GBB V

dox

dx

s

da

ox

da

SOXGBB

xqNC

xqN

VVV

2

2

B

Potential drop in the oxide

Potential drop in the semiconductor

---

--

The depletion region widens and the oxide field increases with VGB for VGB > VFB

ECE 315 – Spring 2005 – Farhan Rana – Cornell University

x0oxt

SiO2 P-SiGate

+ -

- - - -- - - -- - - -

---

- - - -- - - -

--

dx

oxs

ox

psaspsFBGB

s

da

ox

daFBGB

C

qNVV

xqNC

xqNVV

2

2

2

GBB V

x

0oxt pdx

s

dapS

xqNx

20

2

A Biased NMOS Capacitor: Depletion (VGB > VFB)FBGB VV

Surface potential s

Potential drop in the oxidePotential drop in

the semiconductor

Page 13: Lecture on MOS (Metal Oxide Semiconductor) Structure1 ECE 315 –Spring 2005 –Farhan Rana –Cornell University Lecture on MOS (Metal Oxide Semiconductor) Structure In this lecture

13

ECE 315 – Spring 2005 – Farhan Rana – Cornell University

A Biased NMOS Capacitor: Surface Potential

GBV

s

FBV

p

ox

psaspsFBGB C

qNVV

2GBFB VV

ps FBGB VV

ECE 315 – Spring 2005 – Farhan Rana – Cornell University

A Biased NMOS Capacitor

x0oxt

SiO2 P-SiGate

+ -

- - - -- - - -- - - -

---

- - - -- - - -

--

dx

oxs

FBGB VV

ox

psaspsFBGB C

qNVV

2

s

da

ox

daFBGB

xqNC

xqNVV

2

2

SOXFBGB VVVV

Same equation written in 3 different ways valid for:

TNGBFB VVV VOX VS

VOXVS

Page 14: Lecture on MOS (Metal Oxide Semiconductor) Structure1 ECE 315 –Spring 2005 –Farhan Rana –Cornell University Lecture on MOS (Metal Oxide Semiconductor) Structure In this lecture

14

ECE 315 – Spring 2005 – Farhan Rana – Cornell University

A Biased NMOS Capacitor: Electron Density (VGB > VFB)

• As VGB is increased, S also increases

• The electron density in the semiconductor depends on the potential as:

ox

psaspsFBGB C

qNVV

2

GBB V

x

0oxt pdx

Sx 0

KT

xq

aKT

xq

KT

q

iKT

xq

i

ppp

eNeenenxn

Electron density is the largest right at the surface of the semiconductor where the potential is the highest

KT

q

a

ps

eNxn

0

ECE 315 – Spring 2005 – Farhan Rana – Cornell University

A Biased NMOS Capacitor: Threshold Condition

GBB V

x

0oxt pdx

pSx 0

• When VGB is increased and the surface potential S reaches -p the electron density at the surface becomes comparable to the hole density in the substrate and cannot be ignored

• The gate voltage VGB at which S equals -p is called the threshold voltage VTN:

ox

paspFBTN C

qNVV

222

KT

q

a

ps

eNxn

0

When:

aKT

q

a NeNxnps

0

Page 15: Lecture on MOS (Metal Oxide Semiconductor) Structure1 ECE 315 –Spring 2005 –Farhan Rana –Cornell University Lecture on MOS (Metal Oxide Semiconductor) Structure In this lecture

15

ECE 315 – Spring 2005 – Farhan Rana – Cornell University

A Biased NMOS Capacitor: Inversion (VGB > VTN)

x0oxt

SiO2

P-SiGate

TNGB VV + -

oxs

Inversion layer charge (due to electrons) on the semiconductor surface

- - - -- - - -- - - -

---

- - - -- - - -

--

dx

x

0

oxtaqN

NdaG QxqNQ

dx

NQ

• When the gate voltage VGB is increased above VTN the electron density right at the surface increases (exponentially with the surface potential S )

• This surface electron density is called the inversion layer (assumed to be of zero thickness in this course)

Inversion layer charge density (C/cm2)

ECE 315 – Spring 2005 – Farhan Rana – Cornell University

GBB V

x

0oxt pmaxdx

pSx 0

TNB V

• When the gate voltage VGB is increased above VTN the inversion layer charge increases so rapidly that the extra applied potential drops entirely across the oxide, and the surface potential S remains close to -p• Consequently, the depletion region thickness (and the depletion region charge) does not increase when the gate voltage VGB is increased above VTN

A Biased NMOS Capacitor: Inversion (VGB > VTN)

s

dap

s

dapS

xqNxqN

2

22

2max

2

s

da

ox

daFBTN

xqNCxqN

VV2

2maxmax

ox

paspFBTN C

qNVV

222

Page 16: Lecture on MOS (Metal Oxide Semiconductor) Structure1 ECE 315 –Spring 2005 –Farhan Rana –Cornell University Lecture on MOS (Metal Oxide Semiconductor) Structure In this lecture

16

ECE 315 – Spring 2005 – Farhan Rana – Cornell University

A Biased NMOS Capacitor: Surface Potential

ox

psaspsFBGB C

qNVV

2

GBV

s

FBV TNV

p

p

TNGBFB VVV

ps

ps FBGB VV

TNGB VV

ECE 315 – Spring 2005 – Farhan Rana – Cornell University

x0oxt

SiO2

P-SiGate

TNGB VV + -

oxs

QN- - - -- - - -- - - -

---

- - - -- - - -

--

maxdx

A Biased NMOS Capacitor: Inversion (VGB > VTN)

How to calculate the inversion layer charge QN when VGB > VTN?Start from:

s

daoxox

SoxFBGB

xqNtE

VVVV

2

2max

s

daS

xqNV

2

2max

By Gauss’ law: maxdaNoxox xqNQE

TNGBoxN

TNox

NGB

s

da

ox

da

ox

NFBGB

VVCQ

VCQ

V

xqN

C

xqN

CQ

VV

2

2maxmax

Therefore:

Inversion layer charge increases linearly with the gate voltage above threshold

Page 17: Lecture on MOS (Metal Oxide Semiconductor) Structure1 ECE 315 –Spring 2005 –Farhan Rana –Cornell University Lecture on MOS (Metal Oxide Semiconductor) Structure In this lecture

17

ECE 315 – Spring 2005 – Farhan Rana – Cornell University

A Biased NMOS Capacitor: Charges

GBV

daB xqNQ

Depletion Region Charge (C/cm2)

FBV TNV

Inversion Layer Charge (C/cm2)

GBV

NQ

FBV TNV

GBV

PQ

FBV TNV

Accumulation Layer Charge (C/cm2)

TNGBoxN VVCQ

FBGBoxP VVCQ

BQ

maxB a dQ qN x

ECE 315 – Spring 2005 – Farhan Rana – Cornell University

A N-MOS (or NMOS) Capacitor Structure

SiO2

P-Si Substrate (or Bulk)

N+ Si Gate or Metal Gate

Gate metal contact

Metal contact

GBV

+

_

x

0x

Doping: Na

Page 18: Lecture on MOS (Metal Oxide Semiconductor) Structure1 ECE 315 –Spring 2005 –Farhan Rana –Cornell University Lecture on MOS (Metal Oxide Semiconductor) Structure In this lecture

18

ECE 315 – Spring 2005 – Farhan Rana – Cornell University

A Biased NMOS Capacitor: Charges

GBV

GQGate Charge (C/cm2)(Must be equal and opposite to the total semiconductor charge)

FBV TNV

Capacitance of a NMOS Capacitor:

GB

G

dVdQ

C C

VGBVTNVFB

oxCoxC

Accumulation

Depletion

Inversion

ECE 315 – Spring 2005 – Farhan Rana – Cornell University

The Small Signal Capacitance of a NMOS Capacitor

(1) Accumulation (VGB < VFB):

• The small signal capacitance (per unit area) of the MOS capacitor is defined as:

where QG is the charge density (units: C/cm2) on the gateGB

G

dVdQ

C

ox

FBGBoxG

CC

VVCQ

oxCgbv

Page 19: Lecture on MOS (Metal Oxide Semiconductor) Structure1 ECE 315 –Spring 2005 –Farhan Rana –Cornell University Lecture on MOS (Metal Oxide Semiconductor) Structure In this lecture

19

ECE 315 – Spring 2005 – Farhan Rana – Cornell University

(2) Depletion (VTN >VGB > VFB):

GB

da

GB

G

daG

dVdx

qNdVdQ

C

xqNQ

FBGBox

da

s

da VVC

xqNxqN

2

2

Differentiate the equation (derived earlier):

The Small Signal Capacitance of a NMOS Capacitor

GBdaoxs

d dVdxqNC

x

1

To get:

d

sb x

C

Define:

box CCC111

Finally:

oxCgbv

bC

GBBa

s

ox

s

ox

sd V

qNCCx

2

2

ECE 315 – Spring 2005 – Farhan Rana – Cornell University

The Small Signal Capacitance of a NMOS Capacitor

(3) Inversion (VGB > VTN):

ox

GB

N

GB

G

NdaG

C

dVdQ

dV

dQC

QxqNQ

max TNGBoxN VVCQ

xdmax does not change with VGB above threshold

oxCgbv

Page 20: Lecture on MOS (Metal Oxide Semiconductor) Structure1 ECE 315 –Spring 2005 –Farhan Rana –Cornell University Lecture on MOS (Metal Oxide Semiconductor) Structure In this lecture

20

ECE 315 – Spring 2005 – Farhan Rana – Cornell University

The Small Signal Capacitance of a NMOS Capacitor

C

VGBVTNVFB

oxCoxC

Accumulation

Depletion

Inversion

P-Si

ECE 315 – Spring 2005 – Farhan Rana – Cornell University

A NMOS Capacitor with a Channel Contact

P-Si Substrate (or Bulk)

Gate

Gate metal contact

Metal contact

GBV

+

_

N-Si

CBV

+

_ Inversion layer

N-Si

• In the presence of an inversion layer, the additional contacts allow one to directly change the potential of the inversion layer channel w.r.t. to the bulk (substrate)

SiO2

Page 21: Lecture on MOS (Metal Oxide Semiconductor) Structure1 ECE 315 –Spring 2005 –Farhan Rana –Cornell University Lecture on MOS (Metal Oxide Semiconductor) Structure In this lecture

21

ECE 315 – Spring 2005 – Farhan Rana – Cornell University

GBB V

x

0oxt pmaxdx

pSx 0

• We had said that the surface potential S remains fixed at –p when VGB is increased beyond VTN

• But with a non-zero VCB, the surface potential S in inversion can be changed to (–p+ VCB)• The new value of the depletion region width is:

Question: How do we now find the inversion layer charge QN when VCB is not zero?

CBpS Vx 0

)0(max CBd Vx

s

daCBp

s

dapS

xqNV

xqN

2

22

2max

2

A Biased NMOS Capacitor: Inversion with VCB ≠0

ECE 315 – Spring 2005 – Farhan Rana – Cornell University

A Biased NMOS Capacitor: Surface Potential

ox

psaspsFBGB C

qNVV

2

GBV

s

FBV

p

p

TNGBFB VVV

CBps V

ps FBGB VV

TNGB VV

CBp VCBV

TNV

gate

GBV+

-CBV+

-

source drain

Page 22: Lecture on MOS (Metal Oxide Semiconductor) Structure1 ECE 315 –Spring 2005 –Farhan Rana –Cornell University Lecture on MOS (Metal Oxide Semiconductor) Structure In this lecture

22

ECE 315 – Spring 2005 – Farhan Rana – Cornell University

x0oxt

SiO2

P-SiGate

GBV+ -

oxs

QN- - - -- - - -- - - -

---

- - - -- - - -

--

maxdx

A Biased NMOS Capacitor: Inversion with VCB ≠0

CBV+ -

How to calculate the inversion layer charge QN? Same way as before……..Start from:

s

daoxox

SoxFBGB

xqNtE

VVVV

2

2max

s

daS

xqNV

2

2max

By Gauss’ law: maxdaNoxox xqNQE

s

da

ox

daFB

ox

NGB

s

da

ox

da

ox

NFBGB

xqNCxqN

VCQ

V

xqNCxqN

CQ

VV

2

22

maxmax

2maxmax

Therefore:

ECE 315 – Spring 2005 – Farhan Rana – Cornell University

x0oxt

SiO2

P-SiGate

GBV+ -

oxs

QN- - - -- - - -- - - -

---

- - - -- - - -

--

maxdx

A Biased NMOS Capacitor: Inversion with VCB ≠0

CBV+ -

s

da

ox

daFB

ox

NGB

xqNCxqN

VCQ

V2

2maxmax

s

da

ox

daFBTN

xqNCxqN

VV2

2maxmax

ox

CBpasCBpFB C

VqNVV

222

TNGBoxN VVCQ Same as before but now VTN depends on VCB

Page 23: Lecture on MOS (Metal Oxide Semiconductor) Structure1 ECE 315 –Spring 2005 –Farhan Rana –Cornell University Lecture on MOS (Metal Oxide Semiconductor) Structure In this lecture

23

ECE 315 – Spring 2005 – Farhan Rana – Cornell University

gate

gate

GBV+

-

GBV+

-CBV+

-

gate

GBV+

-CBV+

-

NMOS Capacitor: Effect of VCB (VGB > VTN)

VCB >0• Inversion charge decreases• Depletion region expands

VCB <0• Inversion charge increases• Depletion region shrinks

source drain

source drain

source drain