Lecture No. 5 Lecture Notes_… · CE 60130 FINITE ELEMENT METHODS - LECTURE 5 - updated 2018- 01-...

22
CE 60130 FINITE ELEMENT METHODS- LECTURE 5 - updated 2018-01-25 P a g e 1 | 22 Lecture No. 5 () βˆ’( )=0 in ()= on ()= on β€’ For all weighted residual methods = + οΏ½ =1 β€’ For all (Bubnov) Galerkin methods = (test = trial) Summary of Conventional Galerkin Method ( )= and ( ) = 0, = 1, on ( )= and ( ) = 0, = 1, on Ԑ = οΏ½ οΏ½βˆ’( ) < Ԑ , > = 0, = 1,

Transcript of Lecture No. 5 Lecture Notes_… · CE 60130 FINITE ELEMENT METHODS - LECTURE 5 - updated 2018- 01-...

Page 1: Lecture No. 5 Lecture Notes_… · CE 60130 FINITE ELEMENT METHODS - LECTURE 5 - updated 2018- 01- 25 Page 1 | 22 . Lecture No. 5 . 𝐿𝐿(𝑒𝑒) βˆ’π‘π‘(π‘₯π‘₯) = 0 in

C E 6 0 1 3 0 F I N I T E E L E M E N T M E T H O D S - L E C T U R E 5 - u p d a t e d 2 0 1 8 - 0 1 - 2 5 P a g e 1 | 22

Lecture No. 5

𝐿𝐿(𝑒𝑒) βˆ’ 𝑝𝑝(π‘₯π‘₯) = 0 in 𝛺𝛺

𝑆𝑆𝐸𝐸(𝑒𝑒) = 𝑔𝑔𝐸𝐸 on 𝛀𝛀𝐸𝐸

𝑆𝑆𝑁𝑁(𝑒𝑒) = 𝑔𝑔𝑁𝑁 on 𝛀𝛀𝑁𝑁

β€’ For all weighted residual methods

π‘’π‘’π‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Ž = 𝑒𝑒𝐡𝐡 + οΏ½π›Όπ›Όπ‘–π‘–πœ™πœ™π‘–π‘–

𝑁𝑁

𝑖𝑖=1

β€’ For all (Bubnov) Galerkin methods

𝑀𝑀𝑖𝑖 = πœ™πœ™π‘–π‘– (test = trial)

Summary of Conventional Galerkin Method

𝑆𝑆𝐸𝐸(𝑒𝑒𝐡𝐡) = 𝑔𝑔𝐸𝐸 and 𝑆𝑆𝐸𝐸(πœ™πœ™π‘–π‘–) = 0, 𝑖𝑖 = 1,𝑁𝑁 on 𝛀𝛀𝐸𝐸

𝑆𝑆𝑁𝑁(𝑒𝑒𝐡𝐡) = 𝑔𝑔𝑁𝑁 and 𝑆𝑆𝑁𝑁(πœ™πœ™π‘–π‘–) = 0, 𝑖𝑖 = 1,𝑁𝑁 on 𝛀𝛀𝑁𝑁

Ԑ𝐼𝐼 = πΏπΏοΏ½π‘’π‘’π‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘ŽοΏ½ βˆ’ 𝑝𝑝(π‘₯π‘₯)

< Ԑ𝐼𝐼 ,𝑀𝑀𝑗𝑗 > = 0, 𝑗𝑗 = 1,𝑁𝑁

Page 2: Lecture No. 5 Lecture Notes_… · CE 60130 FINITE ELEMENT METHODS - LECTURE 5 - updated 2018- 01- 25 Page 1 | 22 . Lecture No. 5 . 𝐿𝐿(𝑒𝑒) βˆ’π‘π‘(π‘₯π‘₯) = 0 in

C E 6 0 1 3 0 F I N I T E E L E M E N T M E T H O D S - L E C T U R E 5 - u p d a t e d 2 0 1 8 - 0 1 - 2 5 P a g e 2 | 22

Fundamental Weak Weighted Residual Galerkin

β€’ Only satisfy the essential b.c.’s. This makes things a lot easier!

𝑆𝑆𝐸𝐸(𝑒𝑒𝐡𝐡) = 𝑔𝑔𝐸𝐸 and 𝑆𝑆𝐸𝐸(πœ™πœ™π‘–π‘–) = 0 𝑖𝑖 = 1,𝑁𝑁 on 𝛀𝛀𝐸𝐸

β€’ Only require a limited degree of functional continuity. Therefore we can piece together

functions to make up πœ™πœ™π‘–π‘–. Again this makes the problem much easier.

β€’ Since we’re not satisfying the natural b.c.’s, we also consider the error associated with the

locations where the natural b.c.’s is violated:

Ԑ𝐼𝐼 = πΏπΏοΏ½π‘’π‘’π‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘ŽοΏ½ βˆ’ 𝑝𝑝(π‘₯π‘₯)

Ԑ𝐡𝐡,𝑁𝑁 = βˆ’π‘†π‘†π‘π‘οΏ½π‘’π‘’π‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘ŽοΏ½ + 𝑔𝑔𝑁𝑁

< Ԑ𝐼𝐼 ,𝑀𝑀𝑗𝑗 > +< Ԑ𝐡𝐡,𝑁𝑁 ,𝑀𝑀𝑗𝑗 > = 0 𝑗𝑗 = 1,𝑁𝑁

This establishes the fundamental weak form. Thus we have relaxed the admissibility

conditions such that only β€œessential” b.c.’s must be satisfied.

β€’ The Interior and Boundary Error (for the natural boundary) must go to zero by requiring 𝑀𝑀𝑗𝑗

to the orthogonal to these combined errors. Hence we are no longer β€œclamping” the natural

b.c. down at the time we set up our sequence but we are β€œdriving” the natural b.c. error to

zero as the number of trial functions increases.

Page 3: Lecture No. 5 Lecture Notes_… · CE 60130 FINITE ELEMENT METHODS - LECTURE 5 - updated 2018- 01- 25 Page 1 | 22 . Lecture No. 5 . 𝐿𝐿(𝑒𝑒) βˆ’π‘π‘(π‘₯π‘₯) = 0 in

C E 6 0 1 3 0 F I N I T E E L E M E N T M E T H O D S - L E C T U R E 5 - u p d a t e d 2 0 1 8 - 0 1 - 2 5 P a g e 3 | 22

β€’ Expanding out the fundamental weak form by substituting Ԑ𝐼𝐼 , Ԑ𝐡𝐡,𝑁𝑁 and π‘’π‘’π‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Ž.

< 𝐿𝐿(𝑒𝑒𝐡𝐡) βˆ’ 𝑝𝑝,𝑀𝑀𝑗𝑗 > +�𝛼𝛼𝑖𝑖 < 𝐿𝐿(πœ™πœ™π‘–π‘–),𝑁𝑁

𝑖𝑖=1

𝑀𝑀𝑗𝑗 >𝛺𝛺 +< 𝑔𝑔𝑁𝑁 βˆ’ 𝑆𝑆𝑁𝑁(𝑒𝑒𝐡𝐡),𝑀𝑀𝑗𝑗 >𝛀𝛀𝑁𝑁

βˆ’οΏ½π›Όπ›Όπ‘–π‘– <𝑁𝑁

𝑖𝑖=1

𝑆𝑆𝑁𝑁(πœ™πœ™π‘–π‘–),𝑀𝑀𝑗𝑗 >𝛀𝛀𝑁𝑁= 0 𝑗𝑗 = 1,𝑁𝑁

Page 4: Lecture No. 5 Lecture Notes_… · CE 60130 FINITE ELEMENT METHODS - LECTURE 5 - updated 2018- 01- 25 Page 1 | 22 . Lecture No. 5 . 𝐿𝐿(𝑒𝑒) βˆ’π‘π‘(π‘₯π‘₯) = 0 in

C E 6 0 1 3 0 F I N I T E E L E M E N T M E T H O D S - L E C T U R E 5 - u p d a t e d 2 0 1 8 - 0 1 - 2 5 P a g e 4 | 22

Symmetrical Weak Weighted Residual Form

β€’ Let’s continue to relax admissibility by integrating the fundamental weak form by parts.

The β€œhalfway point” of the integration represents the symmetrical weak form”.

β€’ This integration by parts procedure:

β€’ Reduces the required functional continuity on the approximating functions. It reduces

functional continuity requirements on the trial functions while increasing them on the

test functions. At the symmetrical weak form these requirements are balanced. Thus

this is the optimal weak form.

β€’ Furthermore the unknown functions evaluated at the boundary disappear.

β€’ In general the natural b.c. is only satisfied in an average sense of 𝑁𝑁 β†’ ∞.

β€’ When the operator is self-adjoint, the matrix generated will still be symmetrical for both the

symmetrical and fundamental weak forms.

Page 5: Lecture No. 5 Lecture Notes_… · CE 60130 FINITE ELEMENT METHODS - LECTURE 5 - updated 2018- 01- 25 Page 1 | 22 . Lecture No. 5 . 𝐿𝐿(𝑒𝑒) βˆ’π‘π‘(π‘₯π‘₯) = 0 in

C E 6 0 1 3 0 F I N I T E E L E M E N T M E T H O D S - L E C T U R E 5 - u p d a t e d 2 0 1 8 - 0 1 - 2 5 P a g e 5 | 22

Definition and Use of Localized Functions

β€’ Split the domain up into segments over which trial/test functions are defined.

Motivation, it’s easier to satisfy b.c.’s for complex 2D/3D geometries since these can be

satisfied locally (for weak formulations we need only satisfy the essential b.c.’s). In addition

the matrix properties will in general be much better.

β€’ For the finite element method (FEM), we use functions defined over small subdomains, i.e.

localized functions.

β€’ However we must ensure that we satisfy the correct degree of functional continuity. For

example, consider:

𝐿𝐿(𝑒𝑒) =𝑑𝑑2𝑒𝑒𝑑𝑑π‘₯π‘₯2

π‘Šπ‘Š(2) space is required for fundamental weak form (continuity of the function and the first

derivative and a finite second derivative).

π‘Šπ‘Š(1) space is required for the symmetrical weak form (continuity of the function and a

finite first derivative).

β€’ Split the domain up into segments and define trial functions within each element.

Page 6: Lecture No. 5 Lecture Notes_… · CE 60130 FINITE ELEMENT METHODS - LECTURE 5 - updated 2018- 01- 25 Page 1 | 22 . Lecture No. 5 . 𝐿𝐿(𝑒𝑒) βˆ’π‘π‘(π‘₯π‘₯) = 0 in

C E 6 0 1 3 0 F I N I T E E L E M E N T M E T H O D S - L E C T U R E 5 - u p d a t e d 2 0 1 8 - 0 1 - 2 5 P a g e 6 | 22

Option 1

No functional continuity but finite function β†’ π‘Šπ‘Š(0) space

(a) The simplest approximation is a histogram (i.e. constant value of the function over the

element). This defines only one unknown per β€œfinite element”.

Page 7: Lecture No. 5 Lecture Notes_… · CE 60130 FINITE ELEMENT METHODS - LECTURE 5 - updated 2018- 01- 25 Page 1 | 22 . Lecture No. 5 . 𝐿𝐿(𝑒𝑒) βˆ’π‘π‘(π‘₯π‘₯) = 0 in

C E 6 0 1 3 0 F I N I T E E L E M E N T M E T H O D S - L E C T U R E 5 - u p d a t e d 2 0 1 8 - 0 1 - 2 5 P a g e 7 | 22

(b) We can define more complex functions over the element leading to more unknowns per

element (to represent an increased order of polynomial or function within the element).

However we still have no functional continuity between the elements and thus these

functions still are from the π‘Šπ‘Š(0) space.

Page 8: Lecture No. 5 Lecture Notes_… · CE 60130 FINITE ELEMENT METHODS - LECTURE 5 - updated 2018- 01- 25 Page 1 | 22 . Lecture No. 5 . 𝐿𝐿(𝑒𝑒) βˆ’π‘π‘(π‘₯π‘₯) = 0 in

C E 6 0 1 3 0 F I N I T E E L E M E N T M E T H O D S - L E C T U R E 5 - u p d a t e d 2 0 1 8 - 0 1 - 2 5 P a g e 8 | 22

Option 2

The function is continuous which defines the π‘Šπ‘Š(1) = πΆπΆπ‘œπ‘œ space. This space requires no

continuity of the derivative. We define the discrete variables equal to the functional values at

the nodes. Nodes must always join up at the inter element boundaries!

(a) The simplest approximation consists of a linear approximation over each element

which involves 2 unknowns per element and 1 unknown per node: Thus over each

element:

𝑒𝑒 = π‘π‘π‘œπ‘œ + 𝑐𝑐1π‘₯π‘₯

Thus we’ve gone from an element measure to a nodal measure.

An interpolating function defined with nodal functional values and π‘Šπ‘Š(1) = πΆπΆπ‘œπ‘œ continuity is called a Lagrange interpolating function.

Page 9: Lecture No. 5 Lecture Notes_… · CE 60130 FINITE ELEMENT METHODS - LECTURE 5 - updated 2018- 01- 25 Page 1 | 22 . Lecture No. 5 . 𝐿𝐿(𝑒𝑒) βˆ’π‘π‘(π‘₯π‘₯) = 0 in

C E 6 0 1 3 0 F I N I T E E L E M E N T M E T H O D S - L E C T U R E 5 - u p d a t e d 2 0 1 8 - 0 1 - 2 5 P a g e 9 | 22

(b) We can use higher degree functions within each element (i.e. more nodes per element)

however functional continuity will still only be π‘Šπ‘Š(1). For example:

𝑒𝑒 = π‘π‘π‘œπ‘œ + 𝑐𝑐1π‘₯π‘₯ + 𝑐𝑐2π‘₯π‘₯2 + 𝑐𝑐3π‘₯π‘₯3

Page 10: Lecture No. 5 Lecture Notes_… · CE 60130 FINITE ELEMENT METHODS - LECTURE 5 - updated 2018- 01- 25 Page 1 | 22 . Lecture No. 5 . 𝐿𝐿(𝑒𝑒) βˆ’π‘π‘(π‘₯π‘₯) = 0 in

C E 6 0 1 3 0 F I N I T E E L E M E N T M E T H O D S - L E C T U R E 5 - u p d a t e d 2 0 1 8 - 0 1 - 2 5 P a g e 10 | 22

Option 3

The function and first derivative continuous defines the π‘Šπ‘Š(2) = 𝐢𝐢1 space. In this case we

must define the function and the first derivative as nodal variables.

(a) Simplest approximation involves 2 nodes with 2 unknowns per node. Thus over each

element:

𝑒𝑒 = π‘π‘π‘œπ‘œ + 𝑐𝑐1π‘₯π‘₯ + 𝑐𝑐2π‘₯π‘₯2 + 𝑐𝑐3π‘₯π‘₯3

Therefore u and 𝑒𝑒,π‘₯π‘₯ are the unknowns. This involves 4 unknowns per element, 2 unknowns

per node.

Interpolating functions defined with nodal functional and first derivative values with

π‘Šπ‘Š(2) = 𝐢𝐢1 continuity are called Hermite Interpolating functions.

Page 11: Lecture No. 5 Lecture Notes_… · CE 60130 FINITE ELEMENT METHODS - LECTURE 5 - updated 2018- 01- 25 Page 1 | 22 . Lecture No. 5 . 𝐿𝐿(𝑒𝑒) βˆ’π‘π‘(π‘₯π‘₯) = 0 in

C E 6 0 1 3 0 F I N I T E E L E M E N T M E T H O D S - L E C T U R E 5 - u p d a t e d 2 0 1 8 - 0 1 - 2 5 P a g e 11 | 22

1st order Hermite: 𝑒𝑒 and 𝑒𝑒,π‘₯π‘₯ continuous

2nd order Hermite: 𝑒𝑒, 𝑒𝑒,π‘₯π‘₯ and 𝑒𝑒,π‘₯π‘₯π‘₯π‘₯ continuous β†’ 3 unknowns per node

Note 1

For the Galerkin method, 𝑀𝑀𝑗𝑗 = πœ™πœ™π‘—π‘—

β€’ The fundamental weak form requires different order functional continuity for πœ™πœ™π‘—π‘— as

trial functions than the 𝑀𝑀𝑗𝑗 (or πœ™πœ™π‘—π‘— as test) functions.

β€’ The symmetrical weak form is obtained by integration by parts until the space

requirements for πœ™πœ™π‘—π‘— and 𝑀𝑀𝑗𝑗 are the same. This is the most attractive form to use. We

note that the number of unknowns has been minimized.

Page 12: Lecture No. 5 Lecture Notes_… · CE 60130 FINITE ELEMENT METHODS - LECTURE 5 - updated 2018- 01- 25 Page 1 | 22 . Lecture No. 5 . 𝐿𝐿(𝑒𝑒) βˆ’π‘π‘(π‘₯π‘₯) = 0 in

C E 6 0 1 3 0 F I N I T E E L E M E N T M E T H O D S - L E C T U R E 5 - u p d a t e d 2 0 1 8 - 0 1 - 2 5 P a g e 12 | 22

Example

β€’ Fundamental weak form:

��𝑑𝑑2π‘’π‘’π‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘‘π‘‘π‘₯π‘₯2 + π‘’π‘’π‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Ž βˆ’ π‘₯π‘₯�𝑀𝑀𝑗𝑗𝑑𝑑π‘₯π‘₯ + ��𝑔𝑔 βˆ’

π‘‘π‘‘π‘’π‘’π‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘‘π‘‘π‘₯π‘₯ �𝑀𝑀𝑗𝑗�

π‘₯π‘₯=1= 0 𝑗𝑗 = 1,𝑁𝑁

1

0

𝑀𝑀𝑗𝑗 ∈ 𝐿𝐿2 and π‘’π‘’π‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Ž (or πœ™πœ™π‘–π‘–) ∈ π‘Šπ‘Š(2), 𝑗𝑗 = 1,𝑁𝑁

Therefore we must choose 𝑀𝑀𝑗𝑗 and πœ™πœ™π‘—π‘— ∈ π‘Šπ‘Š(2)

The functional and first derivative must be continuous) leading to a cubic approximation

over the element with 2 unknowns per node (function value and its 1st derivative). Thus we

require Hermite interpolation

β€’ Symmetrical Weak Form

οΏ½οΏ½βˆ’π‘‘π‘‘π‘’π‘’π‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘‘π‘‘π‘₯π‘₯

𝑑𝑑𝑀𝑀𝑗𝑗𝑑𝑑π‘₯π‘₯ + 𝑒𝑒𝑀𝑀𝑗𝑗 + π‘₯π‘₯𝑀𝑀𝑗𝑗�𝑑𝑑π‘₯π‘₯ + �𝑔𝑔𝑀𝑀𝑗𝑗�π‘₯π‘₯=1 = 0

1

0

𝑗𝑗 = 1,𝑁𝑁

Page 13: Lecture No. 5 Lecture Notes_… · CE 60130 FINITE ELEMENT METHODS - LECTURE 5 - updated 2018- 01- 25 Page 1 | 22 . Lecture No. 5 . 𝐿𝐿(𝑒𝑒) βˆ’π‘π‘(π‘₯π‘₯) = 0 in

C E 6 0 1 3 0 F I N I T E E L E M E N T M E T H O D S - L E C T U R E 5 - u p d a t e d 2 0 1 8 - 0 1 - 2 5 P a g e 13 | 22

β€’ The opposite of the fundamental weak form is obtained by interchanging π‘’π‘’π‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Ž and 𝑀𝑀𝑗𝑗 and

leads to the B.E.M form

�𝑑𝑑𝑀𝑀𝑗𝑗𝑑𝑑π‘₯π‘₯ π‘’π‘’π‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘ŽοΏ½

0

1

+ �𝑔𝑔𝑀𝑀𝑗𝑗�π‘₯π‘₯=1 + ��𝑒𝑒𝑀𝑀𝑗𝑗 + π‘₯π‘₯𝑀𝑀𝑗𝑗 + π‘’π‘’π‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘‘π‘‘2𝑀𝑀𝑗𝑗𝑑𝑑π‘₯π‘₯2 οΏ½ 𝑑𝑑π‘₯π‘₯ = 0

1

0

𝑗𝑗 = 1,𝑁𝑁

Now 𝑀𝑀𝑗𝑗 ∈ π‘Šπ‘Š(2) and π‘’π‘’π‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Ž (or πœ™πœ™π‘—π‘—) ∈ 𝐿𝐿2

Page 14: Lecture No. 5 Lecture Notes_… · CE 60130 FINITE ELEMENT METHODS - LECTURE 5 - updated 2018- 01- 25 Page 1 | 22 . Lecture No. 5 . 𝐿𝐿(𝑒𝑒) βˆ’π‘π‘(π‘₯π‘₯) = 0 in

C E 6 0 1 3 0 F I N I T E E L E M E N T M E T H O D S - L E C T U R E 5 - u p d a t e d 2 0 1 8 - 0 1 - 2 5 P a g e 14 | 22

Note 2

Alternative strategy for deriving the symmetrical weak form:

β€’ Start with standard Galerkin formulation

β€’ Integrate by parts

β€’ Substitute in for the specified natural b.c.

Example

β€’ Standard Galerkin formulation

��𝑑𝑑2π‘’π‘’π‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘‘π‘‘π‘₯π‘₯2 + π‘’π‘’π‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Ž + π‘₯π‘₯�𝑀𝑀𝑗𝑗𝑑𝑑π‘₯π‘₯ = 0

1

0

β€’ Integrate by parts:

οΏ½οΏ½βˆ’π‘‘π‘‘π‘’π‘’π‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘‘π‘‘π‘₯π‘₯

𝑑𝑑𝑀𝑀𝑗𝑗𝑑𝑑π‘₯π‘₯ + 𝑒𝑒𝑀𝑀𝑗𝑗 + π‘₯π‘₯𝑀𝑀𝑗𝑗� 𝑑𝑑π‘₯π‘₯ + οΏ½

π‘‘π‘‘π‘’π‘’π‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘‘π‘‘π‘₯π‘₯ 𝑀𝑀𝑗𝑗�

π‘₯π‘₯=0

π‘₯π‘₯=1

= 01

0

β‡’

οΏ½οΏ½βˆ’π‘‘π‘‘π‘’π‘’π‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘‘π‘‘π‘₯π‘₯

𝑑𝑑𝑀𝑀𝑗𝑗𝑑𝑑π‘₯π‘₯ + 𝑒𝑒𝑀𝑀𝑗𝑗 + π‘₯π‘₯𝑀𝑀𝑗𝑗� 𝑑𝑑π‘₯π‘₯ + οΏ½

π‘‘π‘‘π‘’π‘’π‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘‘π‘‘π‘₯π‘₯ 𝑀𝑀𝑗𝑗�

π‘₯π‘₯=1βˆ’ οΏ½

π‘‘π‘‘π‘’π‘’π‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘‘π‘‘π‘₯π‘₯ 𝑀𝑀𝑗𝑗�

π‘₯π‘₯=0= 0

1

0

Page 15: Lecture No. 5 Lecture Notes_… · CE 60130 FINITE ELEMENT METHODS - LECTURE 5 - updated 2018- 01- 25 Page 1 | 22 . Lecture No. 5 . 𝐿𝐿(𝑒𝑒) βˆ’π‘π‘(π‘₯π‘₯) = 0 in

C E 6 0 1 3 0 F I N I T E E L E M E N T M E T H O D S - L E C T U R E 5 - u p d a t e d 2 0 1 8 - 0 1 - 2 5 P a g e 15 | 22

β€’ However for our example case:

π‘‘π‘‘π‘‘π‘‘π‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘‘π‘‘π‘₯π‘₯

οΏ½π‘₯π‘₯=1

β‰… 𝑔𝑔 (specified natural b.c.)

β€’ Substituting the above equation as well as 𝑀𝑀𝑗𝑗�π‘₯π‘₯=0 = 0 (since πœ™πœ™π‘—π‘— satisfies the

homogeneous form of the essential b.c.), leads to:

οΏ½οΏ½π‘‘π‘‘π‘’π‘’π‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘‘π‘‘π‘₯π‘₯

𝑑𝑑𝑀𝑀𝑗𝑗𝑑𝑑π‘₯π‘₯ + 𝑒𝑒𝑀𝑀𝑗𝑗 + π‘₯π‘₯𝑀𝑀𝑗𝑗� 𝑑𝑑π‘₯π‘₯ + �𝑔𝑔𝑀𝑀𝑗𝑗�π‘₯π‘₯=1 = 0

1

0

Page 16: Lecture No. 5 Lecture Notes_… · CE 60130 FINITE ELEMENT METHODS - LECTURE 5 - updated 2018- 01- 25 Page 1 | 22 . Lecture No. 5 . 𝐿𝐿(𝑒𝑒) βˆ’π‘π‘(π‘₯π‘₯) = 0 in

C E 6 0 1 3 0 F I N I T E E L E M E N T M E T H O D S - L E C T U R E 5 - u p d a t e d 2 0 1 8 - 0 1 - 2 5 P a g e 16 | 22

Note 3

For collocation we cannot use an integration by parts procedure to lower the required degree

of functional continuity as we could for Galerkin methods. This is due to the form of the

weighting functions, 𝑀𝑀𝑗𝑗 = 𝛿𝛿�π‘₯π‘₯ βˆ’ π‘₯π‘₯𝑗𝑗� (the dirac delta function) which is not differentiable.

𝑑𝑑𝛿𝛿�π‘₯π‘₯ βˆ’ π‘₯π‘₯𝑗𝑗�𝑑𝑑π‘₯π‘₯

does not exist. Therefore it is not possible to find any weak forms!

Therefore for a 2nd order differential operator 𝐿𝐿 we must use Hermite type interpolation

compared to the Galerkin Symmetrical weak form for which we only needed Lagrange type

interpolation.

Page 17: Lecture No. 5 Lecture Notes_… · CE 60130 FINITE ELEMENT METHODS - LECTURE 5 - updated 2018- 01- 25 Page 1 | 22 . Lecture No. 5 . 𝐿𝐿(𝑒𝑒) βˆ’π‘π‘(π‘₯π‘₯) = 0 in

C E 6 0 1 3 0 F I N I T E E L E M E N T M E T H O D S - L E C T U R E 5 - u p d a t e d 2 0 1 8 - 0 1 - 2 5 P a g e 17 | 22

Note 4

β€’ Summary of Advantages of Weak Forms:

β€’ Fundamental weak form has relaxed b.c. requirements. It’s much easier to find trial/test

functions which satisfy the homogeneous form of the essential b.c. than both the essential

and natural b.c.’s

β€’ In addition when we define local trial functions on finite elements, it will be much

simpler to satisfy the essential b.c.’s locally on the element level rather than on a global

level.

When using the FE method where we simply go into the matrix and set the essential b.c.

u and we need not worry about β€œstrictly” enforcing the natural boundary condition 𝑑𝑑𝑒𝑒/𝑑𝑑π‘₯π‘₯

β€’ Symmetrical weak form has relaxed functional continuity requirements. This is very

important when defining functions over split domains (FE method).

The symmetrical weak form lowers the inter-element functional continuity requirements

and thus lowers the number of unknowns.

β€’ In addition, part of the natural b.c. error falls out due to the way in which it was defined.

Page 18: Lecture No. 5 Lecture Notes_… · CE 60130 FINITE ELEMENT METHODS - LECTURE 5 - updated 2018- 01- 25 Page 1 | 22 . Lecture No. 5 . 𝐿𝐿(𝑒𝑒) βˆ’π‘π‘(π‘₯π‘₯) = 0 in

C E 6 0 1 3 0 F I N I T E E L E M E N T M E T H O D S - L E C T U R E 5 - u p d a t e d 2 0 1 8 - 0 1 - 2 5 P a g e 18 | 22

Notes on a 4th derivative operator problem

Consider the equilibrium equation for a beam on an elastic foundation

𝐸𝐸𝐸𝐸𝑑𝑑4𝑣𝑣𝑑𝑑π‘₯π‘₯4 + π‘˜π‘˜π‘£π‘£ = 𝑝𝑝(π‘₯π‘₯)

where

v = beam displacement

E = modulus of elasticity

I = moment of inertia

k = foundation constant

p = distributed load on the beam

Page 19: Lecture No. 5 Lecture Notes_… · CE 60130 FINITE ELEMENT METHODS - LECTURE 5 - updated 2018- 01- 25 Page 1 | 22 . Lecture No. 5 . 𝐿𝐿(𝑒𝑒) βˆ’π‘π‘(π‘₯π‘₯) = 0 in

C E 6 0 1 3 0 F I N I T E E L E M E N T M E T H O D S - L E C T U R E 5 - u p d a t e d 2 0 1 8 - 0 1 - 2 5 P a g e 19 | 22

Standard Galerkin

⟨𝐿𝐿(𝑣𝑣) βˆ’ 𝑝𝑝, π›Ώπ›Ώπ‘£π‘£βŸ© = 0

β‡’

��𝐸𝐸𝐸𝐸𝑑𝑑4𝑣𝑣𝑑𝑑π‘₯π‘₯4

+ π‘˜π‘˜π‘£π‘£ βˆ’ 𝑝𝑝�𝛿𝛿𝑣𝑣𝑑𝑑π‘₯π‘₯ = 0𝑙𝑙

0

β€’ We can establish what the essential and natural b.c.’s are by using the integration by parts

procedure to find:

⟨𝐿𝐿(𝑣𝑣), π›Ώπ›Ώπ‘£π‘£βŸ© = βŸ¨πΏπΏβˆ—(𝛿𝛿𝑣𝑣), π‘£π‘£βŸ© +

οΏ½ [𝐹𝐹1(𝛿𝛿𝑣𝑣)𝐺𝐺1(𝑣𝑣) + 𝐹𝐹2(𝛿𝛿𝑣𝑣)𝐺𝐺2(𝑣𝑣) βˆ’ 𝐹𝐹1(𝑣𝑣)πΊπΊβˆ—1(𝛿𝛿𝑣𝑣) βˆ’ 𝐹𝐹2(𝑣𝑣)πΊπΊβˆ—2(𝛿𝛿𝑣𝑣)]𝑑𝑑𝛀𝛀

β€’ We perform 2 integration by parts to find the bc’s (assuming EI constant):

⟨𝐿𝐿(𝑣𝑣), π›Ώπ›Ώπ‘£π‘£βŸ© = ��𝐸𝐸𝐸𝐸𝑑𝑑2𝑣𝑣𝑑𝑑π‘₯π‘₯2

𝑑𝑑2𝛿𝛿𝑣𝑣𝑑𝑑π‘₯π‘₯2 + π‘˜π‘˜π‘£π‘£π›Ώπ›Ώπ‘£π‘£οΏ½π‘‘π‘‘π‘₯π‘₯

𝑙𝑙

0

+ οΏ½βˆ’πΈπΈπΈπΈπ‘‘π‘‘2𝑣𝑣𝑑𝑑π‘₯π‘₯2

𝑑𝑑𝛿𝛿𝑣𝑣𝑑𝑑π‘₯π‘₯ + 𝐸𝐸𝐸𝐸

𝑑𝑑3𝑣𝑣𝑑𝑑π‘₯π‘₯3 𝛿𝛿𝑣𝑣�π‘₯π‘₯=0

π‘₯π‘₯=1

Page 20: Lecture No. 5 Lecture Notes_… · CE 60130 FINITE ELEMENT METHODS - LECTURE 5 - updated 2018- 01- 25 Page 1 | 22 . Lecture No. 5 . 𝐿𝐿(𝑒𝑒) βˆ’π‘π‘(π‘₯π‘₯) = 0 in

C E 6 0 1 3 0 F I N I T E E L E M E N T M E T H O D S - L E C T U R E 5 - u p d a t e d 2 0 1 8 - 0 1 - 2 5 P a g e 20 | 22

β€’ This is halfway point of the integration by parts procedure and represent the symmetrical

weak form:

β€’ Hence the essential b.c.’ are: 𝐹𝐹1(𝑣𝑣) = 𝑣𝑣 β†’ displacement

𝐹𝐹2(𝑣𝑣) = 𝑑𝑑𝑑𝑑𝑑𝑑π‘₯π‘₯β†’ slope

β€’ the natural b.c.’s are: 𝐺𝐺1(𝑣𝑣) = βˆ’πΈπΈπΈπΈ 𝑑𝑑3𝑑𝑑

𝑑𝑑π‘₯π‘₯3= 𝑄𝑄 β†’ applied shear

𝐺𝐺2(𝑣𝑣) = +𝐸𝐸𝐸𝐸 𝑑𝑑2𝑑𝑑

𝑑𝑑π‘₯π‘₯2= 𝑀𝑀 β†’ applied moment

β€’ Note that the weighting functions that are to be used in establishing the fundamental

weak form fall out of this integration by parts procedure used in establishing self-

adjointness of the operator (which also establishes b.c.’s). You want terms to drop later

on!

Page 21: Lecture No. 5 Lecture Notes_… · CE 60130 FINITE ELEMENT METHODS - LECTURE 5 - updated 2018- 01- 25 Page 1 | 22 . Lecture No. 5 . 𝐿𝐿(𝑒𝑒) βˆ’π‘π‘(π‘₯π‘₯) = 0 in

C E 6 0 1 3 0 F I N I T E E L E M E N T M E T H O D S - L E C T U R E 5 - u p d a t e d 2 0 1 8 - 0 1 - 2 5 P a g e 21 | 22

β€’ Natural boundary errors

The error in the moment is:

Ԑ𝐡𝐡′ = �𝐸𝐸𝐸𝐸𝑑𝑑2𝑣𝑣𝑑𝑑π‘₯π‘₯2 βˆ’ 𝑀𝑀� οΏ½

𝑑𝑑𝛿𝛿𝑣𝑣𝑑𝑑π‘₯π‘₯

οΏ½

A error in the shear is:

Ԑ𝐡𝐡" = οΏ½βˆ’πΈπΈπΈπΈπ‘‘π‘‘3𝑣𝑣𝑑𝑑π‘₯π‘₯3 βˆ’ 𝑄𝑄� {𝛿𝛿𝑣𝑣}

β€’ Weighted natural boundary errors

A moment error is weighted by a rotation:

βŸ¨Τπ΅π΅β€² ,𝑑𝑑𝛿𝛿𝑣𝑣𝑑𝑑π‘₯π‘₯

⟩ = οΏ½ �𝐸𝐸𝐸𝐸𝑑𝑑2𝑣𝑣𝑑𝑑π‘₯π‘₯2 βˆ’ 𝑀𝑀�

Γ𝑁𝑁

�𝑑𝑑𝛿𝛿𝑣𝑣𝑑𝑑π‘₯π‘₯ οΏ½ 𝑑𝑑Γ

A shear error is weighted by a displacement

⟨Ԑ𝐡𝐡" , π›Ώπ›Ώπ‘£π‘£βŸ© = οΏ½ οΏ½βˆ’πΈπΈπΈπΈπ‘‘π‘‘3𝑣𝑣𝑑𝑑π‘₯π‘₯3 βˆ’ 𝑄𝑄�

Γ𝑁𝑁

{𝛿𝛿𝑣𝑣} 𝑑𝑑Γ

Page 22: Lecture No. 5 Lecture Notes_… · CE 60130 FINITE ELEMENT METHODS - LECTURE 5 - updated 2018- 01- 25 Page 1 | 22 . Lecture No. 5 . 𝐿𝐿(𝑒𝑒) βˆ’π‘π‘(π‘₯π‘₯) = 0 in

C E 6 0 1 3 0 F I N I T E E L E M E N T M E T H O D S - L E C T U R E 5 - u p d a t e d 2 0 1 8 - 0 1 - 2 5 P a g e 22 | 22

β€’ Note that we must specify essential b.c.’s somewhere!

β€’ Boundary conditions must be specified in pairs for this problem

β€’ Displacement and rotation are paired

β€’ Shear and moment are paired

β€’ The error/weighting products fall out of the integration by parts process. They are also

dimensionally consistent with all terms in the total error equation.

β€’ The total error equation for this problem is the fundamental weak form

⟨Ԑ𝐼𝐼 , π›Ώπ›Ώπ‘£π‘£βŸ© + βŸ¨Τπ΅π΅β€² ,𝑑𝑑𝛿𝛿𝑣𝑣𝑑𝑑π‘₯π‘₯

⟩ + ⟨Ԑ𝐡𝐡" , π›Ώπ›Ώπ‘£π‘£βŸ© = 0

where

Ԑ𝐼𝐼 = 𝐸𝐸𝐸𝐸𝑑𝑑4𝑣𝑣𝑑𝑑π‘₯π‘₯4 + π‘˜π‘˜π‘£π‘£ βˆ’ 𝑝𝑝

β€’ The symmetrical weak form is established by integrating the fundamental weak form by

parts.