Lecture 8 - Radiation Safety - Bohndiek Lab

23
1/17/18 1 Radiation Safety Bethany Gillett [email protected] 14th Feb 2018 Learning Outcomes After this lecture, you should be able to: Understand different radiation protection quantities Explain the difference between radiation dose and radiation risk Describe important factors in radiation protection

Transcript of Lecture 8 - Radiation Safety - Bohndiek Lab

Page 1: Lecture 8 - Radiation Safety - Bohndiek Lab

1/17/18

1

RadiationSafety

[email protected]

14thFeb2018

LearningOutcomes

• Afterthislecture,youshouldbeableto:

– Understanddifferentradiationprotectionquantities– Explainthedifferencebetweenradiationdoseandradiationrisk– Describeimportantfactorsinradiationprotection

Page 2: Lecture 8 - Radiation Safety - Bohndiek Lab

1/17/18

2

Chargedparticleinteractions

Quantifyingradiationdose

Radiationrisks

RevisionI

• Atdiagnosticenergies,nuclearinteractionsarerare• Heavychargedparticles(e.g.protons)loseonlyasmall

fractionoftheirenergyineachcollision• Lightchargedparticles(e.g.electrons)losemostoftheir

energyinasinglecollision• Allformsofionisingradiationeventuallyresultina

distributionoflowenergyelectronshencetheseareofcentralimportanceinradiationbiology

• HeavychargedparticlesundergomultipleCoulombscatteringeventswithnegligibledeflection

Page 3: Lecture 8 - Radiation Safety - Bohndiek Lab

1/17/18

3

RevisionII

• Stoppingpoweristheaveragerateofenergylossinamedium

• theenergydepositionofchargedparticlesdifferssignificantlyfromthatofphotons:

• Lightchargedparticlescanloseenergyviabothcollisionsandradiativemechanisms

Protons

Photons-dE/dx

x

Chargedparticleinteractions

Quantifyingradiationdose

Radiationrisks

Page 4: Lecture 8 - Radiation Safety - Bohndiek Lab

1/17/18

4

Kineticenergyreleasedinmedia (KERMA)measurestheoverallenergylostbyionising radiation

Foramonoenergeticbeam:K = kNE µ

ρ

!

"#

$

%&med

keV

cm2g-1

cm-2

constantk=1.6x10-13 GykeV-1

K = k Φ E( )E=0

Emax

∫µ E( )ρ

#

$%

&

'(med

EdE

photonscm-2

Forapolyenergeticbeam:

Absorbeddoseistheenergygainedfromionisingradiationperunitmassofmaterial

ε = Rin − Rout + Q∑Energyimparted

RadiantenergyincidentonthevolumeSumofallchargedandunchargedparticleenergies,excludingrestmassenergies

Radiantenergyleavingthevolume

SumofallrestmassenergiesInanynucleartransformationsthatoccurwithinthevolume

1 Gy = 1 J1 kg

SIUnitofDose:

D =dεdm

AbsorbedDose: DT =1mT

Ddm∫MeanAbsorbedDose:

Page 5: Lecture 8 - Radiation Safety - Bohndiek Lab

1/17/18

5

Inradiationprotection,weareinterestedinthedamagedonebyradiationsouseequivalentdose

• 1Gyofprotonsorneutronscausesmoredamagetotissuethan1Gyofphotonsorelectrons

• Defineequivalentdose:orinagivenorganortissue:

H = DwR

Radiationtype Energy wR factorPhotons All 1

Electrons All 1

Protons >2MeV 5

Neutrons <10keV,>20MeV 5

10– 100 keV,2– 20MeV 10

100keV – 2 MeV 20

Atomicnuclei All 20

1 Sievert = 1 Gray × wR

ICRP2007

HT = DT ,RwR

Effectivedoseaccountsforthedifferentsusceptibilityoftissuetypestoradiation(unitstillSv)

E = wtHtt=0

N

Tissuetype wfactor(each)

Bonemarrow,colon,lung,stomach, breast,remainder 0.12

Gonads 0.08

Bladder,liver, thyroid,oesophagus 0.04

Bonesurface,brain,salivaryglands,skin 0.01

Page 6: Lecture 8 - Radiation Safety - Bohndiek Lab

1/17/18

6

Howmuchisamicrosievert(μSv)?

• AveragedosereceivedfromlivingintheUK– 6μSvperday

• AnnualdosefromradioactivefalloutintheUK– 10μSv

• ReturnflighttoSpain– 20μSv

• ChestX-ray– 20μSv

• Annualdosetomedicalphysicist– 100μSv

• CTscan– 5,000μSv

Themeasurementofradiationdoseisdosimetry

DCVoltageSource

IonCurrent

+

-

Anode

Cathode

Incidentparticle

Airvolume~6cm3

Page 7: Lecture 8 - Radiation Safety - Bohndiek Lab

1/17/18

7

Fluence ofphotonsisnotproportionaltoabsorbeddoseunlesselectronequilibriumexists

• Chargedparticleequilibrium(CPE)requiresthatthenumberofchargedparticlesenteringthemeasurementvolumeisequaltothoseleavingit

• Conditions:– Separationofboundariesofvolumemustbeatleasttherangeofany

secondarychargedparticle– Atomiccompositionofmediumishomogeneous– Densityofmediumhomogeneous– Uniformfieldofx-rayspassingthroughthemedium(negligibleattenuation)– Noinhomogeneouselectricormagneticfieldsarepresent

• Usuallymetinmodernexposurechambersforx-raybeamsindiagnosticradiology

ThetraditionalunitofexposureistheRoentgen

• TheRoentgenisdefinedonlyinair,underconditionsofelectronequilibrium:1R=2.58x10-4Ckg-1

1cm3 air=0.001293g(atSTP)

2.08x109 ionizations 2.58x10-4 Ckg-1

Exposure:1Roentgen

• STP:themassofairinanionisation chamberis~7.8mg• A1Rexposurewillthereforeliberate2.0x10-9 Cinsidethechamber,

correspondingto1.2x1010 ions

Page 8: Lecture 8 - Radiation Safety - Bohndiek Lab

1/17/18

8

MeasuredX-rayexposureinaircanbedirectlyrelatedtoabsorbeddoseinamediumunderCPE

Empirically,33.97eV isneededtoproduceanionpairinair:

Dair = 2.58×10−4 C/kg ×33.97J/C×X= 0.00876J/kg×X= 8.76mGy×X

Sprawls,RadiationQuantitiesandUnits

Ffactor

Ifx-raysareincidentuponanothermedium:

Dmed = Dair

µenρ( )

med

µenρ( )

air

= 0.876

µenρ( )

med

µenρ( )

air

X

= fX

Howareradiationprotectionquantitiesrelated?

PhysicalQuantitiesFluenceKerma

AbsorbeddoseStoppingpower/LET

ProtectionQuantitiesOrganabsorbeddoseOrganequivalentdoseEffectivedose

OperationalQuantitiesEquivalentdose(ambient,directional,personal)

Calculatedusingweightingfactorsandanthropomorphicphantoms

Comparedbymeasurementand

calculation

Page 9: Lecture 8 - Radiation Safety - Bohndiek Lab

1/17/18

9

TwomainmechanismsofDNAdamagecanarisefromradiationexposure

http://www.cna.ca/curriculum/cna_bio_effects_rad/

IonisingradiationcreatesionswhichbreaksthesugarphosphatebackboneorhydrogenbondsofthebasepairsoftheDNA,releasingelectrons.

IonisingradiationinteractswithwaterinthebodytoproducefreeradicalswhichsubsequentlyinteractwithDNA.Theseeffectsaremorecommonthandirecteffects.

Cellsurvivalcurvedemonstratesrelativebiologicaleffectiveness(RBE)

• Petridishescontainingclonogenic cellsexposedtosuccessivelyhigherdosesofionisingradiation– thesurvivingfractioncanthenbecalculatedbycomparingtoacontrolplate.

• Notetheshoulderofthecurve– thisdemonstratesabilityofcellstorepairatlowdoses

• Thecurvedemonstratesrelativebiologicaleffectiveness– ratioofdosesgivingidenticalbiologicaleffect(remembertheradiationweightingfactor…)

Page 10: Lecture 8 - Radiation Safety - Bohndiek Lab

1/17/18

10

Chargedparticleinteractions

Quantifyingradiationdose

Radiationrisks

Stepbystepprocess

Exposure

Ionisation

Chemicalchanges(freeradicals)

Molecularchanges(DNA)

Subcellulardamage

Cellularlevel

directaction

Celltransformation(stochasticeffect)

Celldeath(tissuereaction)

Page 11: Lecture 8 - Radiation Safety - Bohndiek Lab

1/17/18

11

Radiationeffectsmaybeclassedasstochasticordeterministic

• Stochasticeffectscanoccuratanydose(random)

• Effectsaregovernedbychance• Nothresholddose,tominimise

risks,keepdosesaslowasreasonablypracticable(ALARP)

• Usuallylowprobability• Assumptionprobabilityincreases

linearlywithdose• Cancerandheritableeffects• Thisisthemodelweacceptbut

thereisdebate(hormesis!)

Geneticeffectsandcancerarestochasticeffects

• Descendantsofsurvivorsofatombombandradiotherapypatientshaven’tshowngeneticeffects

• However,thisisnotprooftherisksaren’tthere:• Uncertainty• Diversenatureofseverehereditarydisease• Highnaturalprevalenceofseverephysicalandmentalgeneticallyrelatedhandicap

• Riskofhereditaryillhealthinsubsequentchildrenandfuturegenerationsestimatedtobe1in500,000for1mGyexposuretogonads.

Page 12: Lecture 8 - Radiation Safety - Bohndiek Lab

1/17/18

12

Riskofdevelopingcancer

• Overallriskofdeveloping canceris• 4.1%perSv• foradultworkers• E.g.foran8mSvCTscan,theincreasedriskofcancerinductionis1in3000

• Naturalincidenceofcancer1in3• 5.5%perSvforwholepopulation• Difficulttoquoteriskofdevelopingfatalcancer–treatmentsareimprovingallthetime

Radiationeffectsmaybeclassedasstochasticordeterministic

• Tissuereactions(alsoknownasdeterministiceffects)

• Welldefinedthresholdatwhichtheeffectwilloccur

• Asdoseincreases,severityofeffectincreases• Non-linearrelationship• Mosttissuereactionshaverepairmechanisms

andtheratethedoseisdeliveredinfluencesthethresholddose

• Effectsnotseenbelow100mSv• E.g.skinreaction

Page 13: Lecture 8 - Radiation Safety - Bohndiek Lab

1/17/18

13

Deterministiceffectsareconsideredtooccurabovecertainacutedosethresholds

Tissue Acutedose(Gy) Effect Latency

Skin 26

ReddeningHairloss

1day10days

Lensofeye 0.55

DetectablelesionsCataracts

YearsMonths

Ovary 2.5 Reducedfertility Fewdays

Testis 0.15 Temporarysterility Months

Bonemarrow 0.5 Reducedwhitecells Fewdays

Observedchangesincellsdependsoncellturnovertime:

– Rapidlydividingcells,damagecanbeseenwithinafewhours– Slowlydividingcells,effectsobservedinmonthsorevenyears.

Deterministiceffectsfromdiagnosticprocedures

Page 14: Lecture 8 - Radiation Safety - Bohndiek Lab

1/17/18

14

Radiationriskisassessedfromlongtermstudies

• EvaluatedfromHiroshima,Nagasaki,Chernobylsurvivors(humanepidemiology),occupationalexposures(nuclearindustry),radiationtherapypatients,mousemodels

• Approximaterisk5%perSv• Therearemanyproblemswithassessingrisk,including:

– Highnaturalincidenceofcancer– Externalinfluences(lifestyle,diet)– Japanesedatahigherdoserates/dosesthanencounteredoccupationally

Therearenumeroussourcesofradiationexposure

Releases from nuclear industry0.1% (0.1 μSv)

Occupational exposure0.2% (6 μSv)

Fallout from atomic weapons0.2% (6 μSv)

Air travel, luminous watches, etc1% (30 μSv)

Medical irradiation15% (410 μSv)

Natural Background83% (2230 μSv)

Total annual dose = 2700 μSv

Page 15: Lecture 8 - Radiation Safety - Bohndiek Lab

1/17/18

15

Everydayrisksarehighcomparedtoradiationrisk

• Flu– 1in5000

• Roadaccident– 1in10,000

• Accidentathome– 1in25,000

• Hitbylightning– 1in107

Radiationrisksinpregnancy

• Embryoconsistsofrapidlydividingcells,weknowthesearemostsensitivetoradiation.

• Tissuereactions:– Principaltissuereactionsinafoetusexposedtoionisingradiationaredeath,

malformation,growthretardationandabnormalbraindevelopment.– Effectsareunlikelytooccurbelow100mGy.– Norisksforoccupational/diagnosticexposures.

• Stochasticeffects– Thoughttobeindependentofstageofpregnancyafterthefirstthreetofour

weeks.– Afoetaldoseof25mGywasfoundtodoublethenaturalincidencerateof

childhoodcancer(~1in500).– Lackofevidenceonlifetimecancerrisks.

Page 16: Lecture 8 - Radiation Safety - Bohndiek Lab

1/17/18

16

Dosesindiagnosticradiologyarerelativelylow;someproceduresrequirehigherdosetoimproveSNR

Exam EffectiveDose(mSv) Additionalcancerrisk

ConventionalX-ray

Chest 0.03 1in106

Mammogram 0.7

Dental 0.05(ave)

CT Head 2.0

Chest 8.0 1in4000

Abdomen 10.0

Interventional Angioplasty(heart)

7.5– 57.5 1in600

Occupationaldoses– annuallimitsinmSv

Wholebody

Skin Extremities Lensofeye

Employees 20 500 500 20

Trainees 6 150 150 15

Anyotherperson

1 50 50 15

Page 17: Lecture 8 - Radiation Safety - Bohndiek Lab

1/17/18

17

Highdosesleadtodeathduetoorganfailure

Wholebodydose(Gy) Organortissuefailure Timeatwhichdeathoccursafterexposure(days)

<10 Bonemarrow 30-60

5-15 Intestineandlungs 10-20

>15 Nervoussystem 1-5

>100 Nervoussystem Withinafewhours

TheLD50 forhumansisabout3Gy

Areallifeexample- Chernobyl

203peopleinwhomradiationsicknessconfirmed

RadiationDose(Gy) No.patients Deathswithin100days

1-2 105 0

2-4 53 1

4-6 23 7

6-16 22 21

Page 18: Lecture 8 - Radiation Safety - Bohndiek Lab

1/17/18

18

Areallifeexample- Litvinenko

• Poisonedwithpolonium-210• Deterministiceffect• Alphaemittercouldn’tbedetectedoutside

thebody• Depositsmainlyinsofttissue• Particularlyliver,spleenandbonemarrow• Alsotokidneysandskin,particularlyhair

follicles

Radiationprotectionaimstolimitbothdeterministicandstochasticeffects

• Justification• Optimization:AsLowAsReasonablyAchievable(ALARA)• Limits(E<20mSv/year)

Page 19: Lecture 8 - Radiation Safety - Bohndiek Lab

1/17/18

19

Alldosestoionisingradiationhavetobejustified

• Becauseoftherisksofionisingradiation– anyexposuresmustbejustified.

• Benefitsmustoutweightherisks.• Thisincludesdiagnostic,therapeuticandoccupationally.• Researchiscomplicated!

Alldosesshouldalsobeoptimised

• QualityassuranceX-rayequipment.• Ensurepatientgetsthesmallestdosefortheintendedclinical

outcome• Staff

– Time(dosedirectlyproportionaltotime)– Distance(1/r2)– Shielding(leadPPE)

Page 20: Lecture 8 - Radiation Safety - Bohndiek Lab

1/17/18

20

Doselimitation

• Doselimitsforstaffandmembersofthepublic(notforpatients)

• Personalmonitoring

• Limitationmeansthatdosesmustbekeptbelowspecifiedlegallevels:DoseLimits(staffandpublic– notpatients)

• Limitsrepresentafinalrestrictiontokeepdosestoareasonablelevel- notsufficientinitself

• ShouldalwaysaimtokeepdosesAsLowAsReasonablyPracticable(theALARPprinciple)

Thermoluminescentdosemetersareusedforpersonalmonitoring

• ElectronicbandstructureofTLmaterialsallowradiationenergytobetrappedintrappingcentresprovidedbyimpurities

• Controlledheatingallowstrappedelectronstoreleasestoredenergyaslightastemperatureincreasesdeepertrapsaredepopulated

• LightoutputismeasuredbyPMtubeandaplotwithtimegiveaglowcurve• TLmaterialscanhaveseveralglowcurvepeaksduetothevariousdepthsof

trappingcentre

• LiF:Mg:TiisapopularTLmaterialfordosimetrybecause:– Itisnearlytissueequivalent– thelightemissionis400nmmatchingthepeakresponseof

commonPMtubes– Mainglowpeakisat200°C,highenoughtominimizefading

butlowenoughtostopinfraredemissions– Glowcurveisshapedtoenableeasyseparationoflow

temperaturepeaks– NotadverselyaffectedbyambientconditionsexceptUV

Page 21: Lecture 8 - Radiation Safety - Bohndiek Lab

1/17/18

21

PersonalMonitoring

• TLDsreportresultinmSv• Hp07skinequivalentdose• Hp3eyeequivalentdose• Hp10wholebodyeffectivedose• Staffwearmonitorsforwholebody(waist),eye,fingerrings,

legmonitors,collarmonitors....

Patientdosecalculations

Measurementofeffectivedosecanneverbemadedirectly,insteadmeasureentrancesurfacedoseandestimateusingMonte-Carlosimulations

DoseAreaProduct(generalX-ray)DoseLengthProduct(CT)

Page 22: Lecture 8 - Radiation Safety - Bohndiek Lab

1/17/18

22

Roomshielding

• ToensuredosestomembersofthepublicremainwithinlimitsweensureX-rayroomsadequatelyshielded.

• Publicdoselimit1mSvperyear– weworktodoseconstraintof0.3mSvperyear

• LeadshieldingforX-rayrooms,concreteforlinacbunkers.

RadioactiveMaterials

• Notonlyexternalexposurerisk,alsointernalexposure• Needtoavoidcontaminationbecausethiswouldincrease

likelihoodofingestion• Ifspillontoskinneedtowashimmediately– canget

significantskindoses• Contaminationmonitoringimportant

Page 23: Lecture 8 - Radiation Safety - Bohndiek Lab

1/17/18

23

Goodworkingpractice

• Reduceexposure:– Time(directlyproportional)– Distance(1/r2)– Shielding(exponentialattenuation– typicallywithX-raysweshieldourselves,

withradioactivematerialsweshieldthesource)

• Reducetheriskofcontamination– workoverdriptrayswithabsorbentmaterial)– WearPPE

• Alwayskeepbelowdoselimits– Weworkwellbelowtheselimitsinthehealthsector,annualeffectivedoses

<1mSv.Staffgroupwithhighestoccupationalexposuresairlineworkers.

Chargedparticleinteractions

Quantifyingradiationdose

Radiationrisks