Lecture 6 Linear System Error

36
7/23/2019 Lecture 6 Linear System Error http://slidepdf.com/reader/full/lecture-6-linear-system-error 1/36 MATH 3795 Lecture 6. Sensitivity of the Solution of a Linear System Dmitriy Leykekhman Fall 2008 Goals  Understand how does the solution of  Ax  =  b  changes when  A  or  b change.  Condition number of a matrix (with respect to inversion).  Vector and matrix norms. D. Leykekhman - MATH 3795 Introduction to Computational Mathematics  Sensitivity of the Solution – 1

Transcript of Lecture 6 Linear System Error

Page 1: Lecture 6 Linear System Error

7/23/2019 Lecture 6 Linear System Error

http://slidepdf.com/reader/full/lecture-6-linear-system-error 1/36

MATH 3795

Lecture 6. Sensitivity of the Solution of a Linear

System

Dmitriy Leykekhman

Fall 2008

Goals  Understand how does the solution of  Ax =  b  changes when  A  or b

change.

 Condition number of a matrix (with respect to inversion).

 Vector and matrix norms.

D. Leykekhman - MATH 3795 Introduction to Computational Mathematics   Sensitivity of the Solution   – 1

Page 2: Lecture 6 Linear System Error

7/23/2019 Lecture 6 Linear System Error

http://slidepdf.com/reader/full/lecture-6-linear-system-error 2/36

Linear Systems

  Given  A ∈ Rn×n and  b ∈ R

n we are interested in the solutionx ∈ R

n of Ax =  b.

 Suppose that instead of  A, and  b  we are given  A + ∆A  and  b + ∆b,where  ∆A ∈ R

n×n and  ∆b ∈ Rn. How do these perturbations in

the data change the solution of the linear system?

 First we need to understand how to measure the size of vectors andof matrices. This leads to vector norms and matrix norms.

D. Leykekhman - MATH 3795 Introduction to Computational Mathematics   Sensitivity of the Solution   – 2

Page 3: Lecture 6 Linear System Error

7/23/2019 Lecture 6 Linear System Error

http://slidepdf.com/reader/full/lecture-6-linear-system-error 3/36

Vector Norms

DefinitionA (vector) norm on  R

n is a function

· :   Rn → R

x → xwhich for all  x, y ∈ R

n and  α ∈ R  satisfies

1. x ≥ 0, x = 0  ⇔ x = 0,

2. αx = |α|x,

3. x + y ≤ x + y, (triangle inequality).

D. Leykekhman - MATH 3795 Introduction to Computational Mathematics   Sensitivity of the Solution   – 3

Page 4: Lecture 6 Linear System Error

7/23/2019 Lecture 6 Linear System Error

http://slidepdf.com/reader/full/lecture-6-linear-system-error 4/36

Vector Norms

The most frequently used norms on  Rn are given by

x2 =

  ni=1

x2i

1/2

,   2-norm

The MATLAB’s build in function  norm(x)  or norm(x, 2).

More generally for any p

∈ [1,∞)

x p  =

  ni=1

|xi| p1/p

,   p-norm.

The MATLAB’s build in function  norm(x, p)  and

x∞  = maxi=1,...,n

|xi|,   ∞-norm.

The MATLAB’s build in function  norm(x, inf )

D. Leykekhman - MATH 3795 Introduction to Computational Mathematics   Sensitivity of the Solution   – 4

Page 5: Lecture 6 Linear System Error

7/23/2019 Lecture 6 Linear System Error

http://slidepdf.com/reader/full/lecture-6-linear-system-error 5/36

Vector Norms

Example

Let  x = (1, −2, 3, −4)T . Then

x1 = 1 + 2 + 3 + 4 = 10,

x2 =√ 

1 + 4 + 9 + 16 =√ 

30 ≈ 5.48,

x∞ = max {1, 2, 3, 4} = 4.

D. Leykekhman - MATH 3795 Introduction to Computational Mathematics   Sensitivity of the Solution   – 5

Page 6: Lecture 6 Linear System Error

7/23/2019 Lecture 6 Linear System Error

http://slidepdf.com/reader/full/lecture-6-linear-system-error 6/36

Vector Norms

The boundaries of the unit balls defined by

{x ∈ Rn : x p ≤ 1}.

One can show the following useful inequalities:

D. Leykekhman - MATH 3795 Introduction to Computational Mathematics   Sensitivity of the Solution   – 6

Page 7: Lecture 6 Linear System Error

7/23/2019 Lecture 6 Linear System Error

http://slidepdf.com/reader/full/lecture-6-linear-system-error 7/36

Vector Norms

The boundaries of the unit balls defined by

{x ∈ Rn : x p ≤ 1}.

One can show the following useful inequalities:

x∞ ≤ x2 ≤ x1.

D. Leykekhman - MATH 3795 Introduction to Computational Mathematics   Sensitivity of the Solution   – 6

Page 8: Lecture 6 Linear System Error

7/23/2019 Lecture 6 Linear System Error

http://slidepdf.com/reader/full/lecture-6-linear-system-error 8/36

Vector Norms

The boundaries of the unit balls defined by

{x ∈ Rn : x p ≤ 1}.

One can show the following useful inequalities:

x∞ ≤ x2 ≤ x1.   Let  ·  is any vector norm on  R

n, then

x + y ≥ x − y

  for all   x, y ∈ R

n.

D. Leykekhman - MATH 3795 Introduction to Computational Mathematics   Sensitivity of the Solution   – 6

Page 9: Lecture 6 Linear System Error

7/23/2019 Lecture 6 Linear System Error

http://slidepdf.com/reader/full/lecture-6-linear-system-error 9/36

Vector Norms

The boundaries of the unit balls defined by

{x ∈ Rn : x p ≤ 1}.

One can show the following useful inequalities:

x∞ ≤ x2 ≤ x1.   Let  ·  is any vector norm on  R

n, then

x + y ≥ x − y

  for all   x, y ∈ R

n.

  Cauchy-Schwarz inequality,

xT y ≤ x2y2   for all   x, y ∈ Rn.

D. Leykekhman - MATH 3795 Introduction to Computational Mathematics   Sensitivity of the Solution   – 6

Page 10: Lecture 6 Linear System Error

7/23/2019 Lecture 6 Linear System Error

http://slidepdf.com/reader/full/lecture-6-linear-system-error 10/36

Vector Norms

TheoremVector norms on  Rn are equivalent, i.e. for every two vector norms   · a

and   · b  on  Rn there exist constants  cab,  C ab  (depending on the vector 

norms   · a  and   · b, but not on  x) such that 

cab

x

b

 ≤ x

a

 ≤C ab

x

b

  ∀x

∈Rn.

In particular, for any  x ∈ Rn we have the inequalities 

1√ n

x1 ≤ x2 ≤ x1

x∞ ≤ x2 ≤ √ nx∞x∞ ≤ x1 ≤ nx∞.

D. Leykekhman - MATH 3795 Introduction to Computational Mathematics   Sensitivity of the Solution   – 7

Page 11: Lecture 6 Linear System Error

7/23/2019 Lecture 6 Linear System Error

http://slidepdf.com/reader/full/lecture-6-linear-system-error 11/36

Matrix Norms

DefinitionA matrix norm on  R

m×n is a function

· :   Rm×n → R

A → A,

which for all  A, B ∈ Rm×n and  α ∈ R  satisfies

1. A ≥ 0, A = 0  ⇔ A = 0  (zero matrix),2. αA = |α|A,

3. A + B ≤ A + B, (triangle inequality).

Warning:Matrix- and vector-norms are denoted by the same symbol  ·

.However, as we will see shortly, vector-norms and matrix-norms arecomputed very differently. Thus, before computing a norm we need toexamine carefully whether it is applied to a vector or to a matrix. Itshould be clear from the context which norm, a vector-norm or amatrix-norm, is used.

D. Leykekhman - MATH 3795 Introduction to Computational Mathematics   Sensitivity of the Solution   – 8

Page 12: Lecture 6 Linear System Error

7/23/2019 Lecture 6 Linear System Error

http://slidepdf.com/reader/full/lecture-6-linear-system-error 12/36

Matrix Norms. First Approach.

  View a matrix  A ∈ R

m×n

as a vector in  R

mn

, by stacking thecolumns of the matrix into a long vector.

D. Leykekhman - MATH 3795 Introduction to Computational Mathematics   Sensitivity of the Solution   – 9

Page 13: Lecture 6 Linear System Error

7/23/2019 Lecture 6 Linear System Error

http://slidepdf.com/reader/full/lecture-6-linear-system-error 13/36

Matrix Norms. First Approach.

  View a matrix  A ∈ R

m×n

as a vector in  R

mn

, by stacking thecolumns of the matrix into a long vector.

 Apply the vector-norms to this vectors of length  mn.

D. Leykekhman - MATH 3795 Introduction to Computational Mathematics   Sensitivity of the Solution   – 9

Page 14: Lecture 6 Linear System Error

7/23/2019 Lecture 6 Linear System Error

http://slidepdf.com/reader/full/lecture-6-linear-system-error 14/36

Matrix Norms. First Approach.

  View a matrix  A ∈ R

m×n

as a vector in  R

mn

, by stacking thecolumns of the matrix into a long vector.

 Apply the vector-norms to this vectors of length  mn.

 This will give matrix norms. For example if we apply the2-vector-norm, then

AF   =

n

i=1

mj=1

a2ij

1/2

.

This is called the  Frobenius norm.(We will use A2  to denote a different matrix norm.)

D. Leykekhman - MATH 3795 Introduction to Computational Mathematics   Sensitivity of the Solution   – 9

Page 15: Lecture 6 Linear System Error

7/23/2019 Lecture 6 Linear System Error

http://slidepdf.com/reader/full/lecture-6-linear-system-error 15/36

Matrix Norms. First Approach.

  View a matrix  A ∈ R

m×n

as a vector in  R

mn

, by stacking thecolumns of the matrix into a long vector.

 Apply the vector-norms to this vectors of length  mn.

 This will give matrix norms. For example if we apply the2-vector-norm, then

AF   =

n

i=1

mj=1

a2ij

1/2

.

This is called the  Frobenius norm.(We will use A2  to denote a different matrix norm.)

 This approach is not very useful.

D. Leykekhman - MATH 3795 Introduction to Computational Mathematics   Sensitivity of the Solution   – 9

Page 16: Lecture 6 Linear System Error

7/23/2019 Lecture 6 Linear System Error

http://slidepdf.com/reader/full/lecture-6-linear-system-error 16/36

Matrix Norms. Second Approach.

 We want to solve linear systems  Ax =  b.

Find a vector x

 such that if we multiply A

 by this vector (we applyA  to this vector), then we obtain  b.

D. Leykekhman - MATH 3795 Introduction to Computational Mathematics   Sensitivity of the Solution   – 10

Page 17: Lecture 6 Linear System Error

7/23/2019 Lecture 6 Linear System Error

http://slidepdf.com/reader/full/lecture-6-linear-system-error 17/36

Matrix Norms. Second Approach.

 We want to solve linear systems  Ax =  b.Find a vector  x  such that if we multiply  A  by this vector (we applyA  to this vector), then we obtain  b.

  View a matrix  A ∈ Rm×n as a linear mapping, which maps a vector

x ∈ Rn into a vector  Ax ∈ R

m

A :   Rn

→Rm

x → Ax.

D. Leykekhman - MATH 3795 Introduction to Computational Mathematics   Sensitivity of the Solution   – 10

Page 18: Lecture 6 Linear System Error

7/23/2019 Lecture 6 Linear System Error

http://slidepdf.com/reader/full/lecture-6-linear-system-error 18/36

Matrix Norms. Second Approach.

 We want to solve linear systems  Ax =  b.Find a vector  x  such that if we multiply  A  by this vector (we applyA  to this vector), then we obtain  b.

  View a matrix  A ∈ Rm×n as a linear mapping, which maps a vector

x ∈ Rn into a vector  Ax ∈ R

m

A :   Rn

→Rm

x → Ax.

 How do we define the size of a linear mapping?

D. Leykekhman - MATH 3795 Introduction to Computational Mathematics   Sensitivity of the Solution   – 10

Page 19: Lecture 6 Linear System Error

7/23/2019 Lecture 6 Linear System Error

http://slidepdf.com/reader/full/lecture-6-linear-system-error 19/36

Matrix Norms. Second Approach.

 We want to solve linear systems  Ax =  b.Find a vector  x  such that if we multiply  A  by this vector (we applyA  to this vector), then we obtain  b.

  View a matrix  A ∈ Rm×n as a linear mapping, which maps a vector

x ∈ Rn into a vector  Ax ∈ R

m

A :   Rn

→Rm

x → Ax.

 How do we define the size of a linear mapping?

 Compare the size of the image  Ax ∈ Rm with the size of  x. This

leads us to look at

supx=0

AxxHere  Ax ∈ R

m and  x ∈ Rn are vectors and  ·  are vector norms (in

Rm and  R

n).

D. Leykekhman - MATH 3795 Introduction to Computational Mathematics   Sensitivity of the Solution   – 10

Page 20: Lecture 6 Linear System Error

7/23/2019 Lecture 6 Linear System Error

http://slidepdf.com/reader/full/lecture-6-linear-system-error 20/36

Matrix Norms

  Let  p ∈ [1, ∞]. The following identities re valid

supx=0

Ax px p = sup

xp=1

Ax p = maxx=0

Ax px p = max

xp=1Ax p

D. Leykekhman - MATH 3795 Introduction to Computational Mathematics   Sensitivity of the Solution   – 11

Page 21: Lecture 6 Linear System Error

7/23/2019 Lecture 6 Linear System Error

http://slidepdf.com/reader/full/lecture-6-linear-system-error 21/36

Matrix Norms

  Let  p ∈ [1, ∞]. The following identities re valid

supx=0

Ax px p = sup

xp=1

Ax p = maxx=0

Ax px p = max

xp=1Ax p

  One can show A p = maxx=0

Ax px p .   (1)

Note that on the left hand side in (1) the symbol  ·  p  refers to thep-matrix-norm, while on the right hand side in (1) the symbol  ·  prefers to the p-vector-norm applied to the vectors  Ax ∈ R

m

andx ∈ Rn, respectively.

D. Leykekhman - MATH 3795 Introduction to Computational Mathematics   Sensitivity of the Solution   – 11

M i N

Page 22: Lecture 6 Linear System Error

7/23/2019 Lecture 6 Linear System Error

http://slidepdf.com/reader/full/lecture-6-linear-system-error 22/36

Matrix Norms

For the most commonly used matrix-norms (1) with  p = 1,  p = 2, or p = ∞, there exist rather simple representations.

Let  ·  p  be the matrix norm defined in (1), then

A

1 = max

j=1,...,n

m

i=1 |

aij|

  (maximum column norm);

A∞  = maxi=1,...,m

nj=1

|aij |   (maximum row norm);

A

2 =  λmax(AT A)   (spectral norm).

where  λmax(AT A)   is the largest eigenvalue of  AT A.

D. Leykekhman - MATH 3795 Introduction to Computational Mathematics   Sensitivity of the Solution   – 12

M i N

Page 23: Lecture 6 Linear System Error

7/23/2019 Lecture 6 Linear System Error

http://slidepdf.com/reader/full/lecture-6-linear-system-error 23/36

Matrix Norms

ExampleLet

A =

1 3   −6

−2 4 22 1

  −1

.

ThenA1 = max 5, 8, 9 = 9,

A∞ = max10, 8, 4 = 10,

A2 =  max {3.07, 23.86, 49.06} ≈ 7.0045,

xF   = √ 76 ≈ 8.718.

D. Leykekhman - MATH 3795 Introduction to Computational Mathematics   Sensitivity of the Solution   – 13

M i N

Page 24: Lecture 6 Linear System Error

7/23/2019 Lecture 6 Linear System Error

http://slidepdf.com/reader/full/lecture-6-linear-system-error 24/36

Matrix NormsTwo important inequalities.

Theorem

For any  A ∈Rm×n

,  B ∈Rn×k

and  x ∈Rn

, the following inequalities hold.

Ax p ≤ A px p   (compatibility of matrix and vector norm)

and 

AB p ≤ A pB p   (submultiplicativity of matrix norms)

Note that for the identity matrix  I ,

I  p  = maxx=0 Ix

 p

x p = 1.

Compare this with the first approach in which we view  I  as a vector of length  n2. For example the Frobenius norm (2-vector norm) is

F   =

√ n.

D. Leykekhman - MATH 3795 Introduction to Computational Mathematics   Sensitivity of the Solution   – 14

E A l i

Page 25: Lecture 6 Linear System Error

7/23/2019 Lecture 6 Linear System Error

http://slidepdf.com/reader/full/lecture-6-linear-system-error 25/36

Error Analysis

  LetAx =  b   (2)

be the original system, where  A ∈ Rn×n and  b ∈ R

n.

D. Leykekhman - MATH 3795 Introduction to Computational Mathematics   Sensitivity of the Solution   – 15

E A l i

Page 26: Lecture 6 Linear System Error

7/23/2019 Lecture 6 Linear System Error

http://slidepdf.com/reader/full/lecture-6-linear-system-error 26/36

Error Analysis

  LetAx =  b   (2)

be the original system, where  A ∈ Rn×n and  b ∈ R

n.

  Let(A + ∆A)x̃ =  b + ∆b   (3)

be the perturbed system, where  ∆A ∈ Rn×n and ∆b ∈ Rn representthe perturbations in  A  and  b, respectively.

D. Leykekhman - MATH 3795 Introduction to Computational Mathematics   Sensitivity of the Solution   – 15

Error Analysis

Page 27: Lecture 6 Linear System Error

7/23/2019 Lecture 6 Linear System Error

http://slidepdf.com/reader/full/lecture-6-linear-system-error 27/36

Error Analysis

  LetAx =  b   (2)

be the original system, where  A ∈ Rn×n and  b ∈ R

n.

  Let(A + ∆A)x̃ =  b + ∆b   (3)

be the perturbed system, where  ∆A ∈ Rn×n and ∆b ∈ Rn representthe perturbations in  A  and  b, respectively.

 What is the error  ∆x = x̃ − x  between the solution  x  of the exactlinear system (7) and the solution ex perturbed linear system (8).

 Use a representationx̃ =  x + ∆x.

D. Leykekhman - MATH 3795 Introduction to Computational Mathematics   Sensitivity of the Solution   – 15

Error Analysis Perturbation in b only

Page 28: Lecture 6 Linear System Error

7/23/2019 Lecture 6 Linear System Error

http://slidepdf.com/reader/full/lecture-6-linear-system-error 28/36

Error Analysis. Perturbation in   b  onlyThe original linear system,

Ax =  b,

where  A∈

Rn×n and  b

∈Rn. The perturbed linear system

A(x + ∆x) = b + ∆b,

where  ∆b ∈ Rn represents the perturbations in  b.

Subtracting we get

A∆

x = ∆

b,  or   ∆

x =

 A−1

∆b.

D. Leykekhman - MATH 3795 Introduction to Computational Mathematics   Sensitivity of the Solution   – 16

Error Analysis Perturbation in b only

Page 29: Lecture 6 Linear System Error

7/23/2019 Lecture 6 Linear System Error

http://slidepdf.com/reader/full/lecture-6-linear-system-error 29/36

Error Analysis. Perturbation in   b  onlyThe original linear system,

Ax =  b,

where  A∈

Rn×n and  b

∈Rn. The perturbed linear system

A(x + ∆x) = b + ∆b,

where  ∆b ∈ Rn represents the perturbations in  b.

Subtracting we get

A∆x = ∆b,   or   ∆x =  A−1∆b.

Take norms:∆x = A−1∆b ≤ A−1∆b.   (4)

To estimate relative error, note that  Ax =  b  and as a result

b = Ax ≤ Ax ⇒  1

x ≤ A  1

b .   (5)

Combining (4) and (5) we get

∆xx   ≤ AA−1∆b

b   .   (6)

D. Leykekhman - MATH 3795 Introduction to Computational Mathematics   Sensitivity of the Solution   – 16

Error Analysis Perturbation in b only

Page 30: Lecture 6 Linear System Error

7/23/2019 Lecture 6 Linear System Error

http://slidepdf.com/reader/full/lecture-6-linear-system-error 30/36

Error Analysis. Perturbation in   b  only

DefinitionThe (p-) condition number  κ p(A)  of a matrix  A  (with respect to

inversion) is defined by

κ p(A) = A pA−1 p.

Set  κ p(A) = ∞   is  A   is not invertible. MATLAB’s build in functioncond(A).

If Ax =  b,

andA(x + ∆x) = b + ∆b,

then the relative error between the solutions obeys

∆xx   ≤ κ p(A)

∆bb   .

D. Leykekhman - MATH 3795 Introduction to Computational Mathematics   Sensitivity of the Solution   – 17

Error Analysis General Case

Page 31: Lecture 6 Linear System Error

7/23/2019 Lecture 6 Linear System Error

http://slidepdf.com/reader/full/lecture-6-linear-system-error 31/36

Error Analysis. General Case.

  Let

Ax =  b   (7)be the original system, where  A ∈ R

n×n and  b ∈ Rn.

  Let(A + ∆A)(∆x + x) = b + ∆b   (8)

be the perturbed system, where  ∆A ∈ R

n×n

and ∆b ∈ R

n

representthe perturbations in  A  and  b, respectively.

  If  A−1 p∆A p  < 1, then

∆x px p ≤

  κ p(A)

1 − κ p(A)∆ApAp

∆A pA p

+ ∆b

b .   (9)

If  κ p(A)  is small, we say that the linear system is  well conditioned.

Otherwise, we say that the linear system is   ill conditioned.

D. Leykekhman - MATH 3795 Introduction to Computational Mathematics   Sensitivity of the Solution   – 18

Error Analysis Example Hilbert Matrix

Page 32: Lecture 6 Linear System Error

7/23/2019 Lecture 6 Linear System Error

http://slidepdf.com/reader/full/lecture-6-linear-system-error 32/36

Error Analysis. Example. Hilbert Matrix

Example

Hilbert Matrix  H  ∈ Rn×n with entries

hij  =

   10

xi+j−2 dx =  1

i + j − 1.

For  n = 4,

H  =

1   12 13 141

2

1

3

1

4

1

513

14

15

16

14

15

16

17

.

H −1 =

16

  −120 240

  −140

−120 1200   −2700 1680240   −2700 6480   −4200

−140 1680   −4200 2800

.

D. Leykekhman - MATH 3795 Introduction to Computational Mathematics   Sensitivity of the Solution   – 19

Error Analysis Example Hilbert Matrix

Page 33: Lecture 6 Linear System Error

7/23/2019 Lecture 6 Linear System Error

http://slidepdf.com/reader/full/lecture-6-linear-system-error 33/36

Error Analysis. Example. Hilbert Matrix.

Example

We compute that the condition number of a Hilbert matrix grows veryfast with  n. For  n = 4

H 1 = 25

12   H −11 = 13620, κ1(H ) = 28375,

H ∞ = 25

12  H −1∞  = 13620, κ∞(H ) = 28375,

H 2 ≈ 1.5   H −12 ≈ 1.03 ∗ 104, κ2(H ) ≈ 1.55 ∗ 104.

D. Leykekhman - MATH 3795 Introduction to Computational Mathematics   Sensitivity of the Solution   – 20

Error Analysis Example Hilbert Matrix

Page 34: Lecture 6 Linear System Error

7/23/2019 Lecture 6 Linear System Error

http://slidepdf.com/reader/full/lecture-6-linear-system-error 34/36

Error Analysis. Example. Hilbert Matrix.

Example

We consider the linear systems

Hx =  b.

For given  n  we set  xex  = (1, . . . , 1)T  ∈ Rn, and compute  b =  H xex.

Then we compute the solution of the linear system  Hx =  b  using theLU-decomposition and compute the relative error between exact solution

xex  and computed solution  x.

n κ∞(H )   xex−x∞xex∞

4 2.837500e + 004 2.958744e − 0135 9.436560e + 005 5.129452e − 012

6 2.907028e + 007 5.096734e − 0117 9.851949e + 008 2.214796e − 0088 3.387279e + 010 1.973904e − 0079 1.099651e + 012 4.215144e − 005

10 3.535372e + 013 5.382182e − 004

D. Leykekhman - MATH 3795 Introduction to Computational Mathematics   Sensitivity of the Solution   – 21

Error Analysis.

Page 35: Lecture 6 Linear System Error

7/23/2019 Lecture 6 Linear System Error

http://slidepdf.com/reader/full/lecture-6-linear-system-error 35/36

Error Analysis.   If we use finite precision arithmetic, then rounding causes errors in

the input data. Using m-digit floating point arithmetic it holds that

|x − f l(x)||x|   ≤ 0.5 ∗ 10−m+1.

 Thus, if we solve the linear system in m-digit floating pointarithmetic, then, as rule of thumb, we may approximate the theinput errors due to rounding by

∆AA   ≈ 0.5 ∗ 10−m+1,

  ∆bb|   ≈ 0.5 ∗ 10−m+1

 If the condition number of  A   is  κ(A) = 10α, then

∆x

x|   ≤  10α

1 − 10α−m+1

(0.5∗

10−m + 0.5∗

10−m)≈

10α−m.

Provided  10α−m+1 < 1.   Rule of thumb:  If the linear system is solved in  m-digit floating

point arithmetic and if the condition number of  A  is of the order10α, then only  m

−α

−1  digits in the solution can be trusted.

D. Leykekhman - MATH 3795 Introduction to Computational Mathematics   Sensitivity of the Solution   – 22

Summary.

Page 36: Lecture 6 Linear System Error

7/23/2019 Lecture 6 Linear System Error

http://slidepdf.com/reader/full/lecture-6-linear-system-error 36/36

Summary.

 If the condition number of a matrix  A   is large, then small errors inthe data may lead to large errors in the solution.

 Rule of thumb: If the linear system is solved in m-digit floating pointarithmetic and if the condition number of  A  is of the order  10α,then only  m − α − 1  digits in the solution can be trusted.

D. Leykekhman - MATH 3795 Introduction to Computational Mathematics   Sensitivity of the Solution   – 23