Lecture 5 -- Coupled-mode Theory

28
2/17/2014 1 ECE 5390 Special Topics: 21 st Century Electromagnetics Instructor: Office: Phone: EMail: Dr. Raymond C. Rumpf A337 (915) 7476958 [email protected] Spring 2014 Coupled-Mode Theory Lecture #5 Lecture 5 1 Lecture Outline Electromagnetic modes Coupled-mode theory Codirectional coupling Contradirectional coupling Non-directional coupling Phase matching with gratings Mode-matching vs. coupled-wave models Lecture 5 Slide 2

description

Coupled mode theory of waveguides

Transcript of Lecture 5 -- Coupled-mode Theory

Page 1: Lecture 5 -- Coupled-mode Theory

2/17/2014

1

ECE 5390 Special Topics:21st Century Electromagnetics

Instructor:Office:Phone:E‐Mail:

Dr. Raymond C. RumpfA‐337(915) 747‐[email protected] Spring 2014

Coupled-Mode Theory

Lecture #5

Lecture 5 1

Lecture Outline

• Electromagnetic modes

• Coupled-mode theory

• Codirectional coupling

• Contradirectional coupling

• Non-directional coupling

• Phase matching with gratings

• Mode-matching vs. coupled-wave models

Lecture 5 Slide 2

Page 2: Lecture 5 -- Coupled-mode Theory

2/17/2014

2

Electromagnetic Modes

What are modes?

Lecture 5 Slide 4

Modes can mean many different things depending on the context it is being used.

• Different discrete eigen‐modes in a waveguide• Different polarizations• Different directions• Etc.

Generalized Definition:

An electromagnetic mode is electromagnetic power that exists independent and different from other electromagnetic power.

Page 3: Lecture 5 -- Coupled-mode Theory

2/17/2014

3

Modes in a Waveguide

Lecture 5 Slide 5

Waves in Free Space

Lecture 5 Slide 6

Poincare Sphere

Page 4: Lecture 5 -- Coupled-mode Theory

2/17/2014

4

Resonant Modes

Lecture 5 Slide 7

Coupled-Mode Theory

Page 5: Lecture 5 -- Coupled-mode Theory

2/17/2014

5

Modes in Two Waveguides

Lecture 5 Slide 9

Triangle Waveguide Square Waveguide

1

1

1 0,1

1 0,1

,

,

j z

j z

E E x y e

H H x y e

2

2

2 0,2

2 0,2

,

,

j z

j z

E E x y e

H H x y e

Supermodes

Lecture 5 Slide 10

Coupled WaveguidesCoupled Waveguides

When two waveguides are in close proximity, they become coupled.

The pair forms “supermodes.”

Page 6: Lecture 5 -- Coupled-mode Theory

2/17/2014

6

Visualization of Coupled-Modes

Lecture 5 Slide 11

When two waveguides are in close proximity, they become coupled and exchange power as a function of z.

Very often, this leads to a periodic exchange of power between the waveguides.

Waveguide arrays are more complicatedto analyze, but involve the same concepts.

z

Launch

Perturbation Analysis

Lecture 5 Slide 12

1 2

1 2

E A z E B z E

H A z H B z H

Assumption – To simplify the analysis, it will be assumed that the supermodes can be represented as a weighted sum of the individual guided modes. This implies that the modes do not change at all with the introduction of the second guide. In reality, the modes are deformed slightly, but are still coupled.

When two waveguides are in close proximity, they become coupled and exchange power as a function of z.

st

nd

amplitude of 1 mode

amplitude of 2 mode

A z

B z

Page 7: Lecture 5 -- Coupled-mode Theory

2/17/2014

7

Assumed Solution in Perturbation Analysis

Lecture 5 Slide 13

1 2

1 2

E A z E B z E

H A z H B z H

We start with the following solution.

We substitute these into Maxwell’s curl equations to obtain

1 2

1 0 1 1 2 0 2 2

ˆ ˆ 0

ˆ ˆ 0r r

dA dBz E z E

dz dzdA dB

z H j AE z H j BEdz dz

To do this, we made use of the following vector identity

ˆdA

AE A E A E A E z Edz

0

0 r

E j H

H j E

Ignoring magnetic response

Derivation of the Generalized Coupled-Mode Equations

Lecture 5 Slide 14

We have the following equations enforcing Maxwell’s equations.

We substitute these into general integral equations describing orthogonality condition in lossless isotropic waveguides

1 2

1 0 1 1 2 0 2 2

ˆ ˆ 0

ˆ ˆ 0r r

dA dBz E z E

dz dzdA dB

z H j AE z H j BEdz dz

Eq. (1)

Eq. (2)

* *1 1Eq. 2 Eq. 1 0E H dxdy

* *2 2Eq. 2 Eq. 1 0E H dxdy

Page 8: Lecture 5 -- Coupled-mode Theory

2/17/2014

8

Generalized Coupled-Mode Equations

Lecture 5 Slide 15

2 1 2 1

2 1 2 1

12 1 12

21 2 21

0

0

j z j z

j z j z

dA dBc e j A j Be

dz dzdB dA

c e j B j Aedz dz

After LOTS of algebra, we get (i.e. it is easily shown that… )

These are called the generalized coupled-mode equations. These are solved to describe the coupling between the two waveguides.

*0 ,

* *ˆ

r r q p q

pq

p p p p

E E dxdy

z E H E H dxdy

* *

* *

ˆ

ˆ

p p

pq

p p

q

p

q

p

z E H E H dxdy

c

z E H E H dxdy

*0 ,

* *ˆ

r r q p p

p

p p p p

E E dxdy

z E H E H dxdy

Mode Coupling Coefficient Butt Coupling Coefficient Change in Propagation Constant

, 1 or 2p q

Mode Coupling Coefficient, pq

Lecture 5 Slide 16

*0 ,

* *ˆ

r r q p q

pq

p p p p

E E dxdy

z E H E H dxdy

The mode coupling coefficient is calculated according to

This parameter quantifies how efficiently power “leaks” from waveguide p to waveguide q due to the behavior of the supermode.

r is the dielectric function containing both waveguides. r,q is dielectric function with only waveguide q.

Page 9: Lecture 5 -- Coupled-mode Theory

2/17/2014

9

Butt Coupling Coefficient, cpq

Lecture 5 Slide 17

* *

* *

ˆ

ˆ

p p

pq

p p

q

p

q

p

z E H E H dxdy

c

z E H E H dxdy

The coefficient cpq quantifies the excitation efficiency from one waveguide to the other. It is called the butt coupling coefficient and is calculated according to

Butt coupling

Change in Propagation Constant, p

Lecture 5 Slide 18

When the qth waveguide is brought into proximity to pth waveguide, the propagation constant in the pth waveguide changes by p.

*0 ,

* *ˆ

r r q p p

p

p p p p

E E dxdy

z E H E H dxdy

We expect p to be largest when the waveguides are the closest and the fields are perturbed more strongly affecting the propagation constant.

Many analyses just assume = 0.

Page 10: Lecture 5 -- Coupled-mode Theory

2/17/2014

10

Mode-Coupling Vs. Butt Coupling

Lecture 5 19

Butt CouplingThis is an “end‐fire” mechanism and occurs because parts of the mode from one waveguide match the mode from the second.

Mode CouplingThis is a “leakage” mechanism and occurs due to the propagation behavior of the supermode.

Normalized Power in Eigen-Modes

Lecture 5 Slide 20

The total power in waveguide p is

*1ˆ

2p p pP E H zdxdy

We see that the denominator in the prior equations is 4Pp.

Without loss of generality, we normalized the power in the eigen-modes according to

* *ˆ4 1p p p p pP z E H E H dxdy

After normalizing the power, it is then easily shown that… *

21 12c c *p q

Page 11: Lecture 5 -- Coupled-mode Theory

2/17/2014

11

Power in Supermode

Lecture 5 Slide 21

The power in the supermode is

*1ˆ

2P E H zdxdy

After some algebra, this becomes

2 2 * 2 * * 212 12

1

4j z j zP A B A Bc e AB c e

2 1

2

Consequences of Conservation of Power

Lecture 5 Slide 22

For waveguides without loss or gain,

0dP

dz

This leads to

* * 2 * * * 221 12 12 21 12 122 2 0j z j zjA B c e jAB c e

For this to be satisfied independent of z, we must have

* *21 12 122 c Note, we only have                   when:

• 1=2 (identical waveguides)  =0, or• Waveguides are sufficiently separated so that 

*21 12

*12 0c

If the waveguides are very close or are very different, the term cannot be ignored.*

122 c

Page 12: Lecture 5 -- Coupled-mode Theory

2/17/2014

12

Revised Coupled Mode Equations

Lecture 5 Slide 23

2

2

j za a

j zb b

dAj Be j A

dzdB

j Ae j Bdz

Our coupled-mode equations can now be written as

12 12 22

12

*21 12 1

2

12

21 21 12

12

*12 12 2

2

12

1

1

1

1

a

b

a

b

c

c

c

c

c

c

c

c

Simplified Coupled Mode Equations

Lecture 5 Slide 24

2 1

2 1

12

21

j z

j z

dAj Be

dzdB

j Aedz

Assuming cpq=p=0, the coupled-mode equations are written as

These are the equations that most analyses use.

Page 13: Lecture 5 -- Coupled-mode Theory

2/17/2014

13

CodirectionalCoupling

Picture of Codirectional Coupling

Lecture 5 Slide 26

Launch

Exit

Page 14: Lecture 5 -- Coupled-mode Theory

2/17/2014

14

General Coupled-Mode Solution

Lecture 5 Slide 27

1 2

1 2

j z j z j z

j z j z j z

A z a e a e e

B z b e b e e

In codirectional coupling, both modes are propagating in the same direction and usually with similar propagation constants.

The general solution to the coupled-mode equations is

1 20 and 0

Reciprocity requires that . Most often, pq is real so*

12 21

12 21

1 2

1 2

0

0

a a A

b b B

Initial conditions…

Solution with Boundary Conditions

Lecture 5 Slide 28

cos sin 0 sin 0

sin 0 cos sin 0

j z

j z

j jA z z z A z B e

j jB z z A z z B e

The final solution for A(z) and B(z) are

2 2

Note,  .

Page 15: Lecture 5 -- Coupled-mode Theory

2/17/2014

15

Typical Solution in Terms of Power

Lecture 5 Slide 29

0 0cos sin sinj z j zj jA z A z z e B z A z e

In most cases, power is injected into only one waveguide.

00 0 0A A B

Our equations for A(z) and B(z) reduce to

It is often more meaningful to write similar expressions in terms of the power in each waveguide as a function of z.

2

22

0

2

22

0

1 sin

sin

a

b

A zP z F z

A

B zP z F z

A

2

2

1

1F

Maximum power‐coupling efficiency…

Typical Response of Codirectional Couplers

Lecture 5 Slide 30

2 3 2 2

2 3 2 2

0 1F

2 0.2F

Maximums occur at

2 1 0,1,2,...2mz m m

Coupling LengthThe length over which maximum power is transferred to the second waveguide is called the coupling length.

When 1=2 (i.e.  = 0),

2 22 2cL

2cL

Page 16: Lecture 5 -- Coupled-mode Theory

2/17/2014

16

ContradirectionalCoupling

(Bragg Grating)

Contradirectional Coupling

Lecture 5 Slide 32

In contradirectional coupling, the coupled-modes are propagating in opposite directions.

Let the second mode be the backward propagation mode.

1 20 and 0

Reciprocity requires that .*12 21

Page 17: Lecture 5 -- Coupled-mode Theory

2/17/2014

17

Conditions for ContradirectionalCoupling

Lecture 5 Slide 33

Contradirectional coupling cannot occur by simply bringing two waveguides in proximity. Typically a grating is used to couple the counter propagating modes.

waveguide 1

waveguide 2

grating

2

12

j z

Gz e

The mode coupling coefficient is now a periodic function.

Contradirectional Coupled-Mode Equations

Lecture 5 Slide 34

The coupled-mode equations are now written as

2 1

2 1

2

2

j z

G

j z

G

dAj Be

dz

dBj Ae

dz

2*

12 21

j z

Ge

Page 18: Lecture 5 -- Coupled-mode Theory

2/17/2014

18

Phase Matching Conditions

Lecture 5 Slide 35

1 2

2

2

We introduce the following phase matching condition of the grating.

We will have three cases

Case 1:

Case 2:

Case 3:

G

G

G

Band edge.

Pass band.  Forward output.  Temporary and confined peak in reflected mode.

Stop band.  Reflected output.  Band of reflection.

Case 1: ||>G (Pass Band)

Lecture 5 Slide 36

0

0

cos sin

cos sin

sin

cos sin

j z

G j z

z L j z LA z A e

L j L

j z LB z A e

L j L

The mode amplitudes are:

The normalized forward and backward power

2 2G

2 2 2 2

2 2 2 2

0

2 2 2

2 2 2 2

0

sin

sin

sin

sin

Gf

G

Gb

G

A z z LP z

LA

B z z LP z

LA

Page 19: Lecture 5 -- Coupled-mode Theory

2/17/2014

19

Case 2: ||=G (Band Edge)

Lecture 5 Slide 37

0

0

1

1

1

j z

G j z

j z LA z A e

j L

j z LB z A e

j L

The mode amplitudes are:

The normalized forward and backward power

2 22

2 2 2

0

2 22

2 2 2

0

1

1

1

Gf

G

Gb

G

A z z LP z

LA

B z z LP z

LA

Case 3: ||<G (Stop Band)

Lecture 5 Slide 38

0

0

cosh sinh

cosh sinh

sinh

cosh sinh

j z

G j z

z L j z LA z A e

L j L

j z LB z A e

L j L

2 2G

The mode amplitudes are:

The normalized forward and backward power

2 2 2 2

2 2 2 2

0

2 2 2

2 2 2 2

0

sinh

sinh

sinh

sinh

Gf

G

Gb

G

A z z LP z

LA

B z z LP z

LA

Page 20: Lecture 5 -- Coupled-mode Theory

2/17/2014

20

Typical Bragg Response

Lecture 5 Slide 39

100%

RESPONSE OF A BRAGG GRATING

Stop Band

Pass Band Pass Band

G G

G

0 eff Gk n

Frequency (k0)

0 eff Gk n

Reflectance (R)

Transmittance (T)

2

2

0

2

0

2

0

A LT

BR

A

A

eff2B n Bragg wavelength

Non-Directional Coupling

Page 21: Lecture 5 -- Coupled-mode Theory

2/17/2014

21

Non-Directional Coupling

Lecture 5 41

It turns out that we can couple waves travelling in different directions.  This is called non‐directional coupling.

2k

1k

K

1 2k kK

Wave 1 Wave 2 Grating that would couple wave 1 and wave 2

1k

2k

K

Grating vectors in opposite directions describe the same grating.

Phase Matching with Gratings

Page 22: Lecture 5 -- Coupled-mode Theory

2/17/2014

22

Generalized Framework

Lecture 5 Slide 43

How do we couple two completely different modes so they can exchange power?  Ordinarily, this will not happen.

1

2

Phase Matching

Lecture 5 Slide 44

We can couple any two modes using a grating.

1

2

K

The phase matching condition to couple energy between two modes is

1 2K 1

2

K

Page 23: Lecture 5 -- Coupled-mode Theory

2/17/2014

23

Grating Coupler Regimes

Lecture 5 Slide 45

Short period gratingsBragg gratingsContradirectional coupling

Long period gratingsCodirectional coupling

“Medium” period gratingsNon‐directional coupling

Mode-Matching Vs.

Coupled-Wave

Page 24: Lecture 5 -- Coupled-mode Theory

2/17/2014

24

Frameworks to Model Propagation

Lecture 5 Slide 47

Both mode-matching and coupled-mode frameworks view devices as consisting of a series of segments that are uniform in the z-direction.

Mode-Matching Framework (1 of 3)

Lecture 5 Slide 48

Mode matching views the field in a segment as being the sum of a set of orthogonal basis functions (eigen-modes).

+ + += +

m mm

E x a f x

E x 1f x 2f x 3f x 4f x

Page 25: Lecture 5 -- Coupled-mode Theory

2/17/2014

25

Mode-Matching Framework (2 of 3)

Lecture 5 Slide 49

The modes within a segment accumulate phase differently as they propagate, but they do not interact and they propagate independently.

+

+

+

=

th

complete descriptionof the eigen-mode

, mj zm m

m

m

E x z a f x e

,E x z

11

j zf x e

22

j zf x e

33

j zf x e

44

j zf x e

Mode-Matching Framework (3 of 3)

Lecture 5 Slide 50

At an interface, the power redistributes itself among the eigen-modes in the next segment.

+ + + =+

1, 0 2, 0

1 0 2 0

1, 1, 2, 2,

, ,

m mj z j zm m m m

m m

E x z E x z

a f x e a f x e

+ + += +

boundary conditions

Page 26: Lecture 5 -- Coupled-mode Theory

2/17/2014

26

Conclusions About Mode-Matching

• The mode-matching framework applies to more than waveguides– Metamaterials, gratings, electromagnetic band gap

materials, frequency selective surfaces, transmission lines, guided-mode resonance filters, photonic crystals, and more.

• Modes do not interact and they propagate independently with their own propagation constant.

• Power among the modes “scrambles” at an interface.

• The overall field is the sum of the eigen-modes

Lecture 5 Slide 51

Coupled-Wave Framework (1 of 3)

Lecture 5 Slide 52

Coupled-wave views the field in a segment as being the sum of a set of plane wave basis functions.

+ + += +

,x mjk xm

m

E x a e

E x ,1xjk xe

Page 27: Lecture 5 -- Coupled-mode Theory

2/17/2014

27

Coupled-Wave Framework (2 of 3)

Lecture 5 Slide 53

The waves within a segment are coupled. So, in addition to accumulating phase as they propagate, they also interact by exchanging power (coupled). The mode coefficients are therefore a function of z.

,, x mjk xm

m

E x z a z e

Coupled-Wave Framework (3 of 3)

Lecture 5 Slide 54

At an interface, the amplitudes of the plane waves on either side remain the same to enforce boundary conditions. This is because the same basis functions are being used on both sides..

+ + ++ =

boundary conditions

+ + += +

, ,

1 0 2 0

1, 2,

, ,

x m x mjk x jk xm m

m m

E x z E x z

a z e a z e

Page 28: Lecture 5 -- Coupled-mode Theory

2/17/2014

28

Conclusions about Coupled-Wave

• The coupled-mode framework applies to more than waveguides– Metamaterials, gratings, electromagnetic band gap materials,

frequency selective surfaces, transmission lines, guided-mode resonance filters, photonic crystals, and more.

• Modes can interact. In addition to accumulating phase as they propagate, modes can exchange power.

• Nothing interesting happens at an interface as the amplitudes of the modes remain constant across the interface (ignoring reflections)

• The overall field is the sum of the basis functions

Lecture 5 Slide 55

How Do We Reconcile These Two Theories?

Lecture 5 56

Plane waves do not exist in inhomogeneous materials.

If we force them to exist, they exist in “sets” and the plane waves exchange energy as they propagate.

In this sense, we can think of modes as the set of plane waves that propagate independently of other sets of plane waves.

This transforms coupled‐mode framework to the mode‐matching frame work.