Lecture 4. Terrestrial locomotion III: mechanical analysis of gaits...

12
Lecture 4. Terrestrial locomotion III: mechanical analysis of gaits and jumpiness. Recap: gaits and ballistic walking When the Froude Number (V 2 /g L) is greater than 1, simple ballistic walking is no longer possible. More aspects of jumping (energy and force) The jumper model accounts for an airborne phase of movement. Calculating optimal gaits for energy expenditure

Transcript of Lecture 4. Terrestrial locomotion III: mechanical analysis of gaits...

Page 1: Lecture 4. Terrestrial locomotion III: mechanical analysis of gaits …courses.washington.edu/biomechs/lectures/lecture04.pdf · 2016. 10. 4. · Lecture 4. Terrestrial locomotion

Lecture 4. Terrestrial locomotion III: mechanical analysis of gaits and jumpiness.• Recap: gaits and ballistic walking

• When the Froude Number (V2/g L) is greater than 1, simple ballistic walking is no longer possible.

• More aspects of jumping (energy and force)

• The jumper model accounts for an airborne phase of movement.

• Calculating optimal gaits for energy expenditure

Page 2: Lecture 4. Terrestrial locomotion III: mechanical analysis of gaits …courses.washington.edu/biomechs/lectures/lecture04.pdf · 2016. 10. 4. · Lecture 4. Terrestrial locomotion

Lecture 4. Terrestrial locomotion III: mechanical analysis of gaits and jumpiness.

Page 3: Lecture 4. Terrestrial locomotion III: mechanical analysis of gaits …courses.washington.edu/biomechs/lectures/lecture04.pdf · 2016. 10. 4. · Lecture 4. Terrestrial locomotion
Page 4: Lecture 4. Terrestrial locomotion III: mechanical analysis of gaits …courses.washington.edu/biomechs/lectures/lecture04.pdf · 2016. 10. 4. · Lecture 4. Terrestrial locomotion

Review of walking

Matthis & Fajen, 2013

How much energy input is needed for walking?

Page 5: Lecture 4. Terrestrial locomotion III: mechanical analysis of gaits …courses.washington.edu/biomechs/lectures/lecture04.pdf · 2016. 10. 4. · Lecture 4. Terrestrial locomotion

Energy tradeoffs in walking and running

What’s different?

KE

PE

KE

PE

elastic potential energy

Page 6: Lecture 4. Terrestrial locomotion III: mechanical analysis of gaits …courses.washington.edu/biomechs/lectures/lecture04.pdf · 2016. 10. 4. · Lecture 4. Terrestrial locomotion

A model for running:the spring-loaded inverted pendulum (SLIP)

BBC

tendons are springy!

Page 7: Lecture 4. Terrestrial locomotion III: mechanical analysis of gaits …courses.washington.edu/biomechs/lectures/lecture04.pdf · 2016. 10. 4. · Lecture 4. Terrestrial locomotion

The jumper: for speeds greater than Fr = 1, gait must change with an airborne phase

Spring Loaded Inverted Pendulum

Page 8: Lecture 4. Terrestrial locomotion III: mechanical analysis of gaits …courses.washington.edu/biomechs/lectures/lecture04.pdf · 2016. 10. 4. · Lecture 4. Terrestrial locomotion

Goal: compute the power (rate of energy expenditure) as a function of size (M,m) and gait (jumpiness)

M

m

h

d

VAssume constant Vno air resistanceno skidding

j = (1-β)/β

Maynard-Smith Mathematical Ideas in Biology

L

βL (1-β)L

Page 9: Lecture 4. Terrestrial locomotion III: mechanical analysis of gaits …courses.washington.edu/biomechs/lectures/lecture04.pdf · 2016. 10. 4. · Lecture 4. Terrestrial locomotion

Goal: compute the power (rate of energy expenditure) as a function of size (M,m) and gait (jumpiness)

M

m

h

d

j = (1-β)/β

Maynard-Smith Mathematical Ideas in Biology

L

βL (1-β)L

V

Energy to launch? = (M +m)g (h+d) Energy to break the fall? Energy to move the foot?

γ= (M +m)g (h+d) {-1 < γ < 1}= mV2/2

Page 10: Lecture 4. Terrestrial locomotion III: mechanical analysis of gaits …courses.washington.edu/biomechs/lectures/lecture04.pdf · 2016. 10. 4. · Lecture 4. Terrestrial locomotion

= (1+γ )(M +m) + mV2/2 g2 L2(1-β) 8V2

Goal: compute the power (rate of energy expenditure) as a function of size (M,m) and gait (jumpiness)

M

m

h

d

j = (1-β)/β

Maynard-Smith Mathematical Ideas in Biology

L

βL (1-β)L

V

Total Energy

Page 11: Lecture 4. Terrestrial locomotion III: mechanical analysis of gaits …courses.washington.edu/biomechs/lectures/lecture04.pdf · 2016. 10. 4. · Lecture 4. Terrestrial locomotion

= (1+γ )(M +m) + mV3/ (2 L) g2 L(1-β) 8V

Goal: compute the power (rate of energy expenditure) as a function of size (M,m) and gait (jumpiness)

M

m

h

d

j = (1-β)/β

Maynard-Smith Mathematical Ideas in Biology

L

βL (1-β)L

V

Total Power

= (1+γ )(M +m) + mV3/ (2 Lβ(1+j)) g2 Lβj 8V

Page 12: Lecture 4. Terrestrial locomotion III: mechanical analysis of gaits …courses.washington.edu/biomechs/lectures/lecture04.pdf · 2016. 10. 4. · Lecture 4. Terrestrial locomotion

How does Power vary with foot mass (m)?body mass (M)?body velocity (V)?jumpiness (j)?

P

0 inf.

= (1+γ )(M +m) + mV3/ (2 Lβ(1+j)) g2 Lβj 8VTotal Power

dP/dj = 0 —> Max, Min, inflection….