Lecture 4 - Crystal Systems

download Lecture 4 - Crystal Systems

of 31

Transcript of Lecture 4 - Crystal Systems

  • 7/27/2019 Lecture 4 - Crystal Systems

    1/31

    Chapter 3

    CRYSTAL SYSTEMS

  • 7/27/2019 Lecture 4 - Crystal Systems

    2/31

    Unit Cell (Lattice) Parameters

    a, b, c are the

    edge lengths

    , , are the

    inter-axial angles

    Seven different

    combinations of

    edge lengths andinter axial angles

    Distinct Crystal

    System

    x

    y

    z

    a

    b

    c

  • 7/27/2019 Lecture 4 - Crystal Systems

    3/31

    Seven Crystal Systems

    1

    2

    3

    4

    5

    6

    73

  • 7/27/2019 Lecture 4 - Crystal Systems

    4/31

    1. Cubic Crystals

    x

    y

    z

    a

    b

    c

    Unit Cell Parameters

    a = b = c

    = = = 90o

    Halite (a form of NaCl)

    http://en.wikipedia.org/wiki/Image:Cubic_crystal_shape.png
  • 7/27/2019 Lecture 4 - Crystal Systems

    5/31

    2. Hexagonal Crystals

    x

    y

    z

    a

    b

    c

    Unit Cell Parameters

    Calcite

    a = b c

    = = 90o, = 120o

    http://mineral.galleries.com/minerals/carbonat/calcite/calcite.htmhttp://en.wikipedia.org/wiki/Image:Hexagonal.png
  • 7/27/2019 Lecture 4 - Crystal Systems

    6/31

    3. Tetragonal Crystals

    x

    y

    z

    a

    b

    c

    Unit Cell Parameters

    a = b c

    = = = 90o

    Ruby Hematite

    http://en.wikipedia.org/wiki/Image:Tetragonal.png
  • 7/27/2019 Lecture 4 - Crystal Systems

    7/31

    4. Rhombohedral (Trigonal)

    Crystals

    x

    y

    z

    a

    b

    c

    Unit Cell Parameters

    a = b c

    Quartz

    = = 90o

    http://en.wikipedia.org/wiki/Image:Rhombohedral.png
  • 7/27/2019 Lecture 4 - Crystal Systems

    8/31

    5. Orthorhombic Crystals

    x

    y

    z

    a

    b

    c

    Unit Cell Parameters

    BariteTopaz

    = = = 90oa b c

    http://en.wikipedia.org/wiki/Image:Orthorhombic.png
  • 7/27/2019 Lecture 4 - Crystal Systems

    9/31

    6. Monoclinic Crystals

    x

    y

    z

    a

    b

    c

    Unit Cell Parameters

    Gypsum Muscovite

    a b c

    = = 90o

    http://mineral.galleries.com/minerals/silicate/muscovit/mus-17.jpghttp://mineral.galleries.com/minerals/sulfates/gypsum/gypsum.htm
  • 7/27/2019 Lecture 4 - Crystal Systems

    10/31

    7. Triclinic Crystals

    x

    y

    z

    a

    b

    c

    Unit Cell Parameters

    Oligoclase

    (Na-Ca-Al Silicate)

    Kyanite

    (Al Silicate)

    a b c

    http://en.wikipedia.org/wiki/Image:Triclinic.png
  • 7/27/2019 Lecture 4 - Crystal Systems

    11/31

    Crystallographic Points,

    Directions, Planes

    Needs either a point within the unit cell, acrystallographic direction or a

    crystallographic plane of atoms to describe

    the crystal

    Becomes more important when the co-

    ordinate axes are not perpendicular to each

    other

    HexagonalRhombohedral

    Monoclinic

    Triclinic

  • 7/27/2019 Lecture 4 - Crystal Systems

    12/31

    Crystallographic Points

    (point coordinates)

    Point P (q,r,s) (q,r,s) 1

    q corrsponds to

    distance qa

    rcorresponds to

    distance rb

    s corresponds to

    distance sc

    x

    y

    z

    a

    b

    cP (q,r,s)

    qa

    rb

    sc

  • 7/27/2019 Lecture 4 - Crystal Systems

    13/31

    Crystallographic Points

    Find Point P (, 1, ) Substitute q = , r = 1,

    and s =

    x

    y

    z

    a

    b

    cP (, 1, )

    a

    1b

    c

  • 7/27/2019 Lecture 4 - Crystal Systems

    14/31

    Crystallographic Directions

    A line between two points, or a vector.1. Draw a vector that passes through the origin of the

    co-ordinate system

    2. Determine the length of the vector projection on

    three axesmeasured in terms of unit celldimensions a, b, c

    3. Reduce them to smallest integer values

    4. Represent as [uvw] no commas.

    u, v, w correspond to reduced projections along x, y, z

    axes

  • 7/27/2019 Lecture 4 - Crystal Systems

    15/31

    Example for direction [uvw]

    Step 1: A vector is positioned such that it passesthrough the origin of the coordinate system

    X

    Y

    Z

    What are the indices for theVector shown?

    0.4 nm

    0.5 nm

    0.3 nm

  • 7/27/2019 Lecture 4 - Crystal Systems

    16/31

    Example for direction [uvw]

    Step 2: Lengths of the vector projection on each of thethree axes are determined; these are indicated in

    terms of unit cell dimensions a,b,c

    X

    Y

    Z

    0.4 nm

    0.5 nm

    0.3 nm

    Projections

    X Y Z

    0a 0.5b 0.5c

  • 7/27/2019 Lecture 4 - Crystal Systems

    17/31

    Example for direction [uvw]

    Step 3: These projections are multiplied to reducethem to the smallest integer value

    X

    Y

    Z

    0.4 nm

    0.5 nm

    0.3 nm

    Projections

    X Y Z

    0a 0.5b 0.5c

    0 0.5 0.5Reduction

    0 1 1Reduction

  • 7/27/2019 Lecture 4 - Crystal Systems

    18/31

    Example for direction [uvw]

    Step 4: The reduced integers are enclosed in squarebrackets without comma

    X

    Y

    Z

    0.4 nm

    0.5 nm

    0.3 nm

    Projections

    X Y Z

    0a 0.5b 0.5c

    0 0.5 0.5Reduction

    0 1 1Reduction

    [011]

  • 7/27/2019 Lecture 4 - Crystal Systems

    19/31

    Example for direction [uvw]

    Negative directions get a hat

    X

    Y

    Z

    0.4 nm

    0.5 nm

    0.3 nm

    Projections

    X Y Z

    0a 0.5b 0.5c

    0 0.5 0.5Reduction

    0 1 1Reduction

    [011]

  • 7/27/2019 Lecture 4 - Crystal Systems

    20/31

    Example for direction [uvw]

    Negative directions get a hat

    X

    Y

    Z

    0.4 nm

    0.5 nm

    0.3 nm

    Projections

    X Y Z

    0a 0.5b 0.5c

    0 0.5 0.5Reduction

    0 1 1Reduction

    [011]

  • 7/27/2019 Lecture 4 - Crystal Systems

    21/31

    Indices for the Direction

    1. Take the projection on the X-axis: a/2

    2. Take the projection on the Y-axis: b

    3. Take the projection on the Z-axis: 0c

    b

    c

    a

    x

    y

    z

    Reduce them into smallest integers

    [ 1 0] or [1 2 0] ?

  • 7/27/2019 Lecture 4 - Crystal Systems

    22/31

    Crystallographic Planes

    In all crystal structuresother than hexagonal,

    crystallographic planes

    are specified by three

    Miller Indices(hkl)

    Any two planes parallel

    to each other are

    equivalent and have

    identical indices

    The unit cell system is

    the basis

    x

    y

    z

    a

    b

    c

  • 7/27/2019 Lecture 4 - Crystal Systems

    23/31

    23

    Crystallographic Planes

    Adapted from Fig. 3.26,

    Callister & Rethwisch 4e.

  • 7/27/2019 Lecture 4 - Crystal Systems

    24/31

    Determining h,k,l

    1. If the plane passes through selected origin,select another origin

    2. Read off intercepts of plane with axes interms ofa, b, c

    3. Take the reciprocals of these numbers

    A plane that parallels an axis has infinite intercept

    hence zero index

    4. Reduce to set ofsmallest integers5. Represent as (hkl)

    An intercept on the negative side denoted with a

    bar on the top of the index

    D t i Mill I di f th

  • 7/27/2019 Lecture 4 - Crystal Systems

    25/31

    Determine Miller Indices for the

    Plane

    b

    c

    a

    x

    y

    z

    c/2

    x

    Step 1: Redefine Origin

    b

    c

    ay

    z

    c/2y

    z

    x

  • 7/27/2019 Lecture 4 - Crystal Systems

    26/31

    Determine Miller Indices for the

    Plane

    Step 2: Determine the plane intercepts

    x b

    c

    a y

    z

    c/2y

    z

    x

    x y z

    Intercepts inf a -b c/2

    Intercepts

    (Lattice par.) inf -1 1/2

    Determine Miller Indices for the

  • 7/27/2019 Lecture 4 - Crystal Systems

    27/31

    Determine Miller Indices for the

    Plane

    Step 3: Determine the reciprocals

    x b

    c

    a y

    z

    c/2y

    z

    x

    x y z

    Reciprocals 0 -1 2

    Step 4: Reduction to integersnot needed

    Step 5: (012)

  • 7/27/2019 Lecture 4 - Crystal Systems

    28/31

    Miller Indices for the Plane

    x

    y

    z

    O

    O

    z

    x

    -b

    c/2

    1. Plane parallel to X-axis is a, intercept

    is , index is 0

    2. Intercept along Y-axis isb,

    intercept is -1, index is -1

    3. Intercept along Z-axis is c/2,

    intercept is , index is 2

    Miller Indices for this plane : [012]

  • 7/27/2019 Lecture 4 - Crystal Systems

    29/31

    Miller Indices for the Plane

    z

    y

    x

    1. Plane parallel to X-axis is a, interceptis , index is 0

    2. Intercept along Y-axis is b/2,intercept is 1/2, index is 2

    3. Plane parallel to Z-axis is c, interceptis , index is 0

    Miller Indices :

    (020)

  • 7/27/2019 Lecture 4 - Crystal Systems

    30/31

    Constructing a Plane (011)

    0 indicates that the

    plane is parallel to X-

    axis

    -1 indicates that the

    intercept along Y axisisb

    1 indicates that the

    intercept along Z axis

    is cx

    y

    z

    a

    b

    c

    -b

  • 7/27/2019 Lecture 4 - Crystal Systems

    31/31

    Constructing a (110) Plane

    1 indicates that theintercept along X-axisis a

    1 indicates that the

    intercept along Y axisis b

    0 indicates that theplane is parallel to

    the Z-axis

    x

    y

    z