Lecture 3: Dual 4D-Var · 2010. 6. 30. · Innovation vector × H Observation ... finite-amp...

62
Lecture 3: Dual 4D-Var

Transcript of Lecture 3: Dual 4D-Var · 2010. 6. 30. · Innovation vector × H Observation ... finite-amp...

  • Lecture 3: Dual 4D-Var

  • Outline

    • 4D-Var recap• Dual 4D-Var (4D-PSAS & R4D-Var)• The ROMS 4D-PSAS & R4D-Var algorithms• Weak constraint 4D-Var

  • ,y R

    Data Assimilation: Recap

    bb(t), Bb

    fb(t), Bf

    xb(0), Bx

    Model solutions depends on xb(0), fb(t), bb(t), h(t)

    time

    x(t)

    Obs, yPriorPosterior

    ROMS

    Prior

  • Notation & Nomenclature: Recap

    ⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥=⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

    TS

    x ζuv

    (0)( )( )( )

    ttt

    ⎡ ⎤⎢ ⎥⎢ ⎥=⎢ ⎥⎢ ⎥⎣ ⎦

    xf

    zbη

    1

    N

    y

    y

    ⎡ ⎤⎢ ⎥⎢ ⎥=⎢ ⎥⎢ ⎥⎣ ⎦

    y ( )( )H= − bd y x

    Statevector

    Controlvector

    Observationvector

    Innovationvector

    ×

    HObservation

    operator

    Prior

  • ( (0), ( ), ( ), ( ))T T T Tt t tδ δ= b fz x ε ε ηinitial

    conditionincrement

    boundaryconditionincrement

    forcingincrement

    corrections for model

    error

    bb(t),Bb

    fb(t), Bf

    xb(0), Bx

    ( ) ( )1 11 12 2

    TTJ δ δ δ δ− −= + − −z D z G z d R G z d

    diag( , , , )= x b fD B B B Q

    Prior (background) error covariance

    TangentLinear Modelsampled atobs points

    ObsErrorCov.

    Innovation

    = − bd y Hx

    Prior

    Incremental Formulation: Recap

    (Courtier et al., 1994)

  • ⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢

    •••••••

    ⎥⎢ ⎥⎢•

    ⎥⎢ ⎥⎢ ⎥⎣

    ⎦•

    ••

    ⎡ ⎤⎢ ⎥⎣ ⎦

    ⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢

    •••••••

    ⎥⎢ ⎥⎢•

    ⎥⎢ ⎥⎢ ⎥⎣

    ⎦•

    zPrimalSpace

    yObservation

    vector

    zDual

    Space

    Primal vs Dual Formulation: RecapVector of

    increments

  • The Solution: Recap

    = +a bz z Kd

    T T -1( )= +K DG GDG R

    Analysis:

    Gain (dual form):

    Gain (primal form):

    ( )T T− − − −= +1 1 1 1K D G R G G R

  • Two Spaces: Recap

    T T -1( )= +K DG GDG RGain (dual):

    Gain (primal):

    ( )T T− − − −= +1 1 1 1K D G R G G R

    obs obsN N×

    model modelN N×obs modelN N

  • Two Spaces: Recap

    G maps from model spaceto observation space

    GT maps from observation spaceto model space

  • Primal Formulation: Recap

    = +a bz z KdAnalysis:Goal of 4D-Var is to identify:

    11 T 1 T 1( )δ−− − −= = +z Kd D G R G G R d

    Solve the equivalent linear system:1 T 1 T 1( )δ− − −+ =D G R G z G R d

    by minimizing:1 T 1 T 1 11 1( )

    2 2T T TJ δ δ δ− − − −= + − +z D G R G z z G R d d R d

    ( ) ( )1 11 12 2

    TTδ δ δ δ− −= + − −z D z G z d R G z d

  • Dual Formulation

    = +a bz z KdAnalysis:Goal of 4D-Var is to identify:

    1T T( )δ−

    = = +z Kd DG GDG R dSolve the equivalent linear system:

    by minimizing:

    T1( ) ( )2

    T TI = + −w w GDG R w w d

    T T( ) ; δ+ = =GDG R w d z DG w

    then compute: Tδ =z DG w

    There is no physicalsignificance attached to w

  • Contours of J

    Conjugate Gradient (CG) Methods

  • Matrix-less Operations

    TGDG δThere are no matrix multiplications!

    Zonal shear flow

  • Matrix-less Operations

    There are no matrix multiplications!

    Adjoint Model

    TGDG δ

    Zonal shear flow

  • Matrix-less Operations

    There are no matrix multiplications!

    Adjoint Model

    TGDG δ

    Zonal shear flow

  • Matrix-less Operations

    There are no matrix multiplications!

    Adjoint Model

    TGDG δ

    Zonal shear flow

  • Matrix-less Operations

    There are no matrix multiplications!

    Covariance

    TGDG δ

    Zonal shear flow

  • Matrix-less Operations

    There are no matrix multiplications!

    Covariance

    TGDG δ

    Zonal shear flow

  • Matrix-less Operations

    There are no matrix multiplications!

    Tangent LinearModel

    TGDG δ

    Zonal shear flow

  • Matrix-less Operations

    There are no matrix multiplications!

    Tangent LinearModel

    TGDG δ

    Zonal shear flow

  • TGDG δ

    A covarianceZonal shear flow

    Matrix-less Operations

    There are no matrix multiplications!

  • Matrix-less Operations

    There are no matrix multiplications!

    Tangent LinearModel

    TGDG δ

    Zonal shear flow

  • Physical-space Statistical Analysis System(PSAS) – Da Silva et al. (1995)

  • Dual 4D-PSAS Algorithm

    (define W4DPSAS, w4dpsas_ocean.h)

    TG w

    T( )I∂ ∂ = + −w GDG R w d

    Xb(t), d

    Choose w

    Run ADROMS

    D

    Run TLROMS

    ConjugateGradient

    Algorithm

    w

    NLROMS, zb

    NLROMS, za Xa(t)

    TDG w

    obs space

    ADROMS forced by w

    TGDG w

    Run ADROMS

    D

    TaG w

    δ az

  • Dual 4D-PSAS Algorithm

    (define W4DPSAS, w4dpsas_ocean.h)

    Choose w

    Run ADROMS

    D

    Run TLROMS

    ConjugateGradient

    Algorithm

    NLROMS, zb

    NLROMS, za

    Run ADROMS

    D

    Outer-loopInner-loop

  • The method of representers (R4D-Var)Bennett (2002)

  • The Dual of State-Space

    ROMS state-vector increments:

    ( )( )

    ( ) ( )( )( )

    tt

    t ttt

    δδ

    δ δδδ

    ⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥=⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

    TS

    x ζuv

    The set of all continuous, linear functionals of δx(t) iscalled the dual of δx

    For example, ym=Gδz belongs to the dual of δx

  • Zonal shear flow

    The Dual of State-SpaceConsider the assimilation window t=[0,T] for thezonal shear flow…

    δ z

  • Zonal shear flow

    The Dual of State-Space

    ×××

    × Observations

    Consider the assimilation window t=[0,T] for thezonal shear flow with 3 observations.

    δ z

  • Tangent LinearModel

    δG z

    Zonal shear flow

    The Dual of State-Space

    ×××

    × Observations

    Consider the assimilation window t=[0,T] for thezonal shear flow with 3 observations.

  • Tangent LinearModel

    δG z

    Zonal shear flow

    The Dual of State-Space

    ×××

    × Observations

  • Tangent LinearModel

    δG z

    Zonal shear flow

    The Dual of State-Space

    × Observations

  • Tangent LinearModel

    δG z

    Zonal shear flow

    The Dual of State-Space

    × Observations

  • Tangent LinearModel

    δG z

    Zonal shear flow

    The Dual of State-Space

    × Observations

  • Tangent LinearModel

    δG z

    Zonal shear flow

    The Dual of State-Space

    × Observations

    ym=

  • Tangent LinearModel

    δG z

    Zonal shear flow

    The Dual of State-Space

    × Observations

    ym=1my2my3my

  • Tangent LinearModel

    δG z

    Zonal shear flow

    The Dual of State-Space

    × Observations

    d=1 1m oy y−2 2m oy y−3 3m oy y−

    ×××

    Innovationvector

  • The Dual of State-Space

    The innovation vector belongs to the dual of δx(t).

    According to Riesz representation theorem:

    Let1

    2

    (0)( )( )

    (T)

    tt

    δδδ

    δ

    ⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥=⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

    xx

    u x

    x

    for t=[0,T]

    T T T1 1 1 2 2 2 3 3 3; ; ;m o m o m oy y y y y y− = − = − =ρ u ρ u ρ u

    where ρi are referred to as “representer functions.”

  • The Dual of State-Space

    Let1

    2

    (0)( )( )

    (T)

    i

    i

    i i

    i

    tt

    ⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥=⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

    rr

    ρ r

    r

    for t=[0,T]

    and ( )(t) (t)i= rR

  • Representer Functions

    δ

    Zonal shear flow

    Observationlocation

  • Representer Functions

    TGDG δ

    Zonal shear flow

    Observationlocation

  • TGDG δ

    A covariance

    = A representer

    Green’s Function

    Zonal shear flow

    Representer Functions

  • Zonal shear flow

    3

    1(t)= (t) (t)= (t)+ (t)i i

    iw

    =

    + ∑a b bx x r x wR

    The analysis increments can be written as theweighted sum of the representers

    ( )(t) (t)i= rR

    Representer Functions

  • Zonal shear flow

    The analysis increments can be written as theweighted sum of the representers

    3

    1(t)= (t) (t)= (t)+ (t)i i

    iw

    =

    + ∑a b bx x r x wR( )(t) (t)i= rR

    Representer Functions

    1(T)r

    2 (T)r

    3 (T)r

  • = +a bz z KdAnalysis:Goal of 4D-Var is to identify:

    1T T( )δ−

    = = +z Kd DG GDG R dSolve the equivalent linear system:

    by minimizing:

    T1( ) ( )2

    T TI = + −w w GDG R w w d

    T T( ) ; (0)δ+ = = ≡GDG R w d z DG w wR

    then compute:

    The elements of w are theweighting coefs for the ri(t)

    Indirect Representer Algorithm(Egbert et al, 1994)

    T (0) ; (t)= (t)δ δ δ= ≡ =z DG w w x z wR M RTLROMS

  • Indirect R4D-Var algorithm for a

    single outer-loop TG w

    T( )I∂ ∂ = + −w GDG R w d

    Xb(t)

    Choose w

    Run ADROMS

    D

    Run TLROMS

    ConjugateGradient

    Algorithm

    w

    NLROMS, zb

    TLROMS, δza δXa(t)

    TDG w

    obs space

    ADROMS forced by w

    TGDG w

    Run ADROMS

    D

    TaG w

    δ az

  • Indirect R4D-Var Algorithm

    (define W4DVAR, w4dvar_ocean.h)

    TG w

    T( )I∂ ∂ = + −w GDG R w d

    Xb(t)

    w

    Xa(t)

    TDG w

    obs space

    ADROMS forced by w

    TGDG w

    TaG w

    δ az

    Choose w

    Run ADROMS

    D

    Run TLROMS

    ConjugateGradient

    Algorithm

    RPROMS

    RPROMS, za

    Run ADROMS

    D

    NLROMS, zb

    dRPROMS=finite-ampTLROMS

  • Choose w

    Run ADROMS

    D

    Run TLROMS

    ConjugateGradient

    Algorithm

    RPROMS

    RPROMS, za

    Run ADROMS

    NLROMS, zb

    D

    Indirect R4D-Var Algorithm

    (define W4DVAR, w4dvar_ocean.h)

    Outer-loopInner-loop

  • Weak Constraint 4D-Var

    1 1( ) ( , )( ( ), ( ), ( ))i i i i i it M t t t t t− −=x x f bNonlinear ROMS (NLROMS):

    Nonlinear ROMS (NLROMS) with model error:

    1 1( ) ( , )( ( ), ( ), ( ), ( ))i i i i i i it M t t t t t t− −=x x f b εModel error prior: 0Model error prior covariance:

    4D-Var control vector:

    (0)( )( )( )

    ttt

    ⎡ ⎤⎢ ⎥⎢ ⎥=⎢ ⎥⎢ ⎥⎣ ⎦

    xf

    zbη Correction for modelerror

    Q(no explicit timecorrelation in Q, but thereis some in practice)

  • Weak Constraint 4D-Var

    1 1( ) ( , ) ( )i i i it t t tδ δ− −=x M uTangent linear ROMS (TLROMS):

    ( )( )

    ( )( )( )

    i

    ii

    i

    i

    tt

    ttt

    δδ

    δδδ

    ⎡ ⎤⎢ ⎥⎢ ⎥=⎢ ⎥⎢ ⎥⎣ ⎦

    xf

    ubη 4D forcing for TLROMS

    ( )itδ =η 0Strong constraint:

  • Two Spaces

    T T -1( )= +K DG GDG RGain (dual):

    Gain (primal):

    ( )T T− − − −= +1 1 1 1K D G R G G R

    obs obsN N×

    model modelN N×obs modelN N

  • Two Spaces

    ( )model x times f b xN N N N N N= + + +Weak constraint:

    ( )model x times f bN N N N N= + +Strong constraint:

    Weak constraint is only practical in dual formulationof 4D-Var since Nobs is unaffected:

    T T -1( )= +K DG GDG R

    obs obsN N×

  • Mechanics of Dual 4D-Var: Preconditioning

    = +a bz z KdAnalysis:Goal of 4D-Var is to identify:

    1T T( )δ−

    = = +z Kd DG GDG R dSolve the equivalent linear system:

    by minimizing:

    T1( ) ( )2

    T TI = + −w w GDG R w w d

    T T( ) ; δ+ = =GDG R w d z DG w

    Preconditioning via the change of variable 1 2−=v R w

  • Mechanics of Dual 4D-Var: Lanczos vectors

    Lanczos formulation of conjugate gradient algorithmin observation space is used (congrad.F).

    1T T( )−

    = +K DG GDG R

    Dual formulation of gain matrix:

    Dual formulation of practical gain matrix:

    T 1 2 1 T 1 2k k k k

    − − −=K DG R V T V R

    Many practical diagnostic applications using thisformulation (Lectures 4 & 5).

  • An Example: ROMS CCS

    30km, 10 km & 3 km grids, 30- 42 levelsVeneziani et al (2009)Broquet et al (2009)Moore et al (2010)

    COAMPSforcing

    ECCO openboundaryconditions

    fb(t), Bf

    bb(t), Bb

    xb(0), Bx

    Previous assimilationcycle

  • Observations (y)

    CalCOFI &GLOBEC

    SST &SSH

    Argo

    TOPP Elephant SealsIngleby andHuddleston (2007)

    Data from Dan Costa

  • 4D-Var Configuration

    • Case studies for a representative case3-10 March, 2003.

    • 1 outer-loop, 100 inner-loops• 7 day assimilation window• Prior D: x Lh=50 km, Lv=30m, σ from clim

    f Lτ=300km, LQ=100km, σ from COAMPS b Lh=100 km, Lv=30m, σ from clim

    • Super observations formed• Obs error R (diagonal):

    SSH 2 cmSST 0.4 Chydrographic 0.1 C, 0.01psu

  • Primal, strongDual, strongDual, weakJmin

    4D-Var Performance

    3-10 March, 2003(10km, 42 levels)

  • Issues, Things to do, & Coming Soon

    • Slow convergence of dual 4D-Var compared to primalformulation:

    - w has no physical significance, so need not be physically realizable

    - minimum residual method may be the answer(El Akkraoui and Gauthier, 2010)

    Tδ =z DG w

  • Summary• Strong and weak constraint 4D-Var, dual

    formulation: define W4DPSASDrivers/w4dpsas_ocean.hdefine W4DVARDrivers/w4dvar_ocean.h

    • Matrix-less iterations to identify cost functionminimum using TLROMS and ADROMS

  • References• Bennett, A.F., 2002: Inverse Modeling of the Ocean and

    Atmosphere. Cambridge University Press, 234pp.• Courtier, P., 1997: Dual formulation of four-dimensional variational

    assimilation. Q. J. R. Meteorol. Soc.,123, 2449-2461.• Da Silva, A., J. Pfaendtner, J. Guo, M. Sienkiewicz and S. Cohn,

    1995: Assessing the effects of data selection with DAO's physical-space statistical analysis system. Proceedings of the second international WMO symposium on assimilation of observations in meteorology and oceanography, Tokyo 13-17 March, 1995. WMO.TD 651, 273-278.

    • Di Lorenzo, E., A.M. Moore, H.G. Arango, B.D. Cornuelle, A.J. Miller, B. Powell, B.S. Chua and A.F. Bennett, 2007: Weak and strong constraint data assimilation in the inverse Regional Ocean Modeling System (ROMS): development and application for baroclinic coastal upwelling system. Ocean Modeling, 16, 160-187.

    • Egbert, G.D., A.F. Bennett and M.C.G. Foreman, 1994: TOPEX/POSEIDON tides estimated using a global inverse method. J. Geophys. Res., 99, 24,821-24,852.

    • El Akkraoui, A. and P. Gauthier, 2010: Convergence properties of the primal and dual forms of variational data assimilation. Q. J. R. Meteorol. Soc., 136, 107-115.

  • References• Moore, A.M., H.G. Arango, G. Broquet, B.S. Powell, J. Zavala-Garay

    and A.T. Weaver, 2010: The Regional Ocean Modeling System (ROMS) 4-dimensional data assimilation systems: Part I. Ocean Modelling, Submitted.