lecture 3 density of states & intrinsic fermi 2012

21
10/1/2012 1 EE415/515 Fundamentals of Semiconductor Devices Fall 2012 Lecture 3: Density of States, Fermi Level (Chapter 3.4-3.5/4.1) Density of States Need to know the density of electrons, n, and holes, p, per unit volume To do this, we need to find the density of permitted energy states and then the probability (given by the Fermi function) that these states are occupied by an electron See Neamen Sections 3.4 and 3.5 for derivations, and compare these with alternative approaches given below ECE415/515 Fall 2012 2 J.E. Morris

Transcript of lecture 3 density of states & intrinsic fermi 2012

Page 1: lecture 3 density of states & intrinsic fermi 2012

10/1/2012

1

EE415/515 Fundamentals of Semiconductor Devices

Fall 2012

Lecture 3: Density of States, Fermi Level

(Chapter 3.4-3.5/4.1)

Density of States• Need to know the density of electrons, n, and holes, p, per unit volume

• To do this, we need to find the density of permitted energy states and then the probability (given by the Fermi function) that these states are occupied by an electron

• See Neamen Sections 3.4 and 3.5 for derivations, and compare these with alternative approaches given below

ECE415/515 Fall 2012 2J.E. Morris

Page 2: lecture 3 density of states & intrinsic fermi 2012

10/1/2012

2

Density of States

ECE415/515 Fall 2012 3

•See figure in “k-space.”

•Also: p=ħ k=(h/2π)k, i.e.•Direct linear relationship between (wave-vector) k-space and (momentum) p-space.

•The Neamen derivation (next slide) is based in k-space.•See also a slightly different approach based in p-space in following slide.

J.E. Morris

Density of States

ECE415/515 Fall 2012 4

Consider electron confined to crystal (infinite potential well) of dimensions a(volume V= a3)

It has been shown that k=nπ/a, so ∆k=kn+1-kn=π/a

Each quantum state occupies volume (π/a)3 in k-space.

Number of quantum states in range k to k+dk is 4πk2.dk

and the number of electrons in this range k to k+dk is

gT(k)dk = 2(1/8).4πk2dk/ (π/a)3 = (k2dk/ π2)a3

where “2” comes from spin degeneracy, and “1/8” because E=(ħk)2/2m,

so negative k values do not add more energy states,

i.e. use kx, ky, kz >0 quadrant only

Converting k-space to energy ………..

J.E. Morris

Page 3: lecture 3 density of states & intrinsic fermi 2012

10/1/2012

3

Density of States

ECE415/515 Fall 2012 5

dEEgEfdEEn

dEEEh

mdEEEm

h

dEmEEmaadkk

dEEgVdkk

dEmEEmdkk

dEmdkk

EEmkp

EEmp

CFD

Cn

Cn

nCnC

nCn

n

Cn

Cn

)()()(

is band conduction in the t volenergy/uniit density/unelectron and

band conduction in the t volenergy/unit states/uni ofdensity electron is

)()2

(4 )()2(4

/)()2(1

/.)(/)(g writingSo

/)()2(

/.2.2

)(2

whereband, conduction in the 2EE

2

1

2

3

2

*2

1

2

3*

3

3*2

1

2

1*

233

2

T

3*2

1

2

1*2

2*

*222

*2C

J.E. Morris

Density of States (alternate)

ECE415/515 Fall 2012 6

Heisenberg says ∆p∆x=h,

(but see ħ in Neamen section 2.1.3 p30, and ħ/2 in Streetman)

and for crystal volume V=L3=LxLyLz

∆px∆x=h, ∆py∆y=h, ∆pz∆z=h,

and hence for a single electron

∆px ∆py ∆pz=h3/V for ∆x=Lx, etc

is the “volume” occupied in p-space by one electron.

Number of allowed conduction electron states g(p)dp from p to p+dp

[see Fig 3.26 (slide 3) in k-space with p = ħk]

is the volume of the p-space “shell” containing all states from p to p+dp

[4πp2dp]

divided by the p-space volume of each electron, i.e. ……

J.E. Morris

Page 4: lecture 3 density of states & intrinsic fermi 2012

10/1/2012

4

Density of states

ECE415/515 Fall 2012 7

dEEgEfdEEn

dEEEh

mdEEEm

h

dEEEmh

mdEEgVdpp

dEmEEmdpp

dEmdpp

EEmp

EEmp

dpph

V

Vh

dppdppg

CFD

Cn

Cn

Cnn

C

nCn

n

Cn

Cn

)()()(

is band conduction in the t volenergy/uniit density/unelectron and

band conduction in the t volenergy/unit states/uni ofdensity electron is

)()2

(4 )()2(4

)()2(42

)(/)(g writingSo

)()2(

.2.2

)(2

whereband, conduction in the 2EE -:densityenergy convert to To

degeneracyspin todue is 2 the where) 4(2 4

2)(

2

1

2

3

2

*2

1

2

3*

3

2

1

2

1*

3

*

*2

1

2

1*2

*

*2

*2C

233

2

J.E. Morris

(Compare 1D, 2D systems with 3D)

8

1Din / 2

12

2Din / 24

12

3Din /48

12)(

2

32

adk

adkk

adkkdkkg

Page 5: lecture 3 density of states & intrinsic fermi 2012

10/1/2012

5

And similarly for holes:-

ECE415/515 Fall 2012 9

CV

2

3*

2

V

2

3*

2

C

EEEfor 0g(E) and

24

)(

:EE whereband, valencein the holesFor

24

)(

:EE whereband, conduction in the electronsFor

EEmh

Eg

EEmh

Eg

VpV

CnC

Now that we have the densities of states, we need the probabilities that these are filled.

J.E. Morris

Ex 3.3 Calculate the density of quantum states (/cm3) for a free electron over the energy range of (a) 0 ≤ E ≤ 2eV & (b) 1 ≤ E ≤ 2eV

ECE415/515 Fall 2012 10J.E. Morris

Page 6: lecture 3 density of states & intrinsic fermi 2012

10/1/2012

6

Ex 3.3 Calculate the density of quantum states (/cm3) in Si from (Ev-kT) to Ev at T=300 K

ECE415/515 Fall 2012 11J.E. Morris

Fermi-Dirac statistics (see also text “derivation”)

ECE415/515 Fall 2012 12

First, let’s find the Maxwell-Boltzmann distribution

Consider a system of identical particles with random collisions

Assume 2 particles of initial energies E1 & E2 collide with energy transfer δ to give final energies E3 & E4

Conservation of Energy requires that:

If p(E)=probability that particle has energy E, then:

Equilibrium: equal numbers of forward & reverse collisions for constant energy distribution, i.e.

)()( 214321 EEEEEE

)().(.collision ofy Probabilit 21 EpEpC

)(.)( i.e.

(constant) )(

)(

)(

)( i.e.

)().()().(

)().(.)().(.

2

2

1

1

2121

4321

ii EpEp

Ep

Ep

Ep

Ep

EpEpEpEp

EpEpCEpEpC

J.E. Morris

Page 7: lecture 3 density of states & intrinsic fermi 2012

10/1/2012

7

MB continued & FD intro

Result suggests an exponential distribution, i.e.

Check: Aexp-α(Ei+δ)=λ. Aexp-αEi if λ=exp-αδ

For Fermi-Dirac statistics, repeat as for MB, but with the Pauli Exclusion Principle included, i.e.

Can only get transfer of energy E1, E2 → E3, E4

if E1 & E2 are occupied AND if E3 & E4 are unoccupied

ECE415/515 Fall 2012 13

)(.)( ii EpEp

kTEA

EAEpMB

/exp.

exp.)(

J.E. Morris

Fermi functionSo the collision probability is

and applying Equilibrium and Energy Conservation again:

)](1)].[(1).[().(. 4321 EpEpEpEpC

exp1

1 ,exp

1 writingand

, 1

large, for exp1

exp1

1)( i.e.

)2exp (where exp.)(

)(1 i.e.

again,solution lexponentiaan (constant) )(1

)(.

)(

)(1 and

)(1

)(.

)(

)(1

)(1

)(.

)(

)(1 i.e.

)](1)].[(1).[().(.)](1)].[(1).[().(.

2

2

2

2

2

1

1

1

1

21212121

kT

EEf

kT

E

A

kT

EAEA

Ep

EAEAEp

Ep

Ep

Ep

Ep

Ep

Ep

Ep

Ep

Ep

Ep

Ep

Ep

Ep

EpEpEpEpCEpEpEpEpC

FFD

F

i

i

i

i

i

i

ECE415/515 Fall 2012 14J.E. Morris

Page 8: lecture 3 density of states & intrinsic fermi 2012

10/1/2012

8

MB/FD/(BE) comparisons

Maxwell-Boltzmann Bose-Einstein Fermi-Dirac

Particles distinguishable

Particles indistinguishable (wave functions overlap – cannot find individual particle)

Any number of particles can be in the same energy state

Only one particle in any energy state

(Pauli) but note spin degeneracy

Particles are statistically independent

Atoms, molecules, etc BosonsPhotons, phonons,

4He nuclei (integral spins)

FermionsElectrons, protons,

neutrons, 3He nuclei (½-odd-integral spins)

ECE415/515 Fall 2012 15

NNM

ii

1

EEN i

M

ii

1

J.E. Morris

Fermi distributions

Electrons in solids obey Fermi-Dirac statistics due to the Pauli exclusion principle (each state can have only one electron – but remember spin!)

Probability density function gives the ratio of filled to total allowed states at a given energy.

Using statistical mechanics to count states we find the Fermi-Dirac distribution function:• f(E) = {1 + exp[(E-Ef)/kT]}-1

• k is Boltzmann’s constant = 8.62x10-5 eV/K

= 1.38x10-23J/K

• EF is the Fermi level, [where f(EF)=½]

ECE415/515 Fall 2012 16J.E. Morris

Page 9: lecture 3 density of states & intrinsic fermi 2012

10/1/2012

9

The Fermi-Dirac distribution function.

ECE415/515 Fall 2012 17

2

1)(f T allFor

1exp1

1

0exp1

1 :0

F

F

F

E

EE

EEKT

J.E. Morris

At T = 0 K

ECE415/515 Fall 2012 18J.E. Morris

Page 10: lecture 3 density of states & intrinsic fermi 2012

10/1/2012

10

At T > 0 K

ECE415/515 Fall 2012 19J.E. Morris

Fermi levels

The Fermi distribution gives the probability that an available state will be occupied.

• Within the band gap there are no available states.

• Even with non-zero f(E) there is no occupancy in the gap. (An energy state at the Fermi level would have a probability of ½ of being occupied, if there was one.)

At 0K every available state up to the Fermi level is occupied and every state above the Fermi level is empty.

Fermi function is “symmetric” about the Fermi level

For holes:

ECE415/515 Fall 2012 20

kT

EE

kT

EEkT

EE

kT

EEEf

FF

F

F

exp1

1

exp1

exp

exp1

11)(1

J.E. Morris

Page 11: lecture 3 density of states & intrinsic fermi 2012

10/1/2012

11

ECE415/515 Fall 2012 21

Fermi function symmetry:electrons and holes

J.E. Morris

ECE415/515 Fall 2012 22

Approximate FD → MB for (E-EF)>>kT

See Example 3.6:f(EF+3kT) ≈ 5% for 300K

So f(E) varies quickly

Example 3.8:(fMB-fFD)/FFD=5%

at E-EF=kT ln(1/0.05) ≈ 3kT

Note f(E) = {1 + exp[(E-Ef)/kT]}-1

≈ exp -[(E-Ef)/kT] for

“(E-EF)>>kT” condition where

exp[(E-Ef)/kT] >> 1

J.E. Morris

Page 12: lecture 3 density of states & intrinsic fermi 2012

10/1/2012

12

Ex 3.6 Assume EF=EC-0.3eV and T=300 K. Determine probability of state occupied at (a) E=EC+kT/4 & (b) E=EC+kT

ECE415/515 Fall 2012 23J.E. Morris

ECE415/515 Fall 2012 24

Ex 3.7 Assume EF=EC-0.3eV. Determine T at which the probability of state at E=EC+0.025eV is occupied is 8x10-6.

J.E. Morris

Page 13: lecture 3 density of states & intrinsic fermi 2012

10/1/2012

13

Ex.3.8 Calculate the energy, in terms of kT and EF, at which the difference between the FD and MB distributions is 2% of the FD value.

ECE415/515 Fall 2012 25J.E. Morris

ECE415/515 Fall 2012 26

Electron & hole densities

n(E) = gC(E).f(E)

p(E) = gV(E).[1-f(E)]

J.E. Morris

Page 14: lecture 3 density of states & intrinsic fermi 2012

10/1/2012

14

Effective density of states & Fermi integral

ECE415/515 Fall 2012 27

band valencein the holesfor )(gfor result similar a giveseatment similar trA

Integral Fermi )(tabulated theis This

, ,exp1

where

,2

4

Efor exp1

24

band conduction theof top theis where).()( )(

bandconduction in thedensity Electron

0V

0

2

1

21

21

2

3

2

*

/C

2

12

3

2

*

'0

''

pandE

kT

EE

kT

EEdF

Fh

m

dE

kT

EEEE

h

m

EdEEgEfdEEnn

CFF

C

FF

Fn

F

Cn

E

C

E

E CFD

E

E

C

C

C

C

C

J.E. Morris

Effective density of states

ECE415/515 Fall 2012 28

kT

EEN

kT

EE

h

kTm

kT

EE

h

kTm

dxexkT

EE

kT

EE

kT

EEkTdxdE

kT

EEx

kTdxexkTkT

EE

h

mdE

kT

EEEE

h

mn

kT

EEEfE

kTEE

FCC

FCnFCn

xCFCFC

xFCnFC

n

E

FMB

F

C

expexp2

22

.exp2

4

]2

using and ,expexpexp , , [writing

exp2

4exp2

4 so

exp)()(f

so)(usually with electrons conductionFor

2

3

2

*2

1

2

3

2

*

2

1

0

2

1

02

12

3

2

*

2

12

3

2

*

0

FD

NC is the effective density of states as if all electrons at conduction band edge EC. Only limiting assumption is that EC-EF>>kT; if so, result holds for intrinsic and extrinsic. (Note: EF→EC for N-type, but approx usually still OK.)

2

3

2

*22 where

h

kTmN n

C

J.E. Morris

Page 15: lecture 3 density of states & intrinsic fermi 2012

10/1/2012

15

Electron Concentrations

Simplify: represent states throughout the conduction band by an effective density of states Nc located at Ec.

n0 = Ncf(Ec)

If Ec – EF > 3kT then

f(Ec) ~ e-(Ec-EF)/kT (Maxwell-Boltzmann)

kT = 0.026 eV at 300K, so usually OK

n0 = Nc e-(Ec-EF)/kT ; Nc = 2[2πmn*kT/h2]3/2

Termed non-degenerate.

If EF within 3kT of either band edge or inside band degenerate and we need to use the full Fermi function.

ECE415/515 Fall 2012 29J.E. Morris

Hole Concentrations

Concentration of holes in valence band

p0 = Nv [1 – f(Ev)]

If EF – Ev > 3kT then Fermi function reduces to Maxwell Boltzmann and

p0 = Nv exp[ -(EF – Ev)/kT ]

Nv = [2π mp*kT/h2]3/2

p0 = ∫gV(E)[1-f(E)]dE

1-f(E)=1-[1+exp((E-EF)/kT)]-1

=[exp (E-EF)/kT)]/[1+exp((E-EF)/kT)]

=1/[1+exp((EF-E)/kT)] ≈ exp-(EF-E)/kT

ECE415/515 Fall 2012 30J.E. Morris

Page 16: lecture 3 density of states & intrinsic fermi 2012

10/1/2012

16

Ex 4.1 Determine the probability that a quantum state at E=EC+kT is occupied by an electron, and calculate the electron concentration in GaAs at T=300 K if EF=EC-0.25eV.

ECE415/515 Fall 2012 31J.E. Morris

(Nc from Table 4.1)

Ex 4.2 (a) Calculate the equilibrium hole concentration in Si at T=250K if EF=EV+0.27eV. [NV(300K)=1.04x1019/cm3] (b) What is p0(250K)/p0(400K)? (See Example 4.2)

ECE415/515 Fall 2012 32J.E. Morris

Page 17: lecture 3 density of states & intrinsic fermi 2012

10/1/2012

17

Intrinsic Concentrations EF = EFi for intrinsic material

n0=ni = Ncexp[-(Ec-EFi)/kT] pi = Nvexp[-(EFi-Ev)/kT]

n0 p0 = constant.

Plug in above => n0 p0 = ni2 = [NcNv]exp[-(EC-EV)/kT]

ni = [NcNv]1/2 exp[-Eg/2kT]

= 2[2πkT/h2]3/2(mnmh)3/2 exp[-Eg/2kT]

Remember n0p0 = ni2 and ni = 1.5x1010 cm-3 for Si

You’ll use both often! Also for Si: 6 different conduction band valleys (2 each x,y,z)

Note: varies in different sources

See Appendix F for more detail (complications) on effective mass

ECE415/515 Fall 2012 33

2

12

3* 6)( tn mmm

*nm

J.E. Morris

Ex 4.3 (a) Calculate the intrinsic carrier concentration in GaAs at T=400 K and T=250 K, assuming Eg=1.42eV. (b) What is ni(400K)/ni(250K)?

ECE415/515 Fall 2012 34J.E. Morris

Page 18: lecture 3 density of states & intrinsic fermi 2012

10/1/2012

18

Intrinsic concentrations

In general, if EF ≠ EFi, then re-write these as

n0 = ni exp[(EF – EFi)/kT]

p0 = pi exp[(EFi – EF)/kT]

Also used frequently and helpful for visualization

With each problem consider what information you have and what you are looking for.

Law of Mass Action:

• n0p0=ni2

• Independent of EF, (i.e. of doping)

• So applies to both intrinsic and extrinsic at equilibrium

ECE415/515 Fall 2012 35J.E. Morris

Temperature Dependence

ni T3/2 exp[-Eg/2kT]

ECE415/515 Fall 2012 36

J.E. Morris

Page 19: lecture 3 density of states & intrinsic fermi 2012

10/1/2012

19

Physical constants (@300 K unless noted)

Boltzmann’s const (k)

1.38 * 10-23 J/K 8.62 * 10-5 ev/K

Planck’s constant (h) 6.63*10-34 J-s 4.14*10-15 eV-s

Room temp value of kT

0.0259 eV Electron rest mass (m0)

9.11 * 10-31 kg

Electronic charge (q)

1.60 * 10-19 C Permittivity of free space (ε0)

8.85*10-14 F/cm

Density of states Nc Nv

2.8*1019 cm-3

1.04*1019 cm-3

Relative permittivity of silicon (εr)

11.9

Speed of light (c) 3*1010 cm/s Electron volt (eV) 1.6*10-19 J Band Gap Si Eg 1.11 ev Band gap Ge Eg 0.67 eV

ECE415/515 Fall 2012 37J.E. Morris

Effective density of states & masses

ECE415/515 Fall 2012 38

See Appendix B for m* values

J.E. Morris

Page 20: lecture 3 density of states & intrinsic fermi 2012

10/1/2012

20

Intrinsic EF position

ECE415/515 Fall 2012 39

.** .*

*

.*

*

VFi

00

.4

3 ..

.4

3)(

2

1

.2

1)(

2

1

E )(

E )(

expexp

npmidgapn

pmidgapFi

n

pVC

C

VVCFi

FiV

CC

VFiV

FiCC

ii

mmifEm

mnkTEEei

m

mnkTEE

N

NnkTEEE

kT

ENn

kT

ENn

kT

EEN

kT

EEN

pnpn

J.E. Morris

Ex 4.4 Find the position of EFi at T=300 K wrt the band-gap center for (a) GaAs, and (b) Ge.

ECE415/515 Fall 2012 40J.E. Morris

Page 21: lecture 3 density of states & intrinsic fermi 2012

10/1/2012

21

Summary: Fermi function

Fermi function describes probability of a given state being occupied at temperature T.

f(E) = {1 + exp[(E-EF)/kT]}-1

For intrinsic semiconductors EF is mid-gap.

If E – EF > 3kT (non-degenerate, with EF in the forbidden gap) then

f(Ec)~e-(E-EF)/kT

Use effective density of states Nc located at Ec or Nv located at Ev. (still non-degenerate)

n0 = Nc e-(Ec-EF)/kT ; Nc = 2[2πmn*kT/h2]3/2

p0 = Nv e-(Ev-EF)/kT; Nv = [2π mp*kT/h2]3/2

ECE415/515 Fall 2012 41J.E. Morris