Lecture 24: Renewable Energy April 23, 2009petra/phys3150/Lecture24.pdfRenewable Energy Sources •...

47
Energy & Sustainability Lecture 24: Renewable Energy April 23, 2009

Transcript of Lecture 24: Renewable Energy April 23, 2009petra/phys3150/Lecture24.pdfRenewable Energy Sources •...

Energy&Sustainability

Lecture24:RenewableEnergy

April23,2009

RenewableEnergySources•  Solar–themotherofallrenewables

•  Directsolarpluswindandwavepower,hydroelectricityandbiomass(indirectsolar),accountforover99.9%oftheavailableflowofrenewableenergyonEarth

•  Geothermal–theonlyrenewablenotfromtheSun

174 petawatts

SolarEnergy•  174PetaWatts(1015)ofincomingsolarradiation(insolation)attheupperatmosphere

•  Approximatelyhalfofitmakestothesurface

•  100x1015Wx3x107s/yr=3x1024J/yr=3000ZetaJoules•  Includingatmosphericabsorptionweget:

– Thetotalsolarenergyavailabletotheearthisapproximately3850zettajoules(ZJ)peryear.

– Oceansabsorbapproximately2850ZJ/yr– Windscantheoreticallysupply6ZJ/yr

– Biomasscapturesapproximately1.8ZJ/yr•  Worldwideenergyconsumptionwas0.471ZJin2004.

Insolation

Top of the atmosphere!

Surface of the earth!

Photovoltaics•  ThePhotoelectriceffect

Metal

Ele

ctro

n E

nerg

y

Light Frequency

ExplainedbyEinsteinin1905–thisiswhathewonhisNobelprizefor!

Photovolatics•  Lightcomesinphotons

–  TheenergyofaphotonisE=hf(wherehisPlanck’sconstant)

Photovolatics•  Lightcomesinphotons

–  TheenergyofaphotonisE=hf(wherehisPlanck’sconstant)

–  Iftheenergyishighenoughitcanknockoutanelectronoritcan’t

–  Electronsarefreetomoveinmetals

–  Ifyouhitthemwith3eVtheewillcomeout.

–  Insemiconductorsthereisabandgapwhereelectronscan’ttravel

Photovoltaics•  Insemiconductors,thefilledband(valenceband)andthebandinwhichelectronsarefreetomove(conductionband)areseparatedbyapotentialdifferenceofabout1volt.

•  iflighthasanenergyofabout1eVitcanpushanelectronfromthevalencebandintotheconductionband.

•  Theelectronintheconductionbandisfreetomove.Ifitiskeptfromrecombining,itcangiveupitsenergyinanexternalcircuitbeforecomingbacktothematerial.

Photovoltaics•  PureSiliconisdopedwithimpuritiestogivethematerial

eitherextramobileelectrons(n‐type)orextraholeswheretherearenoelectrons(p‐type).

Photovoltaics•  PureSiliconisdopedwithimpuritiestogivethematerial

eitherextramobileelectrons(n‐type)orextraholeswheretherearenoelectrons(p‐type).

Photovoltaics•  PureSiliconisdopedwithimpuritiestogivethematerial

eitherextramobileelectrons(n‐type)orextraholeswheretherearenoelectrons(p‐type).

•  Ifyoucombinetheseinlayers

Photovoltaics•  PureSiliconisdopedwithimpuritiestogivethematerialeither

extramobileelectrons(n‐type)orextraholeswheretherearenoelectrons(p‐type).

•  Ifyoucombinetheseinlayers•  Thismakesadiode(adeviceinwhichcurrentcanonlyflowin

onedirection)

•  Ifyoushinelightonthisitcanproduceanelectric

current

•  ThisisaPhoto(light)volatic(voltageproducing)device

Photovoltaics

•  Severalmaterialsavailable–– Silicon– GalliumArsenide– AluminumGalliumArsenide

PhotovoltaicEfficiency•  AbouthalftheenergyinsunlightisunusablebymostPVcells

becausethisenergyisbelowthebandgap,andsocan’tfreeanelectronfromthevalencetotheconductionband,orbecauseitcarriesexcessenergy,whichmustbetransferredtothecellasthermalenergy,heatingupthecell.

40%EfficiencySolarCells

•  Mostconventionalsolarcellsusedintoday’sapplications,suchasforsupplementalpowerforhomesandbuildings,areone‐sun,single‐junctionsiliconcellsthatuseonlythelightintensitythatthesunproducesnaturally,andhaveoptimalefficiencyforarelativelynarrowrangeofphotonenergies.

•  Spectrolabgrouphasexperimentedwithconcentratormultijunctionsolarcellsthatusehighintensitiesofsunlight,theequivalentof100sofsuns,concentratedbylensesormirrors.

•  Significantly,themultijunctioncellscanalsousethebroadrangeofwavelengthsinsunlightmuchmoreefficientlythansingle‐junctioncells.

•  StandardtestconditionsforPVcellsandmodules–  25oC,1000W/m2,AM1.5

(canbereachedearlyafternoononasunnysummerday)

•  Inpracticepowerratinginpeakwatts(Wp)ofcellsisdeterminedbymeasuringthemaximumpowerwhenexposedtoradiationoflampsdesignedtoreproducethespectrumatstandardconditions

Air Mass ≈ 1/cos θ

Australia

Norway

GridParity

•  Gridparity,thepointatwhichphotovoltaicelectricityisequaltoorcheaperthangridpower,isachievedfirstinareaswithabundantsunandhighcostsforelectricitysuchasinCaliforniaandJapan.

•  GridparityhasbeenreachedinHawaiiandotherislandsthatotherwiseusedieselfueltoproduceelectricity.

•  GeorgeW.Bushhasset2015asthedateforgridparityintheUSA

EnergyusedtomakePhotovoltaics•  StudiesofPhotovoltaic(PV)materialsthatmakeupthe

majorityoftheactivesolarmarketfoundthatsolarcellspayforthemselvesintermsofenergyinafewyears(1‐5years):–  CrystallinesiliconPVsystemspresentlyhaveenergypay‐backtimesof1.5‐2yearsforSouth‐Europeanlocationsand2.7‐3.5yearsforMiddle‐Europeanlocations.

•  Forsilicontechnologyclearprospectsforareductionofenergyinputexist,andanenergypay‐backof1yearmaybepossiblewithinafewyears.Thinfilmtechnologiesnowhaveenergypay‐backtimesintherangeof1‐1.5years(S.Europe).

•  Withlifetimesofsuchsystemsofatleast30years,theEROEIisintherangeof10to30.

•  Theythusgenerateenoughenergyovertheirlifetimestoreproducethemselvesmanytimes.

Photovoltaics

•  EnergyStorageisstillanissue– Daily– Seasonal– weather

PVSummary •  Advantages

–  The89petawattsofsunlightreachingtheearth'ssurfaceisplentiful‐almost6,000timesmore‐comparedtothe15terawattsofaveragepowerconsumedbyhumans.

–  Solarelectricgenerationhasthehighestpowerdensity(globalmeanof170W/m2)amongrenewableenergies.

–  Solarpowerispollutionfreeduringuse.Productionendwastesandemissionsaremanageableusingexistingpollutioncontrols.End‐of‐userecyclingtechnologiesareunderdevelopment.

–  Facilitiescanoperatewithlittlemaintenanceorinterventionafterinitialsetup.Solarelectricgenerationiseconomicallysuperiorwheregridconnectionorfueltransportisdifficult,costlyorimpossible.

PVSummary

•  Advantages(cont).– Whengrid‐connected,solarelectricgenerationcandisplacethehighestcostelectricityduringtimesofpeakdemand(inmostclimaticregions),canreducegridloading

– Oncetheinitialcapitalcostofbuildingasolarpowerplanthasbeenspent,operatingcostsareextremelylowcomparedtoexistingpowertechnologies.

PVSummary

•  Disadvantages–  Solarelectricityisalmostalwaysmoreexpensivethanelectricitygeneratedbyothersources.

–  Solarelectricityisnotavailableatnightandislessavailableincloudyweatherconditions.Therefore,astorageorcomplementarypowersystemisrequired.

–  Limitedpowerdensity:AveragedailyinsolationinthecontiguousU.S.is3‐7kW∙h/m2andonaveragelowerinEurope.

–  SolarcellsproduceDCwhichmustbeconvertedtoAC(usingagridtieinverter)whenusedincurrentlyexistingdistributiongrids.Thisincursanenergylossof4‐12%

WindPower•  Inthe14thcenturytheDutchstartedusingwindmills

•  Bythe1800stheyhad10,000windmills

•  Todaytheyhave1,000modernwindmills

•  Duringthewinterof1887‐88CharlesBrushbuiltwhatistodaybelievedtobethefirstautomaticallyoperatingwindturbineforelectricitygeneration.

•  Itwasagiant‐theWorld'slargest‐witharotordiameterof17m(50ft.)and144rotorbladesmadeofcedarwood.

• 

•  Theturbineranfor20yearsandchargedthebatteriesinthecellarofhismansion.

•  Brush’sWindmillonlygenerated12kw

•  Itturnedslowlywithlotsofblades•  Itwaslaterdiscoveredthatfasterwindmillswithlessbladesgeneratedmorepower

Danish scientist Poul la Cour (1846-1908)

CopenhagenHarbor‐Danesget20%ofelec.fromwind

Windpower•  WindEnergygoeslikewindspeedtothe3rdpower– Consideramassofairthatpassawindmillin1sec–ithasamass,mandspeedv.

– Theenergyrequiredtoslowthisdowngoes½mv2

– Howeverthemassoftheairpassingthewindmillin1secdepends(linearly)onthewindspeed(m=ρAv)

– sotheenergygoeslikev3

Measurementin2002attheLeeRanchfacilityinColorado

•  Thecartoonshowshowacylindricalsliceofair1meterthickmovesthroughthe2,300m2rotorofatypical1,000kilowattwindturbine.

•  Witha54meterrotordiametereachcylinderweighs2.8tonnes

•  Rotorareagoeslikethesquareofthebladelength

•  750kWNEGMiconTurbineinMoorheadMinnesota.‐>

•  halfoftheenergyavailablearrivedinjust15%oftheoperatingtime.

•  windenergydoesnothaveasconsistentanoutputasfuel‐firedpowerplants;

•  Makingwindpowermoreconsistentrequiresthatstoragetechnologiesmustbeusedtoretainthelargeamountofpowergeneratedintheburstsforlateruse.

FromAmericanWindAssociation

•  Theratioofactualproductivityinayeartothistheoreticalmaximumiscalledthecapacityfactor.

•  Typicalcapacityfactorsare20‐40%,withvaluesattheupperendoftherangeinparticularlyfavorablesites

•  A1megawattturbinewithacapacityfactorof35%willnotproduce8,760megawatt‐hoursinayear,– butonly0.35x24x365=3,066MWh,averagingto0.35MW

Otherrenewables

•  Biomass•  TidalPower•  WaveEnergy

•  GeothermalEnergy

•  LastHomeworkwillbepostedonthewebtonight

•  Nextweek:– Tuesday:CO2emissionsandgreenhousegaseffect– Thursday:Review– Final:Tue,May5