Lecture 21: Analysis of Variance - Pratheepa Jeganathan · 2019. 12. 14. · I...

67
Lecture 21: Analysis of Variance Pratheepa Jeganathan 11/08/2019

Transcript of Lecture 21: Analysis of Variance - Pratheepa Jeganathan · 2019. 12. 14. · I...

Page 1: Lecture 21: Analysis of Variance - Pratheepa Jeganathan · 2019. 12. 14. · I SuchmodelsareoftenreferredtoANOVA (Analysis of Variance) models. I Thesearegeneralizationsofthetwosamplet-test.

Lecture 21: Analysis of Variance

Pratheepa Jeganathan

11/08/2019

Page 2: Lecture 21: Analysis of Variance - Pratheepa Jeganathan · 2019. 12. 14. · I SuchmodelsareoftenreferredtoANOVA (Analysis of Variance) models. I Thesearegeneralizationsofthetwosamplet-test.

Recap

I What is a regression model?I Descriptive statistics – graphicalI Descriptive statistics – numericalI Inference about a population meanI Difference between two population meansI Some tips on RI Simple linear regression (covariance, correlation, estimation,

geometry of least squares)I Inference on simple linear regression modelI Goodness of fit of regression: analysis of variance.I F -statistics.I Residuals.I Diagnostic plots for simple linear regression (graphical

methods).

Page 3: Lecture 21: Analysis of Variance - Pratheepa Jeganathan · 2019. 12. 14. · I SuchmodelsareoftenreferredtoANOVA (Analysis of Variance) models. I Thesearegeneralizationsofthetwosamplet-test.

Recap

I Multiple linear regressionI Specifying the model.I Fitting the model: least squares.I Interpretation of the coefficients.I Matrix formulation of multiple linear regressionI Inference for multiple linear regression

I T -statistics revisited.I More F statistics.I Tests involving more than one β.

I Diagnostics – more on graphical methods and numericalmethodsI Different types of residualsI InfluenceI Outlier detectionI Multiple comparison (Bonferroni correction)I Residual plots:

I partial regression (added variable) plot,I partial residual (residual plus component) plot.

Page 4: Lecture 21: Analysis of Variance - Pratheepa Jeganathan · 2019. 12. 14. · I SuchmodelsareoftenreferredtoANOVA (Analysis of Variance) models. I Thesearegeneralizationsofthetwosamplet-test.

Recap

I Adding qualitative predictorsI Qualitative variables as predictors to the regression model.I Adding interactions to the linear regression model.I Testing for equality of regression relationship in various subsets

of a population

Page 5: Lecture 21: Analysis of Variance - Pratheepa Jeganathan · 2019. 12. 14. · I SuchmodelsareoftenreferredtoANOVA (Analysis of Variance) models. I Thesearegeneralizationsofthetwosamplet-test.

ANOVA

Page 6: Lecture 21: Analysis of Variance - Pratheepa Jeganathan · 2019. 12. 14. · I SuchmodelsareoftenreferredtoANOVA (Analysis of Variance) models. I Thesearegeneralizationsofthetwosamplet-test.

Outline

I One-way layoutI Two-way layout

Page 7: Lecture 21: Analysis of Variance - Pratheepa Jeganathan · 2019. 12. 14. · I SuchmodelsareoftenreferredtoANOVA (Analysis of Variance) models. I Thesearegeneralizationsofthetwosamplet-test.

ANOVA models

I Often, especially in experimental settings, we record onlycategorical variables.

I Such models are often referred to ANOVA (Analysis ofVariance) models.

I These are generalizations of the two sample t-test.

Page 8: Lecture 21: Analysis of Variance - Pratheepa Jeganathan · 2019. 12. 14. · I SuchmodelsareoftenreferredtoANOVA (Analysis of Variance) models. I Thesearegeneralizationsofthetwosamplet-test.

Example: recovery time

I Suppose we want to understand the relationship betweenrecovery time after surgery based on an patient’s prior fitness.

I We group patients into three fitness levels: below average,average, above average.

I If a patient is in better shape before surgery, does it take lesstime to recover?

Page 9: Lecture 21: Analysis of Variance - Pratheepa Jeganathan · 2019. 12. 14. · I SuchmodelsareoftenreferredtoANOVA (Analysis of Variance) models. I Thesearegeneralizationsofthetwosamplet-test.

Example: recovery time

url = 'http://stats191.stanford.edu/data/rehab.csv'rehab.table = read.table(url, header=T, sep=',')rehab.table$Fitness <- factor(rehab.table$Fitness)head(rehab.table)

## Fitness Time## 1 1 29## 2 1 42## 3 1 38## 4 1 40## 5 1 43## 6 1 40

Page 10: Lecture 21: Analysis of Variance - Pratheepa Jeganathan · 2019. 12. 14. · I SuchmodelsareoftenreferredtoANOVA (Analysis of Variance) models. I Thesearegeneralizationsofthetwosamplet-test.

Example: recovery time

p = ggplot(data = rehab.table) +geom_boxplot(aes(x = Fitness,

y = Time, fill = Fitness)) +scale_fill_manual(values =

c('red','green','blue'))

Page 11: Lecture 21: Analysis of Variance - Pratheepa Jeganathan · 2019. 12. 14. · I SuchmodelsareoftenreferredtoANOVA (Analysis of Variance) models. I Thesearegeneralizationsofthetwosamplet-test.

Example: recovery time

20

25

30

35

40

1 2 3Fitness

Tim

e

Fitness

1

2

3

I Boxplot shows that the reovery time for the above averagefitness group is less than the average and below averagegroup.

Page 12: Lecture 21: Analysis of Variance - Pratheepa Jeganathan · 2019. 12. 14. · I SuchmodelsareoftenreferredtoANOVA (Analysis of Variance) models. I Thesearegeneralizationsofthetwosamplet-test.

One-way ANOVA

I First generalization of two sample t-test: more than twogroups.

I Observations are broken up into r groups with ni , 1 ≤ i ≤ robservations per group.

I Model:Yij = µ+ αi + εij , εij

IID∼ N(0, σ2),I Yij is the j-th measurement in i-th group, µ is the overall meanµ = 1

r∑r

i=1 µi , αi is the main effect of group i on Y (That is,αi = µi − µ).

I Constraint:∑r

i=1 αi = 0.I This constraint is needed for “identifiability”.I This is “equivalent” to only adding r − 1 columns to the design

matrix for this qualitative variable.

Page 13: Lecture 21: Analysis of Variance - Pratheepa Jeganathan · 2019. 12. 14. · I SuchmodelsareoftenreferredtoANOVA (Analysis of Variance) models. I Thesearegeneralizationsofthetwosamplet-test.

Fitting the model (One-way ANOVA)

I Model is easy to fit:

Yij = 1ni

ni∑j=1

Yij = Y i ·

I If observation is in i-th group: predicted mean is just thesample mean of observations in i-th group.

Page 14: Lecture 21: Analysis of Variance - Pratheepa Jeganathan · 2019. 12. 14. · I SuchmodelsareoftenreferredtoANOVA (Analysis of Variance) models. I Thesearegeneralizationsofthetwosamplet-test.

Testing (One-way ANOVA)

I Simplest question: is there any group (main) effect?

H0 : α1 = · · · = αr = 0

orH0 : µ1 = · · · = µr .

I Test is based on F -test with full model vs. reduced model.I Reduced model just has an intercept Yij = µ+ εij .

I Other questions: is the effect the same in groups 1 and 2?

H0 : α1 = α2?

Page 15: Lecture 21: Analysis of Variance - Pratheepa Jeganathan · 2019. 12. 14. · I SuchmodelsareoftenreferredtoANOVA (Analysis of Variance) models. I Thesearegeneralizationsofthetwosamplet-test.

Fitting the model (One-way ANOVA)

I lm() uses indicator variables.rehab.lm = lm(Time ~ Fitness, data = rehab.table)##summary(rehab.lm)

I lm() considers the Fitness == 1 as the base level.

Page 16: Lecture 21: Analysis of Variance - Pratheepa Jeganathan · 2019. 12. 14. · I SuchmodelsareoftenreferredtoANOVA (Analysis of Variance) models. I Thesearegeneralizationsofthetwosamplet-test.

Fitting the model (One-way ANOVA)

I Upon inspection of the design matrix above, we see that the(Intercept) coefficient corresponds to the mean inFitness==1, while Fitness==2 coefficient corresponds to thedifference between the groups Fitness==2 and Fitness==1.

Page 17: Lecture 21: Analysis of Variance - Pratheepa Jeganathan · 2019. 12. 14. · I SuchmodelsareoftenreferredtoANOVA (Analysis of Variance) models. I Thesearegeneralizationsofthetwosamplet-test.

Fitting the model (One-way ANOVA)

Yij = µ+ αi + εij .

I This is not the same parameterization we get when only addingr − 1 of 0-1 columns, but it gives the same model.I Yij = Yi.

I The estimates of α’s can be obtained from the estimates of βusing R’s default parameters.

I For a more detailed exploration into R’s creation of designmatrices, try reading the following tutorial on design matrices.

Page 18: Lecture 21: Analysis of Variance - Pratheepa Jeganathan · 2019. 12. 14. · I SuchmodelsareoftenreferredtoANOVA (Analysis of Variance) models. I Thesearegeneralizationsofthetwosamplet-test.

Fitting the model (One-way ANOVA)

I The design matrix is the indicator codinghead(model.matrix(rehab.lm))

## (Intercept) Fitness2 Fitness3## 1 1 0 0## 2 1 0 0## 3 1 0 0## 4 1 0 0## 5 1 0 0## 6 1 0 0

I Recall that the rows of the Coefficients table above do notcorrespond to the α parameter.I R does use the r − 1 indicator variables.I R does not use the condition that α’s and their sum would have

to be equal to 0.

Page 19: Lecture 21: Analysis of Variance - Pratheepa Jeganathan · 2019. 12. 14. · I SuchmodelsareoftenreferredtoANOVA (Analysis of Variance) models. I Thesearegeneralizationsofthetwosamplet-test.

Fitting the model (One-way ANOVA)

I Y1·, Y2·, Y3· are as follows:print(predict(rehab.lm,

list(Fitness=factor(c(1,2,3)))))

## 1 2 3## 38 32 24c(mean(rehab.table$Time[rehab.table$Fitness == 1]),

mean(rehab.table$Time[rehab.table$Fitness == 2]),mean(rehab.table$Time[rehab.table$Fitness == 3]))

## [1] 38 32 24

Page 20: Lecture 21: Analysis of Variance - Pratheepa Jeganathan · 2019. 12. 14. · I SuchmodelsareoftenreferredtoANOVA (Analysis of Variance) models. I Thesearegeneralizationsofthetwosamplet-test.

Fitting the model (One-way ANOVA)

overall_mean = mean(rehab.table$Time);overall_mean

## [1] 32group_by(rehab.table, Fitness) %>%

summarise(n_i = n(),hat_mean_i = mean(Time, na.rm = TRUE),hat_alpha_i = hat_mean_i - overall_mean,hat_sd_i = sd(Time, na.rm = TRUE)

)

## # A tibble: 3 x 5## Fitness n_i hat_mean_i hat_alpha_i hat_sd_i## <fct> <int> <dbl> <dbl> <dbl>## 1 1 8 38 6 5.48## 2 2 10 32 0 3.46## 3 3 6 24 -8 4.43

Page 21: Lecture 21: Analysis of Variance - Pratheepa Jeganathan · 2019. 12. 14. · I SuchmodelsareoftenreferredtoANOVA (Analysis of Variance) models. I Thesearegeneralizationsofthetwosamplet-test.

ANOVA table

Source SS df MS E (MS)

Treatment SSTR =∑r

i=1ni(

Y i· − Y ··)2

r − 1 MSTR =SSTRr − 1

σ2+∑r

i=1ni α

2i

r − 1Error SSE =

∑ri=1

∑nij=1

(Yij − Y i·)2∑r

i=1(ni − 1) MSE =

SSE∑ri=1

(ni − 1)σ2

I Much of the information in an ANOVA model is contained inthe ANOVA table.

I SSTR: sum of squares of treatment and SSE: Sum of squaresof error.

I Note that MSTR measures “variability” of the “cell” means.I If there is a group effect we expect this to be large relative to

MSE .I We see that under H0 : α1 = · · · = αr = 0, the expected value

of MSTR and MSE is σ2.I This tells us how to test H0 using ratio of mean squares, i.e. an

F test.

Page 22: Lecture 21: Analysis of Variance - Pratheepa Jeganathan · 2019. 12. 14. · I SuchmodelsareoftenreferredtoANOVA (Analysis of Variance) models. I Thesearegeneralizationsofthetwosamplet-test.

Testing for any main effect

I Rows in the ANOVA table are, in general, independent.

I Therefore, under H0

F = MSTRMSE =

SSTRdfTRSSEdfE

∼ FdfTR ,dfE

the degrees of freedom come from the df column in previoustable.

I Reject H0 at level α if F ≥ F1−α,dfTR ,dfE .

Page 23: Lecture 21: Analysis of Variance - Pratheepa Jeganathan · 2019. 12. 14. · I SuchmodelsareoftenreferredtoANOVA (Analysis of Variance) models. I Thesearegeneralizationsofthetwosamplet-test.

ANOVA table

anova(rehab.lm)

## Analysis of Variance Table#### Response: Time## Df Sum Sq Mean Sq F value Pr(>F)## Fitness 2 672 336.00 16.962 4.129e-05 ***## Residuals 21 416 19.81## ---## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Page 24: Lecture 21: Analysis of Variance - Pratheepa Jeganathan · 2019. 12. 14. · I SuchmodelsareoftenreferredtoANOVA (Analysis of Variance) models. I Thesearegeneralizationsofthetwosamplet-test.

Testing for any main effect

I Relationship between the columns in the above ANOVA table.F = 336.00 / 19.81pval = 1 - pf(F, 2, 21)print(data.frame(F,pval))

## F pval## 1 16.96113 4.129945e-05

Page 25: Lecture 21: Analysis of Variance - Pratheepa Jeganathan · 2019. 12. 14. · I SuchmodelsareoftenreferredtoANOVA (Analysis of Variance) models. I Thesearegeneralizationsofthetwosamplet-test.

ANOVA in R (using aov())

rehab.aov = aov(Time ~ Fitness,data = rehab.table)

summary(rehab.aov)

## Df Sum Sq Mean Sq F value Pr(>F)## Fitness 2 672 336.0 16.96 4.13e-05 ***## Residuals 21 416 19.8## ---## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

I We can conclude at 5% significance level that at least one ofthe effects is non zero (or at least one of means µi is differentfrom other)

Page 26: Lecture 21: Analysis of Variance - Pratheepa Jeganathan · 2019. 12. 14. · I SuchmodelsareoftenreferredtoANOVA (Analysis of Variance) models. I Thesearegeneralizationsofthetwosamplet-test.

Inference for linear combinations

I Suppose we want to “infer” something aboutr∑

i=1aiµi ,

where µi = µ+ αi is the mean in the i-th group.I For example:

H0 : µ1 − µ2 = 0 (same as H0 : α1 − α2 = 0)?

I For example: Is there a difference between below average andaverage groups in terms of rehab time?

Page 27: Lecture 21: Analysis of Variance - Pratheepa Jeganathan · 2019. 12. 14. · I SuchmodelsareoftenreferredtoANOVA (Analysis of Variance) models. I Thesearegeneralizationsofthetwosamplet-test.

Inference for linear combinations

I We need to know

Var( r∑

i=1aiY i ·

)= σ2

r∑i=1

a2i

ni.

I After this, the usual confidence intervals and t-tests apply.

Page 28: Lecture 21: Analysis of Variance - Pratheepa Jeganathan · 2019. 12. 14. · I SuchmodelsareoftenreferredtoANOVA (Analysis of Variance) models. I Thesearegeneralizationsofthetwosamplet-test.

Example

I Pairwise t-testI H0 : µi = µk versus Ha : µi 6= µk where i 6= k = 1, 2, 3.

pairwise.t.test(rehab.table$Time,rehab.table$Fitness,p.adjust.method = "bonferroni")

#### Pairwise comparisons using t tests with pooled SD#### data: rehab.table$Time and rehab.table$Fitness#### 1 2## 2 0.0293 -## 3 2.6e-05 0.0067#### P value adjustment method: bonferroni

Page 29: Lecture 21: Analysis of Variance - Pratheepa Jeganathan · 2019. 12. 14. · I SuchmodelsareoftenreferredtoANOVA (Analysis of Variance) models. I Thesearegeneralizationsofthetwosamplet-test.

Example

I Tukey’s multiple pairwise-comparisonsI More about Tukey’s multiple pairwise-comparisons

TukeyHSD(rehab.aov)

## Tukey multiple comparisons of means## 95% family-wise confidence level#### Fit: aov(formula = Time ~ Fitness, data = rehab.table)#### $Fitness## diff lwr upr p adj## 2-1 -6 -11.32141 -0.6785856 0.0253639## 3-1 -14 -20.05870 -7.9413032 0.0000254## 3-2 -8 -13.79322 -2.2067778 0.0060547

Page 30: Lecture 21: Analysis of Variance - Pratheepa Jeganathan · 2019. 12. 14. · I SuchmodelsareoftenreferredtoANOVA (Analysis of Variance) models. I Thesearegeneralizationsofthetwosamplet-test.

Diagnostics

plot(rehab.aov, 1)

24 26 28 30 32 34 36 38

−10

−5

05

10

Fitted values

Res

idua

ls

aov(Time ~ Fitness)

Residuals vs Fitted

17

20

Page 31: Lecture 21: Analysis of Variance - Pratheepa Jeganathan · 2019. 12. 14. · I SuchmodelsareoftenreferredtoANOVA (Analysis of Variance) models. I Thesearegeneralizationsofthetwosamplet-test.

Diagnostics

I Variance is same in each groupI OK!

plot(rehab.aov, 1)

24 26 28 30 32 34 36 38

−10

−5

05

10

Fitted values

Res

idua

ls

aov(Time ~ Fitness)

Residuals vs Fitted

17

20

Page 32: Lecture 21: Analysis of Variance - Pratheepa Jeganathan · 2019. 12. 14. · I SuchmodelsareoftenreferredtoANOVA (Analysis of Variance) models. I Thesearegeneralizationsofthetwosamplet-test.

Diagnostics

I Normality assumptionplot(rehab.aov, 2)

−2 −1 0 1 2

−2

−1

01

2

Theoretical Quantiles

Sta

ndar

dize

d re

sidu

als

aov(Time ~ Fitness)

Normal Q−Q

1

20

7

Page 33: Lecture 21: Analysis of Variance - Pratheepa Jeganathan · 2019. 12. 14. · I SuchmodelsareoftenreferredtoANOVA (Analysis of Variance) models. I Thesearegeneralizationsofthetwosamplet-test.

Diagnostics

I Normality assumptionI Looks OK!

plot(rehab.aov, 2)

−2 −1 0 1 2

−2

−1

01

2

Theoretical Quantiles

Sta

ndar

dize

d re

sidu

als

aov(Time ~ Fitness)

Normal Q−Q

1

20

7

Page 34: Lecture 21: Analysis of Variance - Pratheepa Jeganathan · 2019. 12. 14. · I SuchmodelsareoftenreferredtoANOVA (Analysis of Variance) models. I Thesearegeneralizationsofthetwosamplet-test.

Two-way ANOVA

I Often, we will have more than one variable we are changing.

Page 35: Lecture 21: Analysis of Variance - Pratheepa Jeganathan · 2019. 12. 14. · I SuchmodelsareoftenreferredtoANOVA (Analysis of Variance) models. I Thesearegeneralizationsofthetwosamplet-test.

Example

I After kidney failure, we suppose that the time of stay inhospital depends on weight gain between treatments andduration of treatment.

I We will model the log number of days as a function of theother two factors.

Variable DescriptionDays Duration of hospital stay (resposne)Weight How much weight is gained? (three levels)Duration How long under treatment for kidney problems? (two levels)

Page 36: Lecture 21: Analysis of Variance - Pratheepa Jeganathan · 2019. 12. 14. · I SuchmodelsareoftenreferredtoANOVA (Analysis of Variance) models. I Thesearegeneralizationsofthetwosamplet-test.

Example (Two-way ANOVA model)

url = 'http://statweb.stanford.edu/~jtaylo/stats191/data/kidney.table'kidney.table = read.table(url, header=T)kidney.table$D = factor(kidney.table$Duration)kidney.table$W = factor(kidney.table$Weight)kidney.table$logDays = log(kidney.table$Days + 1)head(kidney.table)

## Days Duration Weight ID D W logDays## 1 0 1 1 1 1 1 0.0000000## 2 2 1 1 2 1 1 1.0986123## 3 1 1 1 3 1 1 0.6931472## 4 3 1 1 4 1 1 1.3862944## 5 0 1 1 5 1 1 0.0000000## 6 2 1 1 6 1 1 1.0986123

Page 37: Lecture 21: Analysis of Variance - Pratheepa Jeganathan · 2019. 12. 14. · I SuchmodelsareoftenreferredtoANOVA (Analysis of Variance) models. I Thesearegeneralizationsofthetwosamplet-test.

Two-way ANOVA model

I Second generalization of t-test: more than one groupingvariable.

I Two-way ANOVA model:I r groups in first factorI m groups in second factorI nij in each combination of factor variables.

I Model:

Yijk = µ+ αi + βj + (αβ)ij + εijk , εijk ∼ N(0, σ2).

I In kidney example, r = 3 (weight gain), m = 2 (duration oftreatment), nij = 10 for all (i , j).

Page 38: Lecture 21: Analysis of Variance - Pratheepa Jeganathan · 2019. 12. 14. · I SuchmodelsareoftenreferredtoANOVA (Analysis of Variance) models. I Thesearegeneralizationsofthetwosamplet-test.

Questions of interest

Two-way ANOVA: main questions of interest

I Are there main effects for the grouping variables?

H0 : α1 = · · · = αr = 0, H0 : β1 = · · · = βm = 0.

I Are there interaction effects:

H0 : (αβ)ij = 0, 1 ≤ i ≤ r , 1 ≤ j ≤ m.

Page 39: Lecture 21: Analysis of Variance - Pratheepa Jeganathan · 2019. 12. 14. · I SuchmodelsareoftenreferredtoANOVA (Analysis of Variance) models. I Thesearegeneralizationsofthetwosamplet-test.

Interactions between factors

We’ve already seen these interactions in the IT salary example.

I An additive model says that the effects of the two factors occuradditively – such a model has no interactions.

I An interaction is present whenever the additive model does nothold.

Page 40: Lecture 21: Analysis of Variance - Pratheepa Jeganathan · 2019. 12. 14. · I SuchmodelsareoftenreferredtoANOVA (Analysis of Variance) models. I Thesearegeneralizationsofthetwosamplet-test.

Interaction plot

interaction.plot(kidney.table$W, kidney.table$D,kidney.table$logDays, type='b',col=c('red', 'blue'), lwd=2,pch=c(23,24),xlab = "Weight",ylab = "mean of logDays")

1.0

1.5

2.0

2.5

Weight

mea

n of

logD

ays

1 2 3

kidney.table$D

12

Page 41: Lecture 21: Analysis of Variance - Pratheepa Jeganathan · 2019. 12. 14. · I SuchmodelsareoftenreferredtoANOVA (Analysis of Variance) models. I Thesearegeneralizationsofthetwosamplet-test.

Interaction plot

I When these broken lines are not parallel, there is evidence of aninteraction.

I The one thing missing from this plot are errorbars.I The above broken lines are clearly not parallel but there is

measurement error.I If the error bars were large then we might consider there to be

no interaction, otherwise we might.

Page 42: Lecture 21: Analysis of Variance - Pratheepa Jeganathan · 2019. 12. 14. · I SuchmodelsareoftenreferredtoANOVA (Analysis of Variance) models. I Thesearegeneralizationsofthetwosamplet-test.

Parameterization

I Many constraints are needed, again for identifiability. Let’s notworry too much about the details.

I Constraints:I∑r

i=1 αi = 0I∑m

j=1 βj = 0I∑m

j=1(αβ)ij = 0, 1 ≤ i ≤ rI∑r

i=1(αβ)ij = 0, 1 ≤ j ≤ m.I We should convince ourselves that we know have exactly r ∗m

free parameters.

Page 43: Lecture 21: Analysis of Variance - Pratheepa Jeganathan · 2019. 12. 14. · I SuchmodelsareoftenreferredtoANOVA (Analysis of Variance) models. I Thesearegeneralizationsofthetwosamplet-test.

Fitting the model

I Easy to fit when nij = n (balanced)

Yijk = Y ij· = 1n

n∑k=1

Yijk .

I Inference for linear combinations of µij ’s

Var

r∑i=1

m∑j=1

aijY ij·

= σ2

n ·r∑

i=1

m∑j=1

a2ij .

I Usual t-tests, confidence intervals.

Page 44: Lecture 21: Analysis of Variance - Pratheepa Jeganathan · 2019. 12. 14. · I SuchmodelsareoftenreferredtoANOVA (Analysis of Variance) models. I Thesearegeneralizationsofthetwosamplet-test.

Fitting the model

group_by(kidney.table, W, D) %>%summarise(

count = n(),hat_mean_ij = mean(logDays, na.rm = TRUE),hat_sd_ij = sd(logDays, na.rm = TRUE)

)

## # A tibble: 6 x 5## # Groups: W [3]## W D count hat_mean_ij hat_sd_ij## <fct> <fct> <int> <dbl> <dbl>## 1 1 1 10 1.02 0.831## 2 1 2 10 0.917 0.759## 3 2 1 10 1.87 0.751## 4 2 2 10 1.34 0.726## 5 3 1 10 2.55 0.693## 6 3 2 10 1.99 0.619

Page 45: Lecture 21: Analysis of Variance - Pratheepa Jeganathan · 2019. 12. 14. · I SuchmodelsareoftenreferredtoANOVA (Analysis of Variance) models. I Thesearegeneralizationsofthetwosamplet-test.

ANOVA table

I In the balanced case, everything can again be summarized fromthe ANOVA table

Source SS DF MS

A SSA = nm∑r

i=1

(Y i·· − Y ···

)2r-1 SSA/(r-1)

B SSB = nr∑m

j=1

(Y ·j· − Y ···

)2m-1 SSB/(m-1)

A:B SSAB = n∑r

i=1

∑mj=1

(Y ij· − Y i·· − Y ·j· + Y ···

)2(m-1)(r-1) SSAB/(m-1)(r-1)

ERROR SSE =∑r

i=1

∑mj=1

∑nk=1

(Yijk − Y ij·)2 (n-1)mr SSE/(n-1)mr

Page 46: Lecture 21: Analysis of Variance - Pratheepa Jeganathan · 2019. 12. 14. · I SuchmodelsareoftenreferredtoANOVA (Analysis of Variance) models. I Thesearegeneralizationsofthetwosamplet-test.

ANOVA table

Source E(MS)A σ2 + nm

∑ri=1 α

2i

r−1

B σ2 + nr∑m

j=1 β2j

m−1

A:B σ2 + n∑r

i=1

∑mj=1(αβ)2

ij(r−1)(m−1)

ERROR σ2

Page 47: Lecture 21: Analysis of Variance - Pratheepa Jeganathan · 2019. 12. 14. · I SuchmodelsareoftenreferredtoANOVA (Analysis of Variance) models. I Thesearegeneralizationsofthetwosamplet-test.

Tests using the ANOVA table

I Rows of the ANOVA table can be used to test various of thehypotheses we started out with.

I For instance, we see that under H0 : (αβ)ij = 0,∀i , j theexpected value of SSAB and SSE is σ2: use these for an F -testtesting for an interaction.

I Under H0,

F = MSABMSE =

SSAB(m−1)(r−1)

SSE(n−1)mr

∼ F(m−1)(r−1),(n−1)mr .

Page 48: Lecture 21: Analysis of Variance - Pratheepa Jeganathan · 2019. 12. 14. · I SuchmodelsareoftenreferredtoANOVA (Analysis of Variance) models. I Thesearegeneralizationsofthetwosamplet-test.

Tests using the ANOVA table

kidney.aov = aov(logDays ~ D * W,data = kidney.table)

summary(kidney.aov)

## Df Sum Sq Mean Sq F value Pr(>F)## D 1 2.340 2.340 4.358 0.0416 *## W 2 16.971 8.486 15.807 3.94e-06 ***## D:W 2 0.636 0.318 0.592 0.5567## Residuals 54 28.989 0.537## ---## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

I H0 : (αβ)ij = 0,∀i , j , we do not reject H0 at 5% significancelevel.

I The main effects are significant at 5% significance level.

Page 49: Lecture 21: Analysis of Variance - Pratheepa Jeganathan · 2019. 12. 14. · I SuchmodelsareoftenreferredtoANOVA (Analysis of Variance) models. I Thesearegeneralizationsofthetwosamplet-test.

Tests using the ANOVA table

I Multiple pairwise comparison of effect of Weight groupspairwise.t.test(kidney.table$logDays,

kidney.table$W,p.adjust.method = "bonferroni")

#### Pairwise comparisons using t tests with pooled SD#### data: kidney.table$logDays and kidney.table$W#### 1 2## 2 0.030 -## 3 2.8e-06 0.019#### P value adjustment method: bonferroni

Page 50: Lecture 21: Analysis of Variance - Pratheepa Jeganathan · 2019. 12. 14. · I SuchmodelsareoftenreferredtoANOVA (Analysis of Variance) models. I Thesearegeneralizationsofthetwosamplet-test.

Tests using the ANOVA tableI Multiple pairwise comparison of effect of Duration groups

pairwise.t.test(kidney.table$logDays,kidney.table$D,p.adjust.method = "bonferroni")

#### Pairwise comparisons using t tests with pooled SD#### data: kidney.table$logDays and kidney.table$D#### 1## 2 0.093#### P value adjustment method: bonferroni

I We do not reject the H0 (at 5% significance level) that thelevel of duration (of treatment) has no different effect on thenumber of stays in the hospital.

Page 51: Lecture 21: Analysis of Variance - Pratheepa Jeganathan · 2019. 12. 14. · I SuchmodelsareoftenreferredtoANOVA (Analysis of Variance) models. I Thesearegeneralizationsofthetwosamplet-test.

Diagnostics

I homogeneity of variance - OK!plot(kidney.aov, 1)

1.0 1.5 2.0 2.5

−1.

5−

0.5

0.5

Fitted values

Res

idua

ls

aov(logDays ~ D * W)

Residuals vs Fitted

44 60

20

Page 52: Lecture 21: Analysis of Variance - Pratheepa Jeganathan · 2019. 12. 14. · I SuchmodelsareoftenreferredtoANOVA (Analysis of Variance) models. I Thesearegeneralizationsofthetwosamplet-test.

I Normality assumption - OK!plot(kidney.aov, 2)

−2 −1 0 1 2

−2

−1

01

2

Theoretical Quantiles

Sta

ndar

dize

d re

sidu

als

aov(logDays ~ D * W)

Normal Q−Q

44 60

20

Page 53: Lecture 21: Analysis of Variance - Pratheepa Jeganathan · 2019. 12. 14. · I SuchmodelsareoftenreferredtoANOVA (Analysis of Variance) models. I Thesearegeneralizationsofthetwosamplet-test.

Fit using lm

Yijk = β0 + β1D1 + β2W1 + β3W2 + β4D1W1 + β5D1W2 + ε

kidney.lm = lm(logDays ~ D*W,contrasts=list(D='contr.sum',

W='contr.sum'), data = kidney.table)#summary(kidney.lm)

Page 54: Lecture 21: Analysis of Variance - Pratheepa Jeganathan · 2019. 12. 14. · I SuchmodelsareoftenreferredtoANOVA (Analysis of Variance) models. I Thesearegeneralizationsofthetwosamplet-test.

Contrasts in R

I One level is the base levelI Compare other levels with the base level

contr.sum(3)

## [,1] [,2]## 1 1 0## 2 0 1## 3 -1 -1contr.sum(2)

## [,1]## 1 1## 2 -1

Page 55: Lecture 21: Analysis of Variance - Pratheepa Jeganathan · 2019. 12. 14. · I SuchmodelsareoftenreferredtoANOVA (Analysis of Variance) models. I Thesearegeneralizationsofthetwosamplet-test.

Model matrix in lm

I R uses indicator variableshead(model.matrix(kidney.lm))

## (Intercept) D1 W1 W2 D1:W1 D1:W2## 1 1 1 1 0 1 0## 2 1 1 1 0 1 0## 3 1 1 1 0 1 0## 4 1 1 1 0 1 0## 5 1 1 1 0 1 0## 6 1 1 1 0 1 0

Page 56: Lecture 21: Analysis of Variance - Pratheepa Jeganathan · 2019. 12. 14. · I SuchmodelsareoftenreferredtoANOVA (Analysis of Variance) models. I Thesearegeneralizationsofthetwosamplet-test.

Finding predicted values using lm

I The most direct way to compute predicted values is using thepredict function.I For example, Y11. and the confidence interval for µ11. are

predict(kidney.lm, list(D=factor(1),W=factor(1)), interval='confidence')

## fit lwr upr## 1 1.021156 0.5566306 1.485681

Page 57: Lecture 21: Analysis of Variance - Pratheepa Jeganathan · 2019. 12. 14. · I SuchmodelsareoftenreferredtoANOVA (Analysis of Variance) models. I Thesearegeneralizationsofthetwosamplet-test.

ANOVA using lm

anova(kidney.lm)

## Analysis of Variance Table#### Response: logDays## Df Sum Sq Mean Sq F value Pr(>F)## D 1 2.3397 2.3397 4.3583 0.04156 *## W 2 16.9713 8.4856 15.8067 3.945e-06 ***## D:W 2 0.6357 0.3178 0.5920 0.55675## Residuals 54 28.9892 0.5368## ---## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

I We can tests the interaction and the overall main effects (sameas using aov)

Page 58: Lecture 21: Analysis of Variance - Pratheepa Jeganathan · 2019. 12. 14. · I SuchmodelsareoftenreferredtoANOVA (Analysis of Variance) models. I Thesearegeneralizationsofthetwosamplet-test.

Some caveats

I We can test the interaction using our usual approach.anova(lm(logDays ~ D+W,

data = kidney.table),lm(logDays ~ D*W,

data = kidney.table))

## Analysis of Variance Table#### Model 1: logDays ~ D + W## Model 2: logDays ~ D * W## Res.Df RSS Df Sum of Sq F Pr(>F)## 1 56 29.625## 2 54 28.989 2 0.63566 0.592 0.5567

I But we cannot test the main effects using this approach

Page 59: Lecture 21: Analysis of Variance - Pratheepa Jeganathan · 2019. 12. 14. · I SuchmodelsareoftenreferredtoANOVA (Analysis of Variance) models. I Thesearegeneralizationsofthetwosamplet-test.

Some caveats

I Test the main effect of Weight factor variable using our ususalapproach.

anova(lm(logDays ~ D,data = kidney.table),lm(logDays ~ D+W,

data = kidney.table))

## Analysis of Variance Table#### Model 1: logDays ~ D## Model 2: logDays ~ D + W## Res.Df RSS Df Sum of Sq F Pr(>F)## 1 58 46.596## 2 56 29.625 2 16.971 16.041 3.109e-06 ***## ---## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Page 60: Lecture 21: Analysis of Variance - Pratheepa Jeganathan · 2019. 12. 14. · I SuchmodelsareoftenreferredtoANOVA (Analysis of Variance) models. I Thesearegeneralizationsofthetwosamplet-test.

Some caveatsI This F statistics value is not same as when we use

anova(kidney.lm)

Page 61: Lecture 21: Analysis of Variance - Pratheepa Jeganathan · 2019. 12. 14. · I SuchmodelsareoftenreferredtoANOVA (Analysis of Variance) models. I Thesearegeneralizationsofthetwosamplet-test.

Sum of squares

I Let’s take Y response and 3 predictors X1,X2,X3.I SSR (X1,X2,X3): total variation explained by X1, X2, and X3.I SSR (X1|X2): additional variation explained by X1 when added

to a model already containing X2.

Page 62: Lecture 21: Analysis of Variance - Pratheepa Jeganathan · 2019. 12. 14. · I SuchmodelsareoftenreferredtoANOVA (Analysis of Variance) models. I Thesearegeneralizationsofthetwosamplet-test.

Extra sum of squares

I ESS measures the part of the SSE (sum of squares of error)that is explained by an added subset of predictors.I SSR (X1|X2) = SSE (X2)− SSE (X1,X2)I Sequential sum of squares can be used to compute the total

variation explained by X1, X2, and X3. This computation ofsum of squares is called the Type I sum of squares.

SSR (X1,X2,X3) = SSR (X1) + SSR (X2|X1) + SSR (X3|X1,X2)

I Type I sum of squares can be used to test a term in the orderthey are listed in the model.

Page 63: Lecture 21: Analysis of Variance - Pratheepa Jeganathan · 2019. 12. 14. · I SuchmodelsareoftenreferredtoANOVA (Analysis of Variance) models. I Thesearegeneralizationsofthetwosamplet-test.

ANOVA table

I Need partial sum of squares SSA = SS(A|B,AB),SS(B|A,AB), SSAB = SS(AB|A,B).

I We can compute the above sum of squares using Type III sumof squares.

I In the balanced design the ANOVA table is from the ANOVAtable

Source SS DFA SSA = SS(A|B,AB) = nm

∑ri=1

(Y i·· − Y ···

)2 r-1B SSB = SS(B|A,AB) = nr

∑mj=1

(Y ·j· − Y ···

)2

A:B SSAB = SS(AB|A,B) = n∑r

i=1

∑mj=1

(Y ij· − Y i·· − Y ·j· + Y ···

)2 (m-1)(r-1)ERROR SSE =

∑ri=1

∑mj=1

∑nk=1(Yijk − Y ij·)2 (n-1)mr

Page 64: Lecture 21: Analysis of Variance - Pratheepa Jeganathan · 2019. 12. 14. · I SuchmodelsareoftenreferredtoANOVA (Analysis of Variance) models. I Thesearegeneralizationsofthetwosamplet-test.

Type I, II, III sum of squares

I Type I, II, III sum of squares will give different results (ANOVAtable) for unbalanced design.

I anova() and aov() computes the sequential sum of squaresI factors are tested in the order they are in the model.

I For the two-way layout, we want to test each term in themodel in light of the every other term in the model.

I If the design is unbalanced, we can use Anova() (withcontrasts sum) in car package to get the ANOVA table.

Page 65: Lecture 21: Analysis of Variance - Pratheepa Jeganathan · 2019. 12. 14. · I SuchmodelsareoftenreferredtoANOVA (Analysis of Variance) models. I Thesearegeneralizationsofthetwosamplet-test.

For the example

library(car)Anova(lm(logDays ~ D * W, data = kidney.table,

contrasts=list(D='contr.sum', W='contr.sum')),type = "III")

## Anova Table (Type III tests)#### Response: logDays## Sum Sq Df F value Pr(>F)## (Intercept) 156.302 1 291.1532 < 2.2e-16 ***## D 2.340 1 4.3583 0.04156 *## W 16.971 2 15.8067 3.945e-06 ***## D:W 0.636 2 0.5920 0.55675## Residuals 28.989 54## ---## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Page 66: Lecture 21: Analysis of Variance - Pratheepa Jeganathan · 2019. 12. 14. · I SuchmodelsareoftenreferredtoANOVA (Analysis of Variance) models. I Thesearegeneralizationsofthetwosamplet-test.

Recommended reading

Design and Analysis of Experiments, 10th Edition, Douglas C.Montgomery: PDF is available for an older edition.

Page 67: Lecture 21: Analysis of Variance - Pratheepa Jeganathan · 2019. 12. 14. · I SuchmodelsareoftenreferredtoANOVA (Analysis of Variance) models. I Thesearegeneralizationsofthetwosamplet-test.

Reference

I Lecture notes of Jonathan Taylor .