Lecture 20

46
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they take place. Lecture 20

description

Lecture 20. Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they take place. Last Lecture Energy Balance Fundamentals. Substituting for . Web Lecture 20 Class Lecture 16-Thursday 3/14/2013. - PowerPoint PPT Presentation

Transcript of Lecture 20

Page 1: Lecture 20

Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of

chemical reactions and the design of the reactors in which they take place.

Lecture 20

Page 2: Lecture 20

0

0 0 0 0

i iH H

sysi i i i i i S

dEF U PV F U PV Q W

dt

0 0sys

i i i i S

dEF H FH Q W

dt

Last Lecture Energy Balance Fundamentals

2

Substituting for W

000 iiiiS HFHFWQ

dtdE

WQEFEF sysiiii 00

Page 3: Lecture 20

Web Lecture 20Class Lecture 16-Thursday 3/14/2013

3

Reactors with Heat ExchangeUser friendly Energy Balance DerivationsAdiabaticHeat Exchange Constant Ta

Heat Exchange Variable Ta Co-currentHeat Exchange Variable Ta Counter Current

Page 4: Lecture 20

The feed consists of both - Inerts I and Species A with the ratio of inerts I to the species A being 2 to 1.

A B

FA0

FI

Elementary liquid phase reaction carried out in a CSTR

4

Adiabatic Operation CSTR

Page 5: Lecture 20

Adiabatic Operation CSTR

5

Assuming the reaction is irreversible for CSTR, A B, (KC = 0) what reactor volume is necessary to achieve 80% conversion?If the exiting temperature to the reactor is 360K, what

is the corresponding reactor volume?Make a Levenspiel Plot and then determine the PFR

reactor volume for 60% conversion and 95% conversion. Compare with the CSTR volumes at these conversions.Now assume the reaction is reversible, make a plot of

the equilibrium conversion as a function of temperature between 290K and 400K.

Page 6: Lecture 20

1) Mole Balances:exitA

0A

rXFV

6

CSTR: Adiabatic Example

A B

FA0

FI

(exothermic)

𝑇=?

Page 7: Lecture 20

T1

T1

RHexpKK

ekk

KCCkr

2

Rx1CC

T1

T1

RE

1

C

BAA

1

2) Rate Laws:

XCC

X1CC

0AB

0AA

3) Stoichiometry:

7

CSTR: Adiabatic Example

Page 8: Lecture 20

4) Energy Balance Adiabatic, ∆Cp=0

X

36164000,20300X

182164000,20300T

CCXHT

CXHTT

IAi PIP

Rx0

Pi

Rx0

X 100300T

8

CSTR: Adiabatic Example

Page 9: Lecture 20

Irreversible for Parts (a) through (c)

)K (i.e., X1kCr C0AA

(a) Given X = 0.8, find T and V

Given X Calc T Calc k Calc rACalc V

Calc KC(if reversible)

9

CSTR: Adiabatic Example

Page 10: Lecture 20

3

A

0A

0A

0A

exitA

0A

dm 82.28.01281.3

8.05rXFV

81.33801

2981

989.1000,10exp1.0k

K3808.0100300T

X1kCXF

rXFV

Given X, Calculate T and V

10

CSTR: Adiabatic Example

Page 11: Lecture 20

(b) VrkTXGiven CalcA

CalcCalcCalc

CK Calc(if reversible)

3

1

0

05.24.0283.1

6.05min83.1

6.0100

300360

ble)(Irreversi 1

dmV

k

TX

KTXkCr AA

Given T, Calculate X and V

11

CSTR: Adiabatic Example

Page 12: Lecture 20

(c) Levenspiel Plot

X1kCF

rF

0A

0A

A

0A

Choose X Calc T Calc k Calc rACalc

FA 0

rA

X100300T

12

CSTR: Adiabatic Example

Page 13: Lecture 20

(c) Levenspiel Plot

13

CSTR: Adiabatic Example

Page 14: Lecture 20

CSTR     X = 0.95     T = 395 K

0

5

10

15

20

25

30

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X

-Fa0

/Ra

CSTR 60%

CSTR     X = 0.6     T = 360 K

14

CSTR: Adiabatic Example

Page 15: Lecture 20

PFR     X = 0.6

PFR     X = 0.95

0

5

10

15

20

25

30

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X

-Fa0

/Ra

PFR 60%

15

CSTR: Adiabatic Example

Page 16: Lecture 20

CSTR X = 0.6 T = 360 V = 2.05 dm3

PFR X = 0.6 Texit = 360 V = 5.28 dm3

CSTR X = 0.95 T = 395 V = 7.59 dm3

PFR X = 0.95 Texit = 395 V = 6.62 dm3

16

CSTR: Adiabatic Example - Summary

Page 17: Lecture 20

dVdF

HdVdH

FdV

HFd

TTUadV

HFd

VTTUaHFHF

ii

ii

ii

aii

aVViiVii

0

0

Energy Balance in terms of Enthalpy

17

Page 18: Lecture 20

RPiii TTCHH 0

dVdTC

dVdH

Pii

xRii

AiiPiiii

HH

rHdVdTCF

dVHFd

PFR Heat Effects

18

Aiii rr

dVdF

Page 19: Lecture 20

0

TTUarH

dVdTFC aARiPi

aARPii TTUarHdVdTCF

Pii

aAR

CFTTUarH

dVdT

19 Need to determine Ta

PFR Heat Effects

Page 20: Lecture 20

Heat Exchange:

iPi

aRxA

CFTTUaHr

dVdT

)B16( CF

TTUaHrdVdT

iPi0A

aRxA

20Need to determine Ta

Page 21: Lecture 20

Energy Balance:

Adiabatic (Ua=0) and ΔCP=0

)A16( C

XHTTiPi

Rx0

Heat Exchange Example: Case 1 - Adiabatic

21

Page 22: Lecture 20

A. Constant Ta e.g., Ta = 300K

)17( 0 , CTTV

CmTTUa

dVdT

aoaP

aa

cool

B. Variable Ta Co-Current

C. Variable Ta Counter Current Guess ? 0

aP

aa TVCm

TTUadVdT

cool

Guess Ta at V = 0 to match Ta0 = Ta0 at exit, i.e., V = Vf

User Friendly Equations

22

Page 23: Lecture 20

Coolant Balance:

In - Out + Heat Added = 0

0

0

aC

C

aVVCCVCC

TTUadVdH

m

TTVUaHmHm

Heat Exchanger Energy Balance Variable Ta Co-current

dVdTC

dVdH

TTCHH

aPC

C

raPC0CC

23

0 0 , aa

PCC

aa TTVCm

TTUadVdT

Page 24: Lecture 20

In - Out + Heat Added = 0

24

0

0

PCC

aa

aC

C

aVCCVVCC

CmTTUa

dVdT

TTUadVdH

m

TTVUaHmHm

Heat Exchanger Energy Balance Variable Ta Co-current

Page 25: Lecture 20

Elementary liquid phase reaction carried out in a PFR

The feed consists of both inerts I and species A with the ratio of inerts to the species A being 2 to 1.

25

FA0

FI

Tacm Heat Exchange

Fluid

A BT

Heat Exchanger – ExampleCase 1 – Constant Ta

Page 26: Lecture 20

T1

T1

REexpkk )3(

11

T1

T1

RHexpKK )4(

2

Rx2CC

FrdVdX )1( 0AA

1) Mole Balance:

C

BAA K

CCkr )2(2) Rate Laws:

26

Heat Exchanger – ExampleCase 1 – Constant Ta

Page 27: Lecture 20

0CP

6 XCC

5 X1CC

0AB

0AA

3) Stoichiometry:

9 CCC PIIPAPii

8 k1

kXC

Ceq

4) Heat Effects: 7 0

PiiA

aAR

CFTTUarH

dVdT

Heat Exchanger – ExampleCase 1 – Constant Ta

27

Page 28: Lecture 20

Parameters:

A

IPIPAA

AaC

R

rrateCCC

FTUakkTTREH

, , , ,, , , , ,

, , , , ,

0

021

21

Heat Exchanger – ExampleCase 1 – Constant Ta

28

Page 29: Lecture 20

Pii

rg

CFQQ

dVdT

Heat removed

Heat generated

XCCFCXFCF PiPii0APiii0APii

XCCFTTUarH

dVdT

PPiiA

aAR

0

PFR Heat Effects

29

Page 30: Lecture 20

Energy Balance:

Adiabatic and ΔCP=0Ua=0

)A16( C

XHTTiPi

Rx0

Additional Parameters (17A) & (17B)

IAi PIPPi0 CCC ,T 30

Mole Balance:

dXdV rAFA 0

Heat Exchanger – ExampleCase 2 – Adiabatic

Page 31: Lecture 20

31

Adiabatic PFR

Page 32: Lecture 20

Find conversion, Xeq and T as a function of reactor volume

V

rate

V

T

V

XX

Xeq

Example: Adiabatic

32

Page 33: Lecture 20

iPi

aRxA

CFTTUaHr

dVdT

)B16( CF

TTUaHrdVdT

iPi0A

aRxA

Heat Exchange

33Need to determine Ta

Page 34: Lecture 20

A. Constant Ta (17B) Ta = 300K

Ua ,C ,TiPia

Additional Parameters (18B – (20B):

)17( 0 CTTVCm

TTUadVdT

aoaP

aa

cool

B. Variable Ta Co-Current

C. Variable Ta Countercurrent

? 0

aP

aa TVCm

TTUadVdT

cool

Guess Ta at V = 0 to match Ta0 = Ta0 at exit, i.e., V = Vf

User Friendly Equations

34

Page 35: Lecture 20

Coolant balance:

In - Out + Heat Added = 0

0

0

aC

C

aVVCCVCC

TTUadVdHm

TTVUaHmHm

dVdTC

dVdH

TTCHH

aPC

C

raPC0CC

All equations can be used from before except Ta parameter, use differential Ta instead, adding mC and CPC

Heat Exchange Energy Balance Variable Ta Co-current

35

0 0 , aa

PCC

aa TTVCm

TTUadVdT

Page 36: Lecture 20

In - Out + Heat Added = 0

All equations can be used from before except dTa/dV which must be changed to a negative. To arrive at the correct integration we must guess the Ta value at V=0, integrate and see if Ta0 matches; if not, re-guess the value for Ta at V=0

36

PCC

aaa

CC

aVCCVVCC

CmTTUa

dVdTTTUa

dVdHm

TTVUaHmHm

0

0

Heat Exchange Energy Balance Variable Ta Co-current

Page 37: Lecture 20

0HFHFdWTTUaii0i0ia

W

0 B

0dWdHFH

dWdF0TTUa i

iii

aB

Differentiating with respect to W:

37

Derive the user-friendly Energy Balance for a PBR

Page 38: Lecture 20

Aii

i rrdWdF

Mole Balance on species i:

T

TPiRii

R

dTCTHH

Enthalpy for species i:

38

Derive the user-friendly Energy Balance for a PBR

Page 39: Lecture 20

Differentiating with respect to W:

dWdTC0

dWdH

Pii

0dWdTCFHrTTUa

PiiiiAaB

39

Derive the user-friendly Energy Balance for a PBR

Page 40: Lecture 20

0dWdTCFHrTTUa

PiiiiAaB

THH Rii XFF ii0Ai

Final Form of the Differential Equations in Terms of Conversion:

A:

40

Derive the user-friendly Energy Balance for a PBR

Page 41: Lecture 20

Final form of terms of Molar Flow Rate:

Pii

AaB

CF

HrTTUa

dWdT

B: T,Xg

Fr

dWdX

0A

A

41

Derive the user-friendly Energy Balance for a PBR

Page 42: Lecture 20

The rate law for this reaction will follow an elementary rate law.

DCBA

C

DCBAA K

CCCCkr

Where Ke is the concentration equilibrium constant. We know from Le Chaltlier’s law that if the reaction is exothermic, Ke will decrease as the temperature is increased and the reaction will be shifted back to the left. If the reaction is endothermic and the temperature is increased, Ke will increase and the reaction will shift to the right.

42

Reversible Reactions

Page 43: Lecture 20

RTKK P

C

Van’t Hoff Equation:

2

RPRR2

RP

RTTTCTH

RTTH

dTKlnd

43

Reversible Reactions

Page 44: Lecture 20

For the special case of ΔCP=0

Integrating the Van’t Hoff Equation gives:

21

RR1P2P T

1T1

RTHexpTKTK

44

Reversible Reactions

Page 45: Lecture 20

endothermic reaction

exothermic reaction

KP

T

endothermic reaction

exothermic reaction

Xe

T

45

Reversible Reactions

Page 46: Lecture 20

46

End of Lecture 20