Lecture #15 Week #13 - fullcoll.edu

8
Lecture #15 Week #13 A.K. Morris, Ph.D. Chapter 13 1 Primary productivity What is it? Who does it? What’s it good for? 2 Trees…. Sunlight Leaves Large organic structures Constant energy source Millions of solar panels 3 Sun provides ENERGY for life All organisms need ENERGY & are composed of CARBON Different ways of getting ENERGY & CARBON 4 Carbon and Energy Sources Photoautotrophs do “photosynthesis” Energy source = sunlight Carbon source = CO2 (or a derivative) 5 Contrast with “Heterotrophs” Consumers: get E & C from other organisms C source = autotrophs/ each other E source = autotrophs/ each other 6

Transcript of Lecture #15 Week #13 - fullcoll.edu

Lecture #15 Week #13

A.K. Morris, Ph.D.

Chapter 13

1

Primary productivityWhat is it?Who does it?What’s it good for?

2

Trees….SunlightLeaves

Large organic structuresConstant energy sourceMillions of solar panels

3

Sun provides ENERGY for lifeAll organisms need ENERGY & are composed of CARBONDifferent ways of getting ENERGY & CARBON

4

Carbon and Energy SourcesPhotoautotrophs do “photosynthesis”Energy source = sunlightCarbon source = CO2(or a derivative)

5

Contrast with “Heterotrophs”Consumers: get E & C from other organismsC source = autotrophs/ each otherE source = autotrophs/ each other

6

Lecture #15 Week #13

A.K. Morris, Ph.D.

Who is a photoautotroph? Plants and macroalgaeMany protists (unicellular algae)Some bacteria

Eelgrass

Giant kelp (brown alga)

Coccolithophorids

Ciliate

Cyanobacteria

Cyanobacteria 7

361 million square kilometersLots of area for microscopic solar panelsPhytoplankton (photoautotrophic plankton)

8

© J. Molemaker 2005, UCLA

PhytoplanktonMicroscopic algal and bacterial cellsPlankton size classification:Microplankton – diatoms & dinoflagellates(20‐200 μm) “big”

Nanoplankton – diatoms & coccolithophorids(2‐20 μm) “small”

Picoplankton – cyanobacteria(0.2‐2 μm) “tiny”

Gonyaulax sp.

Noctiluca sp.

20 µm

Thalassiosira sp.Emiliana huxleyiProchlorococcus sp. 9

History of Plankton StudiesA story of politics, treachery, and occupational backstabbing!

Your book cites Victor Hensen asthe “father of modern biologicaloceanography”History is always written by thewinners

Victor Hensen (1835-1924) 10

Ernst HaeckelOne of the top natural scientists… ever!Coined the term “Ecology”Huge Darwin supporterStarted studying marine life in 1856(15 years before Hensen)“Kunstformen der Natur”, 1899‐1904(Art Forms of Nature)A multi‐volume epic work.

11 12

Lecture #15 Week #13

A.K. Morris, Ph.D.

The Kiel Commission

North Seas Fisheries unpredictableHired Victor Hensen as theirchief researcherProfessor of Physiology – studied human food energetics5 research cruises from 1871–1891

Victor Hensen (1835-1924)

13

Victor HensenHensen determined the ocean was homogeneous with low abundance.Patches would be “discarded” as contaminatedPoor, rudimentary statistics

1893 – Haeckel wrote a scathing review of Hensen’s work

“Dumkoff!  Ihregesamte arbeit sehr

schrecklich!”

Hmm…

14

Haeckel, E., 1893, U.S. Comm. Fish. And Fisheries.Raskoff, K.A. et al., 2003, Biol. Bull. 204: 68-80.

Hensen Haeckel

15Harris, R.P., et al., 2000, ICES Zooplankton Methodology Manual, Academic Press, San Diego, CA.

Hensen

16

Pre‐1920sPlankton under‐represented in food webs.Primary productivity under‐reported

1927 – new experimental design – Light‐and‐dark bottle method

17

Primary Production Studies Mature

1920’s – Connection between PP and light availability1930’s – Phyto conc. estimated indirectly by correlation with elementsRedfield Ratio – C106:N16:P1

Alfred Redfield 18

Lecture #15 Week #13

A.K. Morris, Ph.D.

Recall Limiting NutrientsThe item that limits growth or reproductionNOT necessarily the item in least supply(car analogy: gas and oil)

Distribution of nutrients oftendetermines distr. of organisms

This means PP estimated byconc. of essential nutrients

19

14C to estimate PP

Method used by the intrepid oceanographer Sean Chamberlin –did his Ph.D. work waaaaay back in the 1980’s

Fluorescence intensity is proportional to chlorophyll conc.

Fig. 13.420

MODIS SatellitesMODerate Resolution Imaging SpectroradiometerPhytoplankton mostly have Chlorophyll aChl a fluoresces at a known frequency

Terra (EOS AM‐1) launched by NASA 12/18/99

Aqua (EOS PM‐1) launched 5/4/02

VIDEO

21 22

Photosynthetically Available Radiation

Phytoplankton biomass from MODIS sensor

23

Phytoplankton biomass from MODIS sensor

Chlorophyll a

24So what does this mean? Why is productivity different from light availability???

Lecture #15 Week #13

A.K. Morris, Ph.D.

CTDsTypically equipped with fluorometers today

Fluorometerby Wetlabs®

25

Fig. 13.7

Fine‐scaledetermination

Virtually all photosynthesizersuse Chl a

Absorbs light that penetrates deepestChl b common in cyanobacteriaChl c common in diatoms and coccolithophoridsDinoflagellates have other accessory pigments

Further IDs require high‐pressureliquid chromatography

26

How does photosynthesis work?

2 Steps:1. Light‐dependent rxns: 

Convert light E to chem E (ATP)

2. Light‐independent rxns: Use ATP to build sugar

It’s waaay morecomplex than this…

27Sugars!

Photosynthesis‐“lite” (simplified)Photosynthesis

E‐storing pathway Requires CO2 & H2OReleases O2

Aerobic RespirationE‐releasing pathwayRequires O2

Releases CO2 & H2O

CO2 + H2O + light (CH2O) + H2O + O2(Sugar)

Photosynthesis –

CO2 + H2O + energy (CH2O) + H2O + O2Respiration –

28

But note the following…

Photosynthesizers need energy… even when it’s dark.When it’s dark, phytoplankton do respiration!

Summer = more daylight in N. Hemisphere, so greater net PPWinter = less daylight in N.H., so less net PP

29

Nutrient Cycling

Replenishing raw materials“Sloppy feeding” and fecal pellets by zooplankton

Fecal pellets sink faster.Vertical migration redistributes C deeper

Euphausiid (krill)

30

Lecture #15 Week #13

A.K. Morris, Ph.D.

Vertical migration:Where is most of the food?Where can predators best see?Largest migration on the planet happens every day

31

(cont…)Vertical migration:  during day, live at depth (200m) and at night swim to surface to feedAdvantage:

Avoid predationSlow metabolism / save E. in cooler water

Disadvantage:Cannot feedMigrating uses E.Slow metabolism / cannot develop

Positive Outcome:Transports carbon deep

32

Vertical MigratorsZooplankton:

Herbivores (and some carnivores)One of the most numerous organisms on Earth

Copepod

33

Vertical Distribution Challenges

Compensation depth vs. Critical depth

Fig. 13.13

Photosynthesis Respiration

(Gain)

(Loss)

34

Vertical Distribution Challenges

Compensation depth vs. Critical depth

Fig. 13.13

Photosynthesis Respiration

(Gain)

(Loss)

35

Vertical Distribution Challenges

Compensation depth vs. Critical depth

Fig. 13.13

Photosynthesis Respiration

(Gain)

(Loss)

36

Lecture #15 Week #13

A.K. Morris, Ph.D.

Seasonal Primary Productivity

Limits:  light, nutrients.These things vary seasonally

37

Seasonal Primary ProductivityWinter:  best nutrientsSummer:  best lightSpring:  best compromise!

Baltic Sea late spring phytoplankton bloomAqua/MODIS true-color image, June 7, 200538

CaliforniaUpwellingSeasonal upwellingbrings nutrient richbottom waters into the photic zone.Leaves a temperature signatureChlorophyll conc. images mirror temp.

39

SurfaceChlorophyll a

40

41

Notice the DistributionTemperate zonesUpwelling zones

42

Lecture #15 Week #13

A.K. Morris, Ph.D.

•Cold water•High nutrients•Reduced wave action (depth‐related)•Areas for attachment•Sunlight

43

Iron EnrichmentFe recognized as a limiting nutrient by John Martin.Primary source mainly through wind dispersalHigh‐nutrient,low‐chl (HNLC)

Fig. 13.16

44