Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition...

143
Lecture 11: Ising model Outline: • equilibrium theory • d = 1 • mean field theory, phase transition • critical phenomena • kinetics (Glauber model) • critical dynamics • continuum description: Landau-Ginzburg model •Langevin dynamics

Transcript of Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition...

Page 1: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

Lecture 11: Ising model

Outline:• equilibrium theory

• d = 1• mean field theory, phase transition• critical phenomena

• kinetics (Glauber model)• critical dynamics

• continuum description: Landau-Ginzburg model•Langevin dynamics

Page 2: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

“spins”

binary variables Si = ±1 (or 0/1)

Page 3: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

“spins”

binary variables Si = ±1 (or 0/1) (quantized but not quantum-mechanical)

Page 4: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

“spins”

binary variables Si = ±1 (or 0/1) (quantized but not quantum-mechanical)representing up/down, firing/not firing, opinions, decisions, atom present/not present, …

Page 5: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

“spins”

binary variables Si = ±1 (or 0/1) (quantized but not quantum-mechanical)representing up/down, firing/not firing, opinions, decisions, atom present/not present, … (always an idealization)

Page 6: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

“spins”

binary variables Si = ±1 (or 0/1) (quantized but not quantum-mechanical)representing up/down, firing/not firing, opinions, decisions, atom present/not present, … (always an idealization)Energy:

E = − JijSi

ij

∑ S j − hi

i

∑ Si

= − 12 JijSi

ij

∑ S j − hi

i

∑ Si

Page 7: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

“spins”

binary variables Si = ±1 (or 0/1) (quantized but not quantum-mechanical)representing up/down, firing/not firing, opinions, decisions, atom present/not present, … (always an idealization)Energy:

E = − JijSi

ij

∑ S j − hi

i

∑ Si

= − 12 JijSi

ij

∑ S j − hi

i

∑ Si (low energy is “favorable”)

Page 8: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

“spins”

binary variables Si = ±1 (or 0/1) (quantized but not quantum-mechanical)representing up/down, firing/not firing, opinions, decisions, atom present/not present, … (always an idealization)Energy:

E = − JijSi

ij

∑ S j − hi

i

∑ Si

= − 12 JijSi

ij

∑ S j − hi

i

∑ Si (low energy is “favorable”)

role of geometry: i,j can label points on a lattice of dimensionality d

Page 9: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

“spins”

binary variables Si = ±1 (or 0/1) (quantized but not quantum-mechanical)representing up/down, firing/not firing, opinions, decisions, atom present/not present, … (always an idealization)Energy:

E = − JijSi

ij

∑ S j − hi

i

∑ Si

= − 12 JijSi

ij

∑ S j − hi

i

∑ Si (low energy is “favorable”)

role of geometry: i,j can label points on a lattice of dimensionality dWe will consider especially connections between neighbors in d=1 (chain)

Page 10: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

“spins”

binary variables Si = ±1 (or 0/1) (quantized but not quantum-mechanical)representing up/down, firing/not firing, opinions, decisions, atom present/not present, … (always an idealization)Energy:

E = − JijSi

ij

∑ S j − hi

i

∑ Si

= − 12 JijSi

ij

∑ S j − hi

i

∑ Si (low energy is “favorable”)

role of geometry: i,j can label points on a lattice of dimensionality dWe will consider especially connections between neighbors in d=1 (chain) and d=∞ ( all-to-all connectivity)

Page 11: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

“spins”

binary variables Si = ±1 (or 0/1) (quantized but not quantum-mechanical)representing up/down, firing/not firing, opinions, decisions, atom present/not present, … (always an idealization)Energy:

E = − JijSi

ij

∑ S j − hi

i

∑ Si

= − 12 JijSi

ij

∑ S j − hi

i

∑ Si (low energy is “favorable”)

role of geometry: i,j can label points on a lattice of dimensionality dWe will consider especially connections between neighbors in d=1 (chain) and d=∞ ( all-to-all connectivity)Jij > 0: favour Si = Sj:

Page 12: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

“spins”

binary variables Si = ±1 (or 0/1) (quantized but not quantum-mechanical)representing up/down, firing/not firing, opinions, decisions, atom present/not present, … (always an idealization)Energy:

E = − JijSi

ij

∑ S j − hi

i

∑ Si

= − 12 JijSi

ij

∑ S j − hi

i

∑ Si (low energy is “favorable”)

role of geometry: i,j can label points on a lattice of dimensionality dWe will consider especially connections between neighbors in d=1 (chain) and d=∞ ( all-to-all connectivity)Jij > 0: favour Si = Sj: ferromagnetism

Page 13: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

“spins”

binary variables Si = ±1 (or 0/1) (quantized but not quantum-mechanical)representing up/down, firing/not firing, opinions, decisions, atom present/not present, … (always an idealization)Energy:

E = − JijSi

ij

∑ S j − hi

i

∑ Si

= − 12 JijSi

ij

∑ S j − hi

i

∑ Si (low energy is “favorable”)

role of geometry: i,j can label points on a lattice of dimensionality dWe will consider especially connections between neighbors in d=1 (chain) and d=∞ ( all-to-all connectivity)Jij > 0: favour Si = Sj: ferromagnetism hi > 0: favour Si = +1.

Page 14: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

equilibrium stat mech

P[S] =1

Zexp(−βE)Gibbs distribution

Page 15: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

equilibrium stat mech

P[S] =1

Zexp(−βE) =

1

Zexp 1

2 β JijSi

ij

∑ S j + β hi

i

∑ Si

⎝ ⎜ ⎜

⎠ ⎟ ⎟Gibbs distribution

Page 16: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

equilibrium stat mech

P[S] =1

Zexp(−βE) =

1

Zexp 1

2 β JijSi

ij

∑ S j + β hi

i

∑ Si

⎝ ⎜ ⎜

⎠ ⎟ ⎟Gibbs distribution

Z = exp 12 β JijSi

ij

∑ S j + β hi

i

∑ Si

⎝ ⎜ ⎜

⎠ ⎟ ⎟

{S}

Page 17: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

equilibrium stat mech

P[S] =1

Zexp(−βE) =

1

Zexp 1

2 β JijSi

ij

∑ S j + β hi

i

∑ Si

⎝ ⎜ ⎜

⎠ ⎟ ⎟Gibbs distribution

partition function

Z = exp 12 β JijSi

ij

∑ S j + β hi

i

∑ Si

⎝ ⎜ ⎜

⎠ ⎟ ⎟

{S}

Page 18: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

equilibrium stat mech

P[S] =1

Zexp(−βE) =

1

Zexp 1

2 β JijSi

ij

∑ S j + β hi

i

∑ Si

⎝ ⎜ ⎜

⎠ ⎟ ⎟Gibbs distribution

partition function

Z = exp 12 β JijSi

ij

∑ S j + β hi

i

∑ Si

⎝ ⎜ ⎜

⎠ ⎟ ⎟

{S}

F = −T log Zfree energy:

Page 19: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

equilibrium stat mech

P[S] =1

Zexp(−βE) =

1

Zexp 1

2 β JijSi

ij

∑ S j + β hi

i

∑ Si

⎝ ⎜ ⎜

⎠ ⎟ ⎟Gibbs distribution

partition function

the original Ising model: nearest-neighbor interactions, J > 0, d = 1, hi = 0€

Z = exp 12 β JijSi

ij

∑ S j + β hi

i

∑ Si

⎝ ⎜ ⎜

⎠ ⎟ ⎟

{S}

F = −T log Zfree energy:

Page 20: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

equilibrium stat mech

P[S] =1

Zexp(−βE) =

1

Zexp 1

2 β JijSi

ij

∑ S j + β hi

i

∑ Si

⎝ ⎜ ⎜

⎠ ⎟ ⎟Gibbs distribution

partition function

the original Ising model: nearest-neighbor interactions, J > 0, d = 1, hi = 0

Z = exp βJ Si

i

∑ Si+1

⎝ ⎜

⎠ ⎟

{S}

∑€

Z = exp 12 β JijSi

ij

∑ S j + β hi

i

∑ Si

⎝ ⎜ ⎜

⎠ ⎟ ⎟

{S}

F = −T log Zfree energy:

Page 21: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

equilibrium stat mech

P[S] =1

Zexp(−βE) =

1

Zexp 1

2 β JijSi

ij

∑ S j + β hi

i

∑ Si

⎝ ⎜ ⎜

⎠ ⎟ ⎟Gibbs distribution

partition function

the original Ising model: nearest-neighbor interactions, J > 0, d = 1, hi = 0

Z = exp βJ Si

i

∑ Si+1

⎝ ⎜

⎠ ⎟

{S}

∑€

Z = exp 12 β JijSi

ij

∑ S j + β hi

i

∑ Si

⎝ ⎜ ⎜

⎠ ⎟ ⎟

{S}

can also have “3-spin interactions”, etc:

E = − 16 K ijkSiS jSk

ijk

∑ − 12 JijSi

ij

∑ S j − hi

i

∑ Si

F = −T log Zfree energy:

Page 22: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

solving 1-d Ising model by decimation

Z = exp βJ Si

i

∑ Si+1

⎝ ⎜

⎠ ⎟

{S}

∑ = eβJS1S2 eβJS2S3 eβJS3S4

S4

∑S3

∑ eβJS4 S5 LS5

∑S1S2

Page 23: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

solving 1-d Ising model by decimation

Z = exp βJ Si

i

∑ Si+1

⎝ ⎜

⎠ ⎟

{S}

∑ = eβJS1S2 eβJS2S3 eβJS3S4

S4

∑S3

∑ eβJS4 S5 LS5

∑S1S2

eβJS i Si+1 =1+ βJSiSi+1 + 12 (βJ)2(SiSi+1)

2 + 13! (βJ)3(SiSi+1)

3

= cosh(βJ) + SiSi+1 sinh(βJ)

= cosh(βJ) 1+ SiSi+1 tanh(βJ)[ ]

Page 24: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

solving 1-d Ising model by decimation

Z = exp βJ Si

i

∑ Si+1

⎝ ⎜

⎠ ⎟

{S}

∑ = eβJS1S2 eβJS2S3 eβJS3S4

S4

∑S3

∑ eβJS4 S5 LS5

∑S1S2

Z = coshN βJ 1+ S1S2 tanh(βJ)( ) 1+ S2S3 tanh(βJ)( ) 1+ S3S4 tanh(βJ)( )S4

∑S3

∑ LS1S2

∑€

eβJS i Si+1 =1+ βJSiSi+1 + 12 (βJ)2(SiSi+1)

2 + 13! (βJ)3(SiSi+1)

3

= cosh(βJ) + SiSi+1 sinh(βJ)

= cosh(βJ) 1+ SiSi+1 tanh(βJ)[ ]

Page 25: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

solving 1-d Ising model by decimation

Z = exp βJ Si

i

∑ Si+1

⎝ ⎜

⎠ ⎟

{S}

∑ = eβJS1S2 eβJS2S3 eβJS3S4

S4

∑S3

∑ eβJS4 S5 LS5

∑S1S2

sum on every other spin:

Z = coshN βJ 1+ S1S2 tanh(βJ)( ) 1+ S2S3 tanh(βJ)( ) 1+ S3S4 tanh(βJ)( )S4

∑S3

∑ LS1S2

∑€

eβJS i Si+1 =1+ βJSiSi+1 + 12 (βJ)2(SiSi+1)

2 + 13! (βJ)3(SiSi+1)

3

= cosh(βJ) + SiSi+1 sinh(βJ)

= cosh(βJ) 1+ SiSi+1 tanh(βJ)[ ]

€ €

(1+ Si−1Si tanhβJ)(1+ SiSi+1 tanhβJ)Si

∑ = 2(1+ Si−1Si+1 tanh2 βJ)

Page 26: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

solving 1-d Ising model by decimation

Z = exp βJ Si

i

∑ Si+1

⎝ ⎜

⎠ ⎟

{S}

∑ = eβJS1S2 eβJS2S3 eβJS3S4

S4

∑S3

∑ eβJS4 S5 LS5

∑S1S2

sum on every other spin:

Z = coshN βJ 1+ S1S2 tanh(βJ)( ) 1+ S2S3 tanh(βJ)( ) 1+ S3S4 tanh(βJ)( )S4

∑S3

∑ LS1S2

∑€

eβJS i Si+1 =1+ βJSiSi+1 + 12 (βJ)2(SiSi+1)

2 + 13! (βJ)3(SiSi+1)

3

= cosh(βJ) + SiSi+1 sinh(βJ)

= cosh(βJ) 1+ SiSi+1 tanh(βJ)[ ]

But this is an interaction J’ between Si-1 and Si+1 with

tanhβ ′ J = tanh2 βJ

(1+ Si−1Si tanhβJ)(1+ SiSi+1 tanhβJ)Si

∑ = 2(1+ Si−1Si+1 tanh2 βJ)

Page 27: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

correlation function

Repeat (“renormalization group”):

Page 28: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

correlation function

Repeat (“renormalization group”):after m steps,

tanhβJm = (tanhβJ)2m

Page 29: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

correlation function

Repeat (“renormalization group”):after m steps,Suppose we started with N = 2M spins.

tanhβJm = (tanhβJ)2m

Page 30: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

correlation function

Repeat (“renormalization group”):after m steps,Suppose we started with N = 2M spins. After M decimation steps there are just 2 spins left:

tanhβJm = (tanhβJ)2m

Page 31: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

correlation function

Repeat (“renormalization group”):after m steps,Suppose we started with N = 2M spins. After M decimation steps there are just 2 spins left:

tanhβJm = (tanhβJ)2m

Z ∝ exp βJM S1SN( )

Page 32: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

correlation function

Repeat (“renormalization group”):after m steps,Suppose we started with N = 2M spins. After M decimation steps there are just 2 spins left:

tanhβJm = (tanhβJ)2m

Z ∝ exp βJM S1SN( )

S1SN =2exp(βJM ) − 2exp(−βJM )

2exp(βJM ) + 2exp(−βJM )

Page 33: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

correlation function

Repeat (“renormalization group”):after m steps,Suppose we started with N = 2M spins. After M decimation steps there are just 2 spins left:

tanhβJm = (tanhβJ)2m

Z ∝ exp βJM S1SN( )

S1SN =2exp(βJM ) − 2exp(−βJM )

2exp(βJM ) + 2exp(−βJM )= tanhβJM

Page 34: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

correlation function

Repeat (“renormalization group”):after m steps,Suppose we started with N = 2M spins. After M decimation steps there are just 2 spins left:

tanhβJm = (tanhβJ)2m

Z ∝ exp βJM S1SN( )

S1SN =2exp(βJM ) − 2exp(−βJM )

2exp(βJM ) + 2exp(−βJM )= tanhβJM = tanhβJ( )

N

Page 35: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

correlation function

Repeat (“renormalization group”):after m steps,Suppose we started with N = 2M spins. After M decimation steps there are just 2 spins left:

tanhβJm = (tanhβJ)2m

Z ∝ exp βJM S1SN( )

S1SN =2exp(βJM ) − 2exp(−βJM )

2exp(βJM ) + 2exp(−βJM )= tanhβJM = tanhβJ( )

N

SiSi+n = exp −n /ξ( )

Page 36: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

correlation function

Repeat (“renormalization group”):after m steps,Suppose we started with N = 2M spins. After M decimation steps there are just 2 spins left:

tanhβJm = (tanhβJ)2m

Z ∝ exp βJM S1SN( )

S1SN =2exp(βJM ) − 2exp(−βJM )

2exp(βJM ) + 2exp(−βJM )= tanhβJM = tanhβJ( )

N

=> correlation length

SiSi+n = exp −n /ξ( )

ξ =−1

logtanhβJ

Page 37: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

correlation function

Repeat (“renormalization group”):after m steps,Suppose we started with N = 2M spins. After M decimation steps there are just 2 spins left:

tanhβJm = (tanhβJ)2m

Z ∝ exp βJM S1SN( )

S1SN =2exp(βJM ) − 2exp(−βJM )

2exp(βJM ) + 2exp(−βJM )= tanhβJM = tanhβJ( )

N

=> correlation length

SiSi+n = exp −n /ξ( )

tanhβJ →1− 2exp(−2βJ)low T:

ξ =−1

logtanhβJ

Page 38: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

correlation function

Repeat (“renormalization group”):after m steps,Suppose we started with N = 2M spins. After M decimation steps there are just 2 spins left:

tanhβJm = (tanhβJ)2m

Z ∝ exp βJM S1SN( )

S1SN =2exp(βJM ) − 2exp(−βJM )

2exp(βJM ) + 2exp(−βJM )= tanhβJM = tanhβJ( )

N

=> correlation length

SiSi+n = exp −n /ξ( )

tanhβJ →1− 2exp(−2βJ) ⇒ ξ → 12 exp(2βJ)low T:

ξ =−1

logtanhβJ

Page 39: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

correlation function

Repeat (“renormalization group”):after m steps,Suppose we started with N = 2M spins. After M decimation steps there are just 2 spins left:

tanhβJm = (tanhβJ)2m

Z ∝ exp βJM S1SN( )

S1SN =2exp(βJM ) − 2exp(−βJM )

2exp(βJM ) + 2exp(−βJM )= tanhβJM = tanhβJ( )

N

=> correlation length

SiSi+n = exp −n /ξ( )

tanhβJ →1− 2exp(−2βJ) ⇒ ξ → 12 exp(2βJ)low T:

ξ =−1

logtanhβJ

Correlation length grows toward ∞ at low T, but no ordering

Page 40: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

infinite-range modelThe opposite limit: every Jij = J/Nalso soluble:

Page 41: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

infinite-range modelThe opposite limit: every Jij = J/Nalso soluble:

d = ∞

Page 42: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

infinite-range modelThe opposite limit: every Jij = J/Nalso soluble:

Z = expβJ

2NSi

ij

∑ S j + βh Si

i

∑ ⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟

{S}

d = ∞

Page 43: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

infinite-range modelThe opposite limit: every Jij = J/Nalso soluble:

Z = expβJ

2NSi

ij

∑ S j + βh Si

i

∑ ⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟

{S}

∑ = expβJ

2NSi

i

∑ ⎛

⎝ ⎜

⎠ ⎟

2

+ βh Si

i

∑ ⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟

{S}

d = ∞

Page 44: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

infinite-range modelThe opposite limit: every Jij = J/Nalso soluble:

Z = expβJ

2NSi

ij

∑ S j + βh Si

i

∑ ⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟

{S}

∑ = expβJ

2NSi

i

∑ ⎛

⎝ ⎜

⎠ ⎟

2

+ βh Si

i

∑ ⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟

{S}

Z = dmδ Nm − Si

i

∑ ⎛

⎝ ⎜

⎠ ⎟∫ exp 1

2 NβJm2 + Nβhm( ){S}

d = ∞

Page 45: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

infinite-range modelThe opposite limit: every Jij = J/Nalso soluble:

Z = expβJ

2NSi

ij

∑ S j + βh Si

i

∑ ⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟

{S}

∑ = expβJ

2NSi

i

∑ ⎛

⎝ ⎜

⎠ ⎟

2

+ βh Si

i

∑ ⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟

{S}

Z = dmδ Nm − Si

i

∑ ⎛

⎝ ⎜

⎠ ⎟∫ exp 1

2 NβJm2 + Nβhm( ){S}

Z = dmdy

2πi∫ exp −y Nm − Si

i

∑ ⎛

⎝ ⎜

⎠ ⎟

⎣ ⎢

⎦ ⎥∫ exp 1

2 NβJm2 + Nβhm( ){S}

d = ∞

Page 46: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

infinite-range modelThe opposite limit: every Jij = J/Nalso soluble:

Z = expβJ

2NSi

ij

∑ S j + βh Si

i

∑ ⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟

{S}

∑ = expβJ

2NSi

i

∑ ⎛

⎝ ⎜

⎠ ⎟

2

+ βh Si

i

∑ ⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟

{S}

Z = dmδ Nm − Si

i

∑ ⎛

⎝ ⎜

⎠ ⎟∫ exp 1

2 NβJm2 + Nβhm( ){S}

Z = dmdy

2πi∫ exp −y Nm − Si

i

∑ ⎛

⎝ ⎜

⎠ ⎟

⎣ ⎢

⎦ ⎥∫ exp 1

2 NβJm2 + Nβhm( ){S}

Z = dmdy

2πi∫∫ exp N −ym + log(2cosh y) + 1

2 βJm2 + βhm( )[ ]

d = ∞

Page 47: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

infinite-range modelThe opposite limit: every Jij = J/Nalso soluble:

Z = expβJ

2NSi

ij

∑ S j + βh Si

i

∑ ⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟

{S}

∑ = expβJ

2NSi

i

∑ ⎛

⎝ ⎜

⎠ ⎟

2

+ βh Si

i

∑ ⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟

{S}

Z = dmδ Nm − Si

i

∑ ⎛

⎝ ⎜

⎠ ⎟∫ exp 1

2 NβJm2 + Nβhm( ){S}

Z = dmdy

2πi∫ exp −y Nm − Si

i

∑ ⎛

⎝ ⎜

⎠ ⎟

⎣ ⎢

⎦ ⎥∫ exp 1

2 NβJm2 + Nβhm( ){S}

Z = dmdy

2πi∫∫ exp N −ym + log(2cosh y) + 1

2 βJm2 + βhm( )[ ]

exponent prop to N => can use saddle point to evaluate Z

d = ∞

Page 48: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

saddle point equations

Z = dmdy

2πi∫∫ exp N −ym + log(2cosh y) + 1

2 βJm2 + βhm( )[ ]

Page 49: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

saddle point equations

Z = dmdy

2πi∫∫ exp N −ym + log(2cosh y) + 1

2 βJm2 + βhm( )[ ]

∂∂y

−ym + log(2cosh y) + 12 βJm2 + βhm( ) = 0 ⇒ m = tanh y

Page 50: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

saddle point equations

Z = dmdy

2πi∫∫ exp N −ym + log(2cosh y) + 1

2 βJm2 + βhm( )[ ]

∂∂y

−ym + log(2cosh y) + 12 βJm2 + βhm( ) = 0 ⇒ m = tanh y

∂m−ym + log(2cosh y) + 1

2 βJm2 + βhm( ) = 0 ⇒ y = β (Jm + h)

Page 51: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

saddle point equations

Z = dmdy

2πi∫∫ exp N −ym + log(2cosh y) + 1

2 βJm2 + βhm( )[ ]

∂∂y

−ym + log(2cosh y) + 12 βJm2 + βhm( ) = 0 ⇒ m = tanh y

∂m−ym + log(2cosh y) + 1

2 βJm2 + βhm( ) = 0 ⇒ y = β (Jm + h)

put them together:

m = tanh β (Jm + h)[ ]

Page 52: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

saddle point equations

Z = dmdy

2πi∫∫ exp N −ym + log(2cosh y) + 1

2 βJm2 + βhm( )[ ]

∂∂y

−ym + log(2cosh y) + 12 βJm2 + βhm( ) = 0 ⇒ m = tanh y

∂m−ym + log(2cosh y) + 1

2 βJm2 + βhm( ) = 0 ⇒ y = β (Jm + h)

put them together:

m = tanh β (Jm + h)[ ]

h = 0:

m = tanhβJm

Page 53: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

saddle point equations

Z = dmdy

2πi∫∫ exp N −ym + log(2cosh y) + 1

2 βJm2 + βhm( )[ ]

∂∂y

−ym + log(2cosh y) + 12 βJm2 + βhm( ) = 0 ⇒ m = tanh y

∂m−ym + log(2cosh y) + 1

2 βJm2 + βhm( ) = 0 ⇒ y = β (Jm + h)

put them together:

m = tanh β (Jm + h)[ ]

h = 0:

m = tanhβJm has 2 solutions (i.e 2 saddle points) for βJ > 1, i.e., T < J

Page 54: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

saddle point equations

Z = dmdy

2πi∫∫ exp N −ym + log(2cosh y) + 1

2 βJm2 + βhm( )[ ]

∂∂y

−ym + log(2cosh y) + 12 βJm2 + βhm( ) = 0 ⇒ m = tanh y

∂m−ym + log(2cosh y) + 1

2 βJm2 + βhm( ) = 0 ⇒ y = β (Jm + h)

put them together:

m = tanh β (Jm + h)[ ]

h = 0:

m = tanhβJm has 2 solutions (i.e 2 saddle points) for βJ > 1, i.e., T < J

solution m: spontaneous magnetization

Page 55: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

intuition: heuristic approach

P[S] =1

Zexp 1

2 β JijSi

ij

∑ S j + βh Si

i

∑ ⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟from

Page 56: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

intuition: heuristic approach

P[S] =1

Zexp 1

2 β JijSi

ij

∑ S j + βh Si

i

∑ ⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟from

total field on Si is

H i = h + JijS j

j

Page 57: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

intuition: heuristic approach

P[S] =1

Zexp 1

2 β JijSi

ij

∑ S j + βh Si

i

∑ ⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟from

total field on Si is

replace it by its mean:

H i = h + JijS j

j

H = h + Jij S j

j

∑ = h + Jm

Page 58: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

intuition: heuristic approach

P[S] =1

Zexp 1

2 β JijSi

ij

∑ S j + βh Si

i

∑ ⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟from

total field on Si is

replace it by its mean:

and calculate m as the average S of a single spin in field H: €

H i = h + JijS j

j

H = h + Jij S j

j

∑ = h + Jm

Page 59: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

intuition: heuristic approach

P[S] =1

Zexp 1

2 β JijSi

ij

∑ S j + βh Si

i

∑ ⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟from

total field on Si is

replace it by its mean:

and calculate m as the average S of a single spin in field H: €

H i = h + JijS j

j

H = h + Jij S j

j

∑ = h + Jm

m = S =eβH − eβH

eβH + eβH= tanhβ (h + Jm)

Page 60: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

broken symmetry

T > TcT = TcT < Tc

Page 61: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

Near Tc

expand

m = tanh(βJm + βh) = βJm + βh − 13 (βJm)3

Page 62: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

Near Tc

expand

m = tanh(βJm + βh) = βJm + βh − 13 (βJm)3

(βJ −1)m = 13 (βJm)3h = 0:

Page 63: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

Near Tc

expand

m = tanh(βJm + βh) = βJm + βh − 13 (βJm)3

(βJ −1)m = 13 (βJm)3 ⇒ m =

3(Tc − T)

Tc

, Tc = Jh = 0:

Page 64: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

Near Tc

expand

m = tanh(βJm + βh) = βJm + βh − 13 (βJm)3

(βJ −1)m = 13 (βJm)3 ⇒ m =

3(Tc − T)

Tc

, Tc = Jh = 0:

1st order in h:

m = βJm + βh

Page 65: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

Near Tc

expand

m = tanh(βJm + βh) = βJm + βh − 13 (βJm)3

(βJ −1)m = 13 (βJm)3 ⇒ m =

3(Tc − T)

Tc

, Tc = Jh = 0:

1st order in h:

m = βJm + βh ⇒ m =h

T − Tc

Page 66: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

Near Tc

expand

m = tanh(βJm + βh) = βJm + βh − 13 (βJm)3

(βJ −1)m = 13 (βJm)3 ⇒ m =

3(Tc − T)

Tc

, Tc = Jh = 0:

1st order in h:

m = βJm + βh ⇒ m =h

T − Tc

, i.e., χ =1

T − Tc

Page 67: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

Near Tc

expand

m = tanh(βJm + βh) = βJm + βh − 13 (βJm)3

(βJ −1)m = 13 (βJm)3 ⇒ m =

3(Tc − T)

Tc

, Tc = Jh = 0:

T = Tc:

βh = 13 (βJm)3 ⇒ m∝ h

13

1st order in h:

m = βJm + βh ⇒ m =h

T − Tc

, i.e., χ =1

T − Tc

Page 68: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

Near Tc

expand

m = tanh(βJm + βh) = βJm + βh − 13 (βJm)3

(βJ −1)m = 13 (βJm)3 ⇒ m =

3(Tc − T)

Tc

, Tc = Jh = 0:

T = Tc:

βh = 13 (βJm)3 ⇒ m∝ h

13

1st order in h:

m = βJm + βh ⇒ m =h

T − Tc

, i.e., χ =1

T − Tc

mean field critical behaviour

Page 69: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

critical behaviour:MFT describes the phase transition qualitatively correctly(right exponents) for d > 4.

Page 70: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

critical behaviour:MFT describes the phase transition qualitatively correctly(right exponents) for d > 4.For 1 < d < 4, there is a phase transition, but the critical exponentsare different.

Page 71: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

critical behaviour:MFT describes the phase transition qualitatively correctly(right exponents) for d > 4.For 1 < d < 4, there is a phase transition, but the critical exponentsare different.

m∝ (T − Tc )β , χ ∝ (T − Tc )−γ , m∝ h1δ

β < 12 , γ >1, δ > 3

Page 72: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

critical behaviour:MFT describes the phase transition qualitatively correctly(right exponents) for d > 4.For 1 < d < 4, there is a phase transition, but the critical exponentsare different.

m∝ (T − Tc )β , χ ∝ (T − Tc )−γ , m∝ h1δ

β < 12 , γ >1, δ > 3

d = 2: Onsager exact solution:

Page 73: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

critical behaviour:MFT describes the phase transition qualitatively correctly(right exponents) for d > 4.For 1 < d < 4, there is a phase transition, but the critical exponentsare different.

m∝ (T − Tc )β , χ ∝ (T − Tc )−γ , m∝ h1δ

β < 12 , γ >1, δ > 3

d = 2: Onsager exact solution:

Tc = 2.269J, β = 18 , γ = 7

4 , δ =15

Page 74: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

Dynamics: Glauber model

74

Ising model: Binary “spins” Si(t) = ±1

Page 75: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

Dynamics: Glauber model

75

Ising model: Binary “spins” Si(t) = ±1Dynamics: at every time step,

Page 76: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

Dynamics: Glauber model

76

Ising model: Binary “spins” Si(t) = ±1Dynamics: at every time step,

(1) choose a spin (i) at random

Page 77: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

Dynamics: Glauber model

77

Ising model: Binary “spins” Si(t) = ±1Dynamics: at every time step,

(1) choose a spin (i) at random(2) compute “field” of neighbors hi(t) = ΣjJijSj(t)

Page 78: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

Dynamics: Glauber model

78

Ising model: Binary “spins” Si(t) = ±1Dynamics: at every time step,

(1) choose a spin (i) at random(2) compute “field” of neighbors hi(t) = ΣjJijSj(t) Jij = Jji

Page 79: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

Dynamics: Glauber model

79

Ising model: Binary “spins” Si(t) = ±1Dynamics: at every time step,

(1) choose a spin (i) at random(2) compute “field” of neighbors hi(t) = ΣjJijSj(t) Jij = Jji (3) Si(t + Δt) = ±1 with probability

P(hi) =exp ±βhi( )

exp βhi( ) + exp −βhi( )=

1

1+ exp(m2βhi)

Page 80: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

Dynamics: Glauber model

80

Ising model: Binary “spins” Si(t) = ±1Dynamics: at every time step,

(1) choose a spin (i) at random(2) compute “field” of neighbors hi(t) = ΣjJijSj(t) Jij = Jji (3) Si(t + Δt) = ±1 with probability

P(hi) =exp ±βhi( )

exp βhi( ) + exp −βhi( )=

1

1+ exp(m2βhi)= 1

2 1± tanh(βhi)( )

Page 81: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

Dynamics: Glauber model

81

Ising model: Binary “spins” Si(t) = ±1Dynamics: at every time step,

(1) choose a spin (i) at random(2) compute “field” of neighbors hi(t) = ΣjJijSj(t) Jij = Jji (3) Si(t + Δt) = ±1 with probability

(equilibration of Si, given current values of other S’s)

P(hi) =exp ±βhi( )

exp βhi( ) + exp −βhi( )=

1

1+ exp(m2βhi)= 1

2 1± tanh(βhi)( )

Page 82: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

Dynamics: Glauber model

82

Ising model: Binary “spins” Si(t) = ±1Dynamics: at every time step,

(1) choose a spin (i) at random(2) compute “field” of neighbors hi(t) = ΣjJijSj(t) Jij = Jji (3) Si(t + Δt) = ±1 with probability

(equilibration of Si, given current values of other S’s)

P(hi) =exp ±βhi( )

exp βhi( ) + exp −βhi( )=

1

1+ exp(m2βhi)= 1

2 1± tanh(βhi)( )

Page 83: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

master equation for Glauber model

τ 0

dP({S},t)

dt= 1

2 1+ Si tanh βhi(t)( )[ ]i

∑ P(S1L − SiL SN )

− 12 1− Si tanh βhi(t)( )[ ]

i

∑ P(S1L SiL SN )

Page 84: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

master equation for Glauber model

τ 0

dP({S},t)

dt= 1

2 1+ Si tanh βhi(t)( )[ ]i

∑ P(S1L − SiL SN )

− 12 1− Si tanh βhi(t)( )[ ]

i

∑ P(S1L SiL SN )

magnetization

Si(t) = Si

{S}

∑ P({S}, t)

Page 85: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

master equation for Glauber model

τ 0

dP({S},t)

dt= 1

2 1+ Si tanh βhi(t)( )[ ]i

∑ P(S1L − SiL SN )

− 12 1− Si tanh βhi(t)( )[ ]

i

∑ P(S1L SiL SN )

magnetization

Si(t) = Si

{S}

∑ P({S}, t)

τ 0

d Si

dt= τ 0 Si

{S}

∑ dP({S},t)

dttime evolution:

Page 86: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

master equation for Glauber model

τ 0

dP({S},t)

dt= 1

2 1+ Si tanh βhi(t)( )[ ]i

∑ P(S1L − SiL SN )

− 12 1− Si tanh βhi(t)( )[ ]

i

∑ P(S1L SiL SN )

magnetization

Si(t) = Si

{S}

∑ P({S}, t)

τ 0

d Si

dt= τ 0 Si

{S}

∑ dP({S},t)

dt

= 12 Si + tanh βhi(t)( )[ ]

i

∑ P(S1L − SiL SN )

− 12 Si − tanh βhi(t)( )[ ]

i

∑ P(S1L SiL SN )

time evolution:

Page 87: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

master equation for Glauber model

τ 0

dP({S},t)

dt= 1

2 1+ Si tanh βhi(t)( )[ ]i

∑ P(S1L − SiL SN )

− 12 1− Si tanh βhi(t)( )[ ]

i

∑ P(S1L SiL SN )

magnetization

Si(t) = Si

{S}

∑ P({S}, t)

τ 0

d Si

dt= τ 0 Si

{S}

∑ dP({S},t)

dt

= 12 Si + tanh βhi(t)( )[ ]

i

∑ P(S1L − SiL SN )

− 12 Si − tanh βhi(t)( )[ ]

i

∑ P(S1L SiL SN )

= − Si + tanh βhi(t)( )

time evolution:

Page 88: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

mean field dynamics

τ 0

d Si

dt= − Si(t) + tanh β JijS j (t) + βh

j

∑ ⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟

Page 89: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

mean field dynamics

τ 0

d Si

dt= − Si(t) + tanh β JijS j (t) + βh

j

∑ ⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟

mean field approximation:

Page 90: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

mean field dynamics

τ 0

d Si

dt= − Si(t) + tanh β JijS j (t) + βh

j

∑ ⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟

mean field approximation:

S j (t) → S j (t) = m(t)

Page 91: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

mean field dynamics

τ 0

d Si

dt= − Si(t) + tanh β JijS j (t) + βh

j

∑ ⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟

mean field approximation:

S j (t) → S j (t) = m(t)

⇒ τ 0

dm

dt= −m + tanhβ (Jm + h)

Page 92: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

mean field dynamics

τ 0

d Si

dt= − Si(t) + tanh β JijS j (t) + βh

j

∑ ⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟

mean field approximation:

S j (t) → S j (t) = m(t)

⇒ τ 0

dm

dt= −m + tanhβ (Jm + h)

t -> ∞: recover equilibrium result

Page 93: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

mean field dynamics

τ 0

d Si

dt= − Si(t) + tanh β JijS j (t) + βh

j

∑ ⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟

mean field approximation:

S j (t) → S j (t) = m(t)

⇒ τ 0

dm

dt= −m + tanhβ (Jm + h)

t -> ∞: recover equilibrium result

T > Tc, h = 0:

τ 0

dm

dt= −m(1− βJ)

Page 94: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

mean field dynamics

τ 0

d Si

dt= − Si(t) + tanh β JijS j (t) + βh

j

∑ ⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟

mean field approximation:

S j (t) → S j (t) = m(t)

⇒ τ 0

dm

dt= −m + tanhβ (Jm + h)

t -> ∞: recover equilibrium result

T > Tc, h = 0:

τ 0

dm

dt= −m(1− βJ) ⇒ m = m(0)exp −

T − Tc

Tτ 0

⎝ ⎜

⎠ ⎟t

⎣ ⎢

⎦ ⎥

Page 95: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

mean field dynamics

τ 0

d Si

dt= − Si(t) + tanh β JijS j (t) + βh

j

∑ ⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟

mean field approximation:

S j (t) → S j (t) = m(t)

⇒ τ 0

dm

dt= −m + tanhβ (Jm + h)

t -> ∞: recover equilibrium result

T > Tc, h = 0:

τ 0

dm

dt= −m(1− βJ) ⇒ m = m(0)exp −

T − Tc

Tτ 0

⎝ ⎜

⎠ ⎟t

⎣ ⎢

⎦ ⎥

“critical slowing down”

τ =τ 0

T

T − Tc

⎝ ⎜

⎠ ⎟

Page 96: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

below Tc

τ 0

dm

dt= −m + tanhβ (Jm + h)

Page 97: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

below Tc

τ 0

dm

dt= −m + tanhβ (Jm + h)

m0 = tanh(βJm0)expand around

Page 98: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

below Tc

τ 0

dm

dt= −m + tanhβ (Jm + h)

m0 = tanh(βJm0)

τ 0

dδm

dt= −δm + sech2(βJm0) ⋅βJδm

expand around

Page 99: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

below Tc

τ 0

dm

dt= −m + tanhβ (Jm + h)

m0 = tanh(βJm0)

τ 0

dδm

dt= −δm + sech2(βJm0) ⋅βJδm

= −δm + (1− m02)βJδm

expand around

Page 100: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

below Tc

τ 0

dm

dt= −m + tanhβ (Jm + h)

m0 = tanh(βJm0)

τ 0

dδm

dt= −δm + sech2(βJm0) ⋅βJδm

= −δm + (1− m02)βJδm

expand around

τ 0

dδm

dt= − 1− (βJ)(1− m0

2)( )δmjust below Tc:

Page 101: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

below Tc

τ 0

dm

dt= −m + tanhβ (Jm + h)

m0 = tanh(βJm0)

τ 0

dδm

dt= −δm + sech2(βJm0) ⋅βJδm

= −δm + (1− m02)βJδm

expand around

τ 0

dδm

dt= − 1− (βJ)(1− m0

2)( )δm

= − 1− (βJ)(1− 3(Tc − T) /Tc )( )δm

just below Tc:

Page 102: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

below Tc

τ 0

dm

dt= −m + tanhβ (Jm + h)

m0 = tanh(βJm0)

τ 0

dδm

dt= −δm + sech2(βJm0) ⋅βJδm

= −δm + (1− m02)βJδm

expand around

τ 0

dδm

dt= − 1− (βJ)(1− m0

2)( )δm

= − 1− (βJ)(1− 3(Tc − T) /Tc )( )δm

= −2(Tc − T)δm

just below Tc:

Page 103: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

below Tc

τ 0

dm

dt= −m + tanhβ (Jm + h)

m0 = tanh(βJm0)

τ 0

dδm

dt= −δm + sech2(βJm0) ⋅βJδm

= −δm + (1− m02)βJδm

expand around

τ 0

dδm

dt= − 1− (βJ)(1− m0

2)( )δm

= − 1− (βJ)(1− 3(Tc − T) /Tc )( )δm

= −2(Tc − T)δm

τ =12 τ 0

Tc

Tc − T

⎝ ⎜

⎠ ⎟

just below Tc:

correlation time

Page 104: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

beyond MFT

still have critical slowing down, different critical exponents

Page 105: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

Landau-Ginzburg model

continuous-valued spins in continuous space:

Page 106: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

Landau-Ginzburg model

continuous-valued spins in continuous space:

Si → φ(x)

Page 107: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

Landau-Ginzburg model

continuous-valued spins in continuous space:

Si → φ(x)

Z = exp −βE({S})( ){S}

Page 108: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

Landau-Ginzburg model

continuous-valued spins in continuous space:

Si → φ(x)

Z = exp −βE({S})( ){S}

→ Z = Dφexp∫ −βE[φ]( )

Page 109: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

Landau-Ginzburg model

continuous-valued spins in continuous space:

Si → φ(x)

Z = exp −βE({S})( ){S}

→ Z = Dφexp∫ −βE[φ]( ) functional integral:

Page 110: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

Landau-Ginzburg model

continuous-valued spins in continuous space:

Si → φ(x)

Z = exp −βE({S})( ){S}

→ Z = Dφexp∫ −βE[φ]( ) functional integral:

Dφ ≡ limxi+1 −xi →0

∫ dφi

i

Page 111: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

Landau-Ginzburg model

continuous-valued spins in continuous space:

Si → φ(x)

Z = exp −βE({S})( ){S}

→ Z = Dφexp∫ −βE[φ]( ) functional integral:

Dφ ≡ limxi+1 −xi →0

∫ dφi

i

E[φ] = 12 dd x∫ r0φ

2(x) + 12 u0φ

4 (x) + (∇φ(x))2[ ]

(free) energyfunctional:

Page 112: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

Landau-Ginzburg model

continuous-valued spins in continuous space:

Si → φ(x)

Z = exp −βE({S})( ){S}

→ Z = Dφexp∫ −βE[φ]( ) functional integral:

Dφ ≡ limxi+1 −xi →0

∫ dφi

i

E[φ] = 12 dd x∫ r0φ

2(x) + 12 u0φ

4 (x) + (∇φ(x))2[ ]

(free) energyfunctional:

“potential”

V (φ) = 12 r0φ

2 + 14 u0φ

4

Page 113: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

Landau-Ginzburg model

continuous-valued spins in continuous space:

Si → φ(x)

Z = exp −βE({S})( ){S}

→ Z = Dφexp∫ −βE[φ]( ) functional integral:

Dφ ≡ limxi+1 −xi →0

∫ dφi

i

E[φ] = 12 dd x∫ r0φ

2(x) + 12 u0φ

4 (x) + (∇φ(x))2[ ]

(free) energyfunctional:

“potential”

V (φ) = 12 r0φ

2 + 14 u0φ

4

Page 114: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

Landau-Ginzburg model

continuous-valued spins in continuous space:

Si → φ(x)

Z = exp −βE({S})( ){S}

→ Z = Dφexp∫ −βE[φ]( ) functional integral:

Dφ ≡ limxi+1 −xi →0

∫ dφi

i

E[φ] = 12 dd x∫ r0φ

2(x) + 12 u0φ

4 (x) + (∇φ(x))2[ ]

(free) energyfunctional:

“potential” “bending energy”

∇φ(x)( )2

V (φ) = 12 r0φ

2 + 14 u0φ

4

Page 115: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

Landau-Ginzburg model

continuous-valued spins in continuous space:

Si → φ(x)

Z = exp −βE({S})( ){S}

→ Z = Dφexp∫ −βE[φ]( ) functional integral:

Dφ ≡ limxi+1 −xi →0

∫ dφi

i

E[φ] = 12 dd x∫ r0φ

2(x) + 12 u0φ

4 (x) + (∇φ(x))2[ ]

(free) energyfunctional:

“potential” “bending energy”

∇φ(x)( )2

V (φ) = 12 r0φ

2 + 14 u0φ

4

− Si+1Si −1( )i

∑ = 12 Si+1 − Si( )

i

∑2

continuum limit of

Page 116: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

mean field theory

no fluctuations: ϕ uniform

Page 117: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

mean field theory

no fluctuations: ϕ uniform

dV

dφ= 0

Page 118: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

mean field theory

no fluctuations: ϕ uniform

dV

dφ= 0 ⇒ r0φ0 + u0φ0

3 = 0

Page 119: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

mean field theory

no fluctuations: ϕ uniform

dV

dφ= 0 ⇒ r0φ0 + u0φ0

3 = 0

φ0 = 0

φ0 = 0, ± −r0 u0

solutions:

Page 120: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

mean field theory

no fluctuations: ϕ uniform

dV

dφ= 0 ⇒ r0φ0 + u0φ0

3 = 0

φ0 = 0

φ0 = 0, ± −r0 u0

solutions:

take r0 prop to T - Tc

Page 121: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

fluctuations around MFT

r0 > 0: ignore ϕ4 term:

Page 122: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

fluctuations around MFT

r0 > 0: ignore ϕ4 term:

E[φ] = 12 dd x∫ r0φ

2(x) + (∇φ(x))2[ ]

Page 123: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

fluctuations around MFT

r0 > 0: ignore ϕ4 term:

E[φ] = 12 dd x∫ r0φ

2(x) + (∇φ(x))2[ ]

Fourier transform:

E[φ] = 12

dd p

(2π )d∫ r0 φ( p)2

+ p2 φ( p)2

[ ]

Page 124: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

fluctuations around MFT

r0 > 0: ignore ϕ4 term:

E[φ] = 12 dd x∫ r0φ

2(x) + (∇φ(x))2[ ]

Fourier transform:

E[φ] = 12

dd p

(2π )d∫ r0 φ( p)2

+ p2 φ( p)2

[ ] ≡ 12 r0 φ( p)

2+ p2 φ( p)

2

[ ]p

Page 125: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

fluctuations around MFT

r0 > 0: ignore ϕ4 term:

E[φ] = 12 dd x∫ r0φ

2(x) + (∇φ(x))2[ ]

Fourier transform:

E[φ] = 12

dd p

(2π )d∫ r0 φ( p)2

+ p2 φ( p)2

[ ] ≡ 12 r0 φ( p)

2+ p2 φ( p)

2

[ ]p

⇒ P[φ] =1

Zexp −βE[φ]( )

Page 126: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

fluctuations around MFT

r0 > 0: ignore ϕ4 term:

E[φ] = 12 dd x∫ r0φ

2(x) + (∇φ(x))2[ ]

Fourier transform:

E[φ] = 12

dd p

(2π )d∫ r0 φ( p)2

+ p2 φ( p)2

[ ] ≡ 12 r0 φ( p)

2+ p2 φ( p)

2

[ ]p

⇒ P[φ] =1

Zexp −βE[φ]( ) =

1

Zexp − 1

2 (r0 + p2)φ(p)2

[ ]p

Page 127: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

fluctuations around MFT

r0 > 0: ignore ϕ4 term:

E[φ] = 12 dd x∫ r0φ

2(x) + (∇φ(x))2[ ]

Fourier transform:

E[φ] = 12

dd p

(2π )d∫ r0 φ( p)2

+ p2 φ( p)2

[ ] ≡ 12 r0 φ( p)

2+ p2 φ( p)

2

[ ]p

⇒ P[φ] =1

Zexp −βE[φ]( ) =

1

Zexp − 1

2 (r0 + p2)φ(p)2

[ ]p

∏ (T = 1)

Page 128: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

fluctuations around MFT

r0 > 0: ignore ϕ4 term:

E[φ] = 12 dd x∫ r0φ

2(x) + (∇φ(x))2[ ]

Fourier transform:

E[φ] = 12

dd p

(2π )d∫ r0 φ( p)2

+ p2 φ( p)2

[ ] ≡ 12 r0 φ( p)

2+ p2 φ( p)

2

[ ]p

⇒ P[φ] =1

Zexp −βE[φ]( ) =

1

Zexp − 1

2 (r0 + p2)φ(p)2

[ ]p

product of independent Gaussians, one for each pair (p,-p)

(T = 1)

Page 129: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

fluctuations around MFT

r0 > 0: ignore ϕ4 term:

E[φ] = 12 dd x∫ r0φ

2(x) + (∇φ(x))2[ ]

Fourier transform:

E[φ] = 12

dd p

(2π )d∫ r0 φ( p)2

+ p2 φ( p)2

[ ] ≡ 12 r0 φ( p)

2+ p2 φ( p)

2

[ ]p

⇒ P[φ] =1

Zexp −βE[φ]( ) =

1

Zexp − 1

2 (r0 + p2)φ(p)2

[ ]p

product of independent Gaussians, one for each pair (p,-p)

φ( p)2

=1

r0 + p2

(T = 1)

Page 130: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

fluctuations around MFT

r0 > 0: ignore ϕ4 term:

E[φ] = 12 dd x∫ r0φ

2(x) + (∇φ(x))2[ ]

Fourier transform:

E[φ] = 12

dd p

(2π )d∫ r0 φ( p)2

+ p2 φ( p)2

[ ] ≡ 12 r0 φ( p)

2+ p2 φ( p)

2

[ ]p

⇒ P[φ] =1

Zexp −βE[φ]( ) =

1

Zexp − 1

2 (r0 + p2)φ(p)2

[ ]p

product of independent Gaussians, one for each pair (p,-p)

φ( p)2

=1

r0 + p2

⇒ φ(x)φ(y) =1

4π x − yexp − r0 x − y( )

(T = 1)

Page 131: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

fluctuations around MFT

r0 > 0: ignore ϕ4 term:

E[φ] = 12 dd x∫ r0φ

2(x) + (∇φ(x))2[ ]

Fourier transform:

E[φ] = 12

dd p

(2π )d∫ r0 φ( p)2

+ p2 φ( p)2

[ ] ≡ 12 r0 φ( p)

2+ p2 φ( p)

2

[ ]p

⇒ P[φ] =1

Zexp −βE[φ]( ) =

1

Zexp − 1

2 (r0 + p2)φ(p)2

[ ]p

product of independent Gaussians, one for each pair (p,-p)

φ( p)2

=1

r0 + p2

⇒ φ(x)φ(y) =1

4π x − yexp − r0 x − y( )

correlation length

ξ =1

r0

∝1

T − Tc

(T = 1)

Page 132: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

fluctuations around MFT

r0 > 0: ignore ϕ4 term:

E[φ] = 12 dd x∫ r0φ

2(x) + (∇φ(x))2[ ]

Fourier transform:

E[φ] = 12

dd p

(2π )d∫ r0 φ( p)2

+ p2 φ( p)2

[ ] ≡ 12 r0 φ( p)

2+ p2 φ( p)

2

[ ]p

⇒ P[φ] =1

Zexp −βE[φ]( ) =

1

Zexp − 1

2 (r0 + p2)φ(p)2

[ ]p

product of independent Gaussians, one for each pair (p,-p)

φ( p)2

=1

r0 + p2

⇒ φ(x)φ(y) =1

4π x − yexp − r0 x − y( )

correlation length

ξ =1

r0

∝1

T − Tc

diverges at Tc

(T = 1)

Page 133: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

Langevin dynamics

∂φ(x)

∂t= −

δE

δφ(x)+ η (x, t), η (x, t)η ( ′ x , ′ t ) = 2Tδ d (x − ′ x )δ(t − ′ t )

Page 134: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

Langevin dynamics

∂φ(x)

∂t= −

δE

δφ(x)+ η (x, t), η (x, t)η ( ′ x , ′ t ) = 2Tδ d (x − ′ x )δ(t − ′ t )

∂φ( p)

∂t= −

∂E

∂φ*( p)+ η (p, t), η (p, t)η (−p, ′ t ) = 2Tδ(t − ′ t )

Fourier transform :

Page 135: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

Langevin dynamics

∂φ(x)

∂t= −

δE

δφ(x)+ η (x, t), η (x, t)η ( ′ x , ′ t ) = 2Tδ d (x − ′ x )δ(t − ′ t )

∂φ( p)

∂t= −

∂E

∂φ*( p)+ η (p, t), η (p, t)η (−p, ′ t ) = 2Tδ(t − ′ t )

Fourier transform :

E[φ] = 12 r0 φ( p)

2+ p2 φ( p)

2

[ ]p

∫ + 14 u0 φ(p)φ( ′ p )φ( ′ ′ p )φ(−p − ′ p − ′ ′ p )

p, ′ p , ′ ′ p

Page 136: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

Langevin dynamics

∂φ(x)

∂t= −

δE

δφ(x)+ η (x, t), η (x, t)η ( ′ x , ′ t ) = 2Tδ d (x − ′ x )δ(t − ′ t )

∂φ( p)

∂t= −

∂E

∂φ*( p)+ η (p, t), η (p, t)η (−p, ′ t ) = 2Tδ(t − ′ t )

Fourier transform :

E[φ] = 12 r0 φ( p)

2+ p2 φ( p)

2

[ ]p

∫ + 14 u0 φ(p)φ( ′ p )φ( ′ ′ p )φ(−p − ′ p − ′ ′ p )

p, ′ p , ′ ′ p

∂φ( p)

∂t= − r0 + p2

( )φ(p) − u0 φ( ′ p )φ( ′ ′ p )φ(p − ′ p − ′ ′ p )′ p , ′ ′ p

∫ + η ( p, t)

Page 137: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

Langevin dynamics

∂φ(x)

∂t= −

δE

δφ(x)+ η (x, t), η (x, t)η ( ′ x , ′ t ) = 2Tδ d (x − ′ x )δ(t − ′ t )

∂φ( p)

∂t= −

∂E

∂φ*( p)+ η (p, t), η (p, t)η (−p, ′ t ) = 2Tδ(t − ′ t )

Fourier transform :

E[φ] = 12 r0 φ( p)

2+ p2 φ( p)

2

[ ]p

∫ + 14 u0 φ(p)φ( ′ p )φ( ′ ′ p )φ(−p − ′ p − ′ ′ p )

p, ′ p , ′ ′ p

∂φ( p)

∂t= − r0 + p2

( )φ(p) − u0 φ( ′ p )φ( ′ ′ p )φ(p − ′ p − ′ ′ p )′ p , ′ ′ p

∫ + η ( p, t)

or, back in real space,

∂φ(x)

∂t= − r0 −∇ 2

( )φ(x) − u0φ3(x) + η (x, t)

Page 138: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

small fluctuations above Tc

∂φ( p)

∂t= − r0 + p2

( )φ(p) + η ( p, t)ignoring u0:

Page 139: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

small fluctuations above Tc

∂φ( p)

∂t= − r0 + p2

( )φ(p) + η ( p, t)ignoring u0:

We have solved this before:

Page 140: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

small fluctuations above Tc

∂φ( p)

∂t= − r0 + p2

( )φ(p) + η ( p, t)ignoring u0:

We have solved this before:

φ( p, t) = exp −(r0 + p2)(t − ′ t )[ ]−∞

t

∫ η (p, ′ t )d ′ t

Page 141: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

small fluctuations above Tc

∂φ( p)

∂t= − r0 + p2

( )φ(p) + η ( p, t)ignoring u0:

We have solved this before:

φ( p, t) = exp −(r0 + p2)(t − ′ t )[ ]−∞

t

∫ η (p, ′ t )d ′ t

average over noise (we did this before, too)

Page 142: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

small fluctuations above Tc

∂φ( p)

∂t= − r0 + p2

( )φ(p) + η ( p, t)ignoring u0:

We have solved this before:

φ( p, t) = exp −(r0 + p2)(t − ′ t )[ ]−∞

t

∫ η (p, ′ t )d ′ t

average over noise (we did this before, too)

φ( p, t)φ(p, ′ t ) =T

r0 + p2exp −(r0 + p2) t − ′ t [ ]

Page 143: Lecture 11: Ising model Outline: equilibrium theory d = 1 mean field theory, phase transition critical phenomena kinetics (Glauber model) critical dynamics.

small fluctuations above Tc

∂φ( p)

∂t= − r0 + p2

( )φ(p) + η ( p, t)ignoring u0:

We have solved this before:

φ( p, t) = exp −(r0 + p2)(t − ′ t )[ ]−∞

t

∫ η (p, ′ t )d ′ t

average over noise (we did this before, too)

φ( p, t)φ(p, ′ t ) =T

r0 + p2exp −(r0 + p2) t − ′ t [ ]

critical slowing down (long correlation time) of fluctuations near Tc (small r0) for small p (long wavelengths)